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Nearly twenty years ago, two of the authors wrote a paper on congruence lattices
of semilattices [9]. The problem of finding a really useful characterization of con-
gruence lattices of finite semilattices seemed too hard for us, so we went on to other
things. Thus when Steve Seif asked one of us at the October 1990 meeting of the
AMS in Amherst what we had learned in the meantime, the answer was nothing.
But Seif’s question prompted us to return to the subject, and we soon found that we
had missed at least one nice property: the congruence lattice of a finite semilattice
is an upper bounded homomorphic image of a free lattice. This strengthens the well-
known fact that congruence lattices of semilattices satisfy the meet semidistributive
law SD∧.

It turns out that this result admits a striking generalization: if V is a variety
of algebras whose congruence lattices are meet semidistributive, then the congruence
lattices of finite algebras in V are upper bounded homomorphic images of a free
lattice. The proof of this theorem takes us into the realm of tame congruence
theory, and with modest additional effort we are able to find strong restrictions
on the structure of the lattice Lv(W) of subvarieties of an arbitrary locally finite
variety W.

Stimulated by Viktor Gorbunov’s talk at the Jónsson Symposium in Iceland in
July 1990, and the corresponding draft of [12] which he provided us, we went on to
ask if this type of result might apply to lattices of quasivarieties. It is known that
the lattice Lq(K) of all quasivarieties contained in a quasivariety K satisfies SD∨
[11], and the improved (finite) version states that if K is a locally finite quasivariety
of finite type and Lq(K) is finite, then it is a lower bounded homomorphic image of
a free lattice. There are natural generalizations of this theorem for varieties which
are not locally finite.

Perhaps an analogy with the modular and Arguesian laws provides a good way
to interpret these results. Dedekind devised the modular law to capture the per-
mutability of normal subgroup lattices, but the Arguesian law is now recognized
to be a more accurate reflection of this property. Similarly, congruence lattices of
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semilattices satisfy SD∧, but (at least in the finite case) upper boundedness is a
stronger property which provides a better description of their structure. As the Ar-
guesian law is not sufficient to characterize normal subgroup lattices, neither does
lower boundedness characterize congruence lattices of finite semilattices. Nonethe-
less, the Arguesian law and upper boundedness, respectively, play a significant role
in refining our understanding of these classes of lattices.

Since completing the draft of this paper, we learned of significant progress on
the Siberian front. In particular, K. V. Adaricheva has found a characterization
of subalgebra lattices of finite semilattices [1], and her results imply some of our
results. Likewise, Gorbunov was aware of our elementary theorems on quasivariety
lattices, as consequences of his deeper work on the subject. The main new results
in this paper are in Theorems 23, 31 and 42. For purposes of exposition, we have
decided to keep the proofs of some of the overlapping results in this paper, but we
will try to indicate when these results were found independently.

1. Lower bounded lattices

Let us begin by reviewing the basic definition and properties of finite lower
bounded lattices. These come from [5], [16], and [21]; other fundamental results
about this class can be found in [10] and [24]. The dual notion is called upper
bounded.

We need a series of definitions.
A lattice homomorphism h : K → L is called a lower bounded homomorphism

if for each a ∈ L, {x ∈ K : h(x) ≥ a} is either empty or else has a least element,
denoted β(a). Note that the domain of β is an ideal I of L, and β : I → K is a join
homomorphism.

A subset C ⊆ K is a lower pseudo-interval if it is a union of intervals with a
common least element, C =

⋃
[a, bi]. If C ⊆ K is a lower pseudo-interval, the Day

doubling construction yields the lattice K[C] with universe K − C ∪ (C × {0, 1}),
endowed with the natural order. Let LD denote the smallest class of finite lattices
containing all finite distributive lattices and closed under the doubling of lower
pseudo-intervals.

If L is a finite lattice, let J(L) denote the set of (nonzero) join irreducible elements
of L. For subsets A,B ⊆ L, define A� B if for each a ∈ A there exists b ∈ B with
a ≤ b. Using this, for k ∈ ω we define subsets Dk(L) ⊆ J(L) as follows. D0(L) is
the set of all join-prime elements of L. Given Dk(L), we define Dk+1(L) to be the
set of all p ∈ J(L) such that whenever p ≤

∨
B and p 6≤ b for all b ∈ B, then there

exists A� B such that p ≤
∨
A and A ⊆ Dk(L).

Closely related to the subsets Dk(L) is the dependence relation D on J(L). For
distinct elements p, q ∈ J(L), let pD q if there exists x ∈ L such that p ≤ q ∨ x
but p 6≤ q∗ ∨ x, where q∗ denotes the unique lower cover of q. A D-cycle in L is a
sequence p0, p1, . . . , pn−1 of distinct elements in J(L) such that

p0Dp1D . . . Dpn−1Dp0 .
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The dual of the dependence relation, defined on M(L), will be denoted by Dd.
With these definitions assembled, we can state the basic theorem.

Theorem 1. For a finite lattice L, the following are equivalent.

(1) There exists a finite set X and a lower bounded epimorphism f : FL(X) �
L.

(2) For every finitely generated lattice K, every homomorphism h : K → L is
lower bounded.

(3) L ∈ LD, i.e., L can be obtained from a distributive lattice by a sequence of
doublings of lower pseudo-intervals.

(4) Dk(L) = J(L) for some k ∈ ω.
(5) L contains no D-cycle.

A finite lattice is called lower bounded if it satisfies these properties, and upper
bounded if it has the dual properties. A lattice which is both upper and lower
bounded is called bounded. If L is lower bounded and p ∈ J(L), the D-rank of p is
the least r such that p ∈ Dr(L).

It is not hard to see, using (1) and the fact that β is a join homomorphism, that
a lower bounded lattice inherits the property

(SD∨) x ∨ y = x ∨ z implies x ∨ y = x ∨ (y ∧ z)

from free lattices. Likewise, an upper bounded lattice satisfies the dual property
(SD∧).

The lattice of convex subsets of a four-element chain (Figure 1) provides an
example of a lattice which satisfies (SD∨) but is not lower bounded.

Figure 1: Co 4
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At one point we get to use a beautiful result of Alan Day [5] (see [16], [23]).

Theorem 2. A finite lower bounded lattice which satisfies SD∧ is also upper bounded.

2. Congruence lattices of finite semilattices

The next lemma, from our old paper [9], provides a useful tool for working with
congruence lattices of semilattices. Note that if T = 〈T ;∧〉 is a finite meet semi-
lattice and a, b ∈ T are elements with a common upper bound, then they have a
least upper bound, which we will denote by a + b. Thus + is in general a partial
operation on T , and T ∗ = 〈T ; +, 0〉 is a partial algebra with a constant.

Lemma 3. If T is a finite meet semilattice, then Con T is dually isomorphic to
the subalgebra lattice Sub T ∗.

Indeed, the +–subalgebra corresponding to a congruence θ is the set of all mini-
mum elements of θ-classes.

It is convenient to always work using this duality. In these terms, the old result
is that Sub T ∗ is a point lattice satisfying SD∨; this implies that it is dually
semimodular. The basic new claim (also in Adaricheva [1]) is the following.

Theorem 4. Sub T ∗ is a lower bounded lattice.

We will give two proofs, the first using property (5) of Theorem 1, and the second
using (3).

Proof 1. It is easy to see that the join irreducible subalgebras of T ∗ are exactly those
of the form a = {a, 0} for 0 6= a ∈ T . Moreover, in Sub T ∗ we have a ≤ X ∨ Y if
and only if a = x + y for some x ∈ X, y ∈ Y . Hence aD b if and only if a = b + x
for some x ∈ T with b and x incomparable. In particular, aD b implies a > b, so
there are no D-cycles in Sub T ∗. By (5), Sub T ∗ is lower bounded. �

Refining this argument, one can show by induction that if a is an element of
height k in T , then a ∈ Dk−1(Sub T ∗), so that property (4) holds.

Proof 2. Let t be maximal in T . Then we can map Sub T ∗ onto Sub (T − {t})∗
by ρ(A) = A ∩ (T − {t}). It is straightforward to check, using the maximality of t,
that ρ is a homomorphism. A subalgebra B of T − {t} has one or two preimages,
depending on whether or not t is a join of elements of B. Thus Sub T ∗ is obtained
from Sub (T − {t})∗ by doubling all the subalgebras B which are also subalgebras
of (T − {t})∗, and this is a union of ideals. (Note that every atom gets doubled!)
By induction Sub (T − {t})∗ ∈ LD, and hence Sub T ∗ ∈ LD. �

Combining Lemma 3 and Theorem 4, we obtain the desired result for congruence
lattices of semilattices.
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Corollary 5. If S is a finite semilattice, then Con S is an upper bounded lattice.

K. V. Adaricheva proved Theorem 4 independently [1], and added a partial con-
verse: every finite lower bounded lattice can be embedded into Sub S for some finite
semilattice S. Note that her theorem implies our result in [9] that congruence lattices
of semilattices satisfy no nontrivial lattice identity. Following this line of thought,
V. B. Repnitzkii has announced the following extended version of this result.

Theorem 6. The following are equivalent for a finite lattice L.
(1) L is lower bounded.
(2) L is embeddable in the subsemigroup lattice of a free semigroup.
(3) L is embeddable in the subsemigroup lattice of a free commutative semigroup.
(4) L is embeddable in the subsemigroup lattice of an infinite cyclic group.
(5) L is embeddable in the subsemigroup lattice of a finite semilattice.
(6) L is embeddable in the subsemigroup lattice of a finite nilpotent semigroup.

As mentioned earlier, Adaricheva also characterized those lattices which can be
represented as Sub S with S a finite semilattice ([1], see also [2]). However, there
are partial join semilattices T = 〈T ; +, 0〉 such that Sub T cannot be represented
as Sub S for any semilattice S, the simplest such example being the partial join
semilattice given in Figure 2. So her characterization of the subalgebra lattices
of finite semilattices does not automatically give a dual characterization of their
congruence lattices. As far as we know, this problem remains open, though it is
quite likely that the same methods will apply.

Figure 2

Seif’s original question was prompted by his investigation of congruence lattices
of certain types of semigroups. In particular, he has found a nice description of
Con S × G, where S is a finite semilattice and G a finite group, and the product is
regarded as a semigroup [28]. Using this, we can extend Corollary 5 as follows.

Theorem 7. If S is a finite semilattice and G a finite group with Con G distributive,
then Con S × G is an upper bounded lattice.

Perhaps more naturally, Corollary 5 can also be applied to the trace and kernel
decomposition of congruences of an inverse semigroup.
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Corollary 8. If S is a finite inverse semigroup, then the lattice of normal congru-
ences of ES is an upper bounded lattice.

Corollary 9. Let Bn be the variety of all inverse semigroups satisfying xn+1 ≈ xn.
For each finite semigroup S ∈ Bn, Con S is an upper bounded lattice.

3. A quick review of tame congruence theory

In order to generalize Corollary 5, we will need to make heavy use of tame con-
gruence theory. The primary reference for this is of course the book of David Hobby
and Ralph McKenzie [14]. In this section we will briefly review the parts of tame
congruence theory which we will need in the sequel; except where otherwise noted,
everything in this section comes directly from [14].

Throughout this section, all algebras are finite. Recall that given an algebra A
and a subset U ⊆ A, we can form the algebra A|U with universe U , whose operations
are all f ∈ Pol A with respect to which U is closed. Let E = {e ∈ Pol1 A : e2 = e}.
The following famous fundamental fact is from P. P. Pálfy and P. Pudlák [25] and,
for later reference, does not require that A be finite.

Theorem 10. Let U = e(A) for some e ∈ E. Then the natural restriction map

ρ : Con A → Con A|U

given by ρ(θ) = θ|U is a complete lattice epimorphism.

For α < β in Con A, let

U(α, β) = {f(A) : f ∈ Pol1 A and f(β) 6⊆ α}

and let M(α, β) denote the collection of minimal members of U(α, β) with respect
to set inclusion. These latter are called 〈α, β〉-minimal sets. Clearly, if U ∈M(α, β)
and f is a unary polynomial with f(U) ⊆ U , then either f |U is a permutation or
f(β|U) ⊆ α|U .

For our purposes, it is not necessary to recall the definition of a tame quotient,
but only to know that they are a generalization of prime quotients.

Lemma 11. Prime quotients are tame in Con A.

Let B, C be nonempty subsets of A. We say that B and C are polynomially
isomorphic (B ' C) if there exist f, g ∈ Pol1 A such that f(B) = C, g(C) = B,
fg = idC and gf = idB .

Theorem 12. Let 〈α, β〉 be tame. The following are true.
(1) U, V ∈M(α, β) implies U ' V .
(2) U ∈M(α, β) implies there exists e ∈ E with e(A) = U .
(3) U ∈ M(α, β), f ∈ Pol1 A and f(β|U) 6⊆ α implies f(U) ∈ M(α, β) and

f : U ' f(U).
(4) For all f ∈ Pol1 A, f(β) 6⊆ α implies f : U ' f(U) for some U ∈M(α, β).
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Tame congruence theory classifies the tame quotients of Con A into five types
according to the structure of their minimal sets. Types 1 and 2 are abelian: 〈α, β〉
has one of these types if the algebra A/α satisfies the (β/α, β/α)-term condition.
In terms of the (nonmodular) commutator, this means [β, β] ≤ α. Types 3, 4 and
5 are nonabelian: 〈α, β〉 has one of these types if [β, β] � α. For our purposes, this
distinction between abelian and nonabelian quotients suffices.

We need to describe the structure of minimal sets for prime quotients of non-
abelian type. Recall that an 〈α, β〉-trace for a minimal set U ∈ M(α, β) is a set of
the form (x/β)|U which intersects more than one α-class.

Theorem 13. If U is an 〈α, β〉-minimal set of type 3, 4 or 5, then it has a unique
〈α, β〉-trace N and there exists p ∈ Pol2 A such that

(1) N = {1} ∪O, where {1} and O are disjoint α|N -classes,
(2) N is closed under p, and (N/α, p) is the two-element meet semilattice,
(3) For all x ∈ U , p(x, 1) = p(1, x) = p(x, x) = x,
(4) For all x ∈ U − {1} and z ∈ O, p(x, z) α x α p(z, x),
(5) For all x, y ∈ U , p(x, p(x, y)) = p(x, y).

The polynomial p(x, y) in Theorem 13 is called a pseudo-meet operation for U .
Let s∼ be the equivalence relation on Con A generated by collapsing all abelian

prime quotients, i.e., s∼ is the reflexive, symmetric, transitive closure of {(α, β) :
α ≺ β and typ(α, β) ∈ {1,2}. First, we note that s∼ collapses no more than it is
supposed to.

Lemma 14. For γ ≤ δ in Con A, we have γ s∼ δ if and only if for all γ ≤ α ≺
β ≤ γ, the quotient 〈α, β〉 is abelian.

The next result explains our interest in s∼.

Theorem 15. For any finite algebra A, the relation s∼ is a congruence on the lattice
Con A, and Con A/ s∼ satisfies SD∧. If in addition 5 /∈ typ{A}, then Con A/ s∼
satisfies both SD∧ and SD∨.

There are corresponding versions of this result for locally finite varieties.

Theorem 16. Let V be a locally finite variety. Then Con A satisfies SD∧ for
every A ∈ V if and only if typ{V} ⊆ {3,4,5}.

Theorem 17. Let W be a locally finite variety. Then Con A satisfies SD∨ for
every finite A ∈ W if and only if typ{W} ⊆ {3,4}.

Each of these two types of varieties can be characterized in several other inter-
esting ways, including by Mal’cev conditions (see Chapter 9 of [14]).
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4. Congruence lattices of neutral algebras

In this section we will be studying an arbitrarily chosen finite algebra which we
denote A. All unspecified references to elements, congruences or operations are
references to elements, congruences and operations of the algebra A.

We will quasi-order prime quotients of Con A in the following way: say that

〈α, β〉 v 〈γ, δ〉

if some 〈γ, δ〉-minimal set contains an 〈α, β〉-minimal set. If some 〈γ, δ〉-minimal
set contains an 〈α, β〉-minimal set, then by Theorem 12(1) and 12(3) every 〈γ, δ〉-
minimal set contains an 〈α, β〉-minimal set. Hencev is indeed a quasi-order. We will
write 〈α, β〉 ≈ 〈γ, δ〉 and say that 〈α, β〉 and 〈γ, δ〉 are equivalent if 〈α, β〉 v 〈γ, δ〉 and
〈γ, δ〉 v 〈α, β〉. We will write 〈α, β〉 @ 〈γ, δ〉 if 〈α, β〉 v 〈γ, δ〉, but 〈α, β〉 6≈ 〈γ, δ〉.
The following two lemmas summarize some elementary properties of the relations
v and ≈, respectively.

Lemma 18. For prime quotients 〈α, β〉 and 〈γ, δ〉 in Con A,
(1) 〈α, β〉 v 〈γ, δ〉 holds if and only if α|U < β|U for some (hence every) U ∈

M(γ, δ);
(2) Cg(γ, δ) ≤ Cg(α, β) in Con Con A implies 〈α, β〉 v 〈γ, δ〉.

Proof. The “only if” part of (1) is obvious. Conversely, let U ∈M(γ, δ) and suppose
α|U < β|U . By Theorem 12(2), U = e(A) for some idempotent e ∈ E. Now
Theorem 12(4) applies to yield that e : V ' e(V ) for some V ∈M(α, β). Of course
e(V ) ∈M(α, β) and e(V ) ⊆ e(A) = U , so 〈α, β〉 v 〈γ, δ〉.

To see (2), let U ∈ M(γ, δ) with say U = e(A) where e is idempotent. The
restriction map ρ : Con A � Con A|U is a lattice homomorphism with ρ(γ) =
γ|U < δ|U = ρ(δ). Hence also ρ(α) 6= ρ(β), i.e., α|U < β|U . Thus by (1) we have
〈α, β〉 v 〈γ, δ〉. �
Lemma 19. (1) Perspective prime quotients in Con A are equivalent.

(2) If ψ ≤ α ∧ γ, then the following are equivalent.
(i) 〈α, β〉 ≈ 〈γ, δ〉.
(ii) M(α, β) = M(γ, δ).

(iii) M(α/ψ, β/ψ) = M(γ/ψ, δ/ψ) in A/ψ.
(iv) 〈α/ψ, β/ψ〉 ≈ 〈γ/ψ, δ/ψ〉 in Con A/ψ.

Proof. (1) is an immediate consequence of Lemma 18(2); it is also a special case of
Exercise 2.19 (3) in [14]. (2) is straightforward using the definitions. �

The next lemma provides the crucial technical part of our argument.

Lemma 20. Assume that 〈0, ϕ〉 and 〈γ, δ〉 are prime quotients in Con A. If
typ(0, ϕ) ∈ {3,4,5} and 〈0, ϕ〉 ≈ 〈γ, δ〉, then 〈0, ϕ〉 and 〈γ, δ〉 are perspective.
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Proof. Choose U ∈ M(0, ϕ) = M(γ, δ). Since typ(0, ϕ) ∈ {3,4,5}, U has exactly
one 〈0, ϕ〉-trace and we label it N . By Theorem 13, N has exactly two 0-classes,
I = {1} and O = {0}. Let p(x, y) be the pseudo-meet operation of U with respect
to 〈0, ϕ〉.

Now U ∈M(γ, δ), so there exists a pair (x, y) ∈ δ|U−γ|U . We would like to show
that (1, 0) ∈ δ−γ. Let f ∈ Pol1 A be given by f(t) = p(0, t). Then f(0) = 0 = f(1),
so f |U is not a permutation, and hence f(δ|U) ⊆ γ|U . On the other hand, f(t) = t
for all t ∈ U − {1}. Thus the only possibility for (x, y) ∈ δ|U − γ|U is with either x
or y = 1; w.l.o.g. say x = 1. Then

1 = x δ − γ y = f(y) γ f(x) = p(0, 1) = 0.

Thus (1, 0) ∈ δ because γ ≤ δ, while (1, 0) ∈ γ would imply (x, y) ∈ γ, a contradic-
tion. Therefore we have (1, 0) ∈ δ − γ as claimed.

Now (0, 1) ∈ ϕ − 0 and 0 ≺ ϕ, so ϕ = Cg(0, 1). Hence ϕ ∨ γ = Cg(0, 1) ∨ γ = δ
and, since (0, 1) 6∈ γ, γ ∧ ϕ = 0. Thus the quotients are perspective. �

As a corollary, using Lemma 19, we have a slightly more general assertion.

Corollary 21. Assume that 〈ψ, ϕ〉 and 〈γ, δ〉 are prime quotients in Con A with
ψ ≤ γ. If typ(ψ, ϕ) ∈ {3,4,5} and 〈ψ, ϕ〉 ≈ 〈γ, δ〉, then 〈ψ, ϕ〉 and 〈γ, δ〉 are
perspective.

We want to show that the lattice L = Con A/ s∼ is upper bounded. To do this,
we need to establish the connection between v and the dual dependence relation
Dd on the meet irreducible elements of L.

Lemma 22. Let L = Con A/ s∼. Assume p, q ∈ M(L) with q Dd p. Let α, γ be
the unique maximal members of the s∼-class corresponding to p, q respectively. Then
α, γ ∈M(Con A) and

〈α, α∗〉 @ 〈γ, γ∗〉.

Proof. Clearly α and γ are meet irreducible in Con A. Since q Dd p, there exists
x ∈ L such that q ≥ p ∧ x and q � p∗ ∧ x. Let χ be the maximal congruence in the
s∼-class corresponding to x. It is easy to see that γ ≥ α ∧ χ while γ � α∗ ∧ χ, and
thus γ Dd α. This in turn implies Cg(γ, γ∗) ≤ Cg(α, α∗) in Con Con A, and hence
〈α, α∗〉 v 〈γ, γ∗〉 by Lemma 18(2). It remains only to show that 〈α, α∗〉 and 〈γ, γ∗〉
are not equivalent.

Let ψ = α ∧ χ, and choose ϕ ∈ Con A such that ψ ≺ ϕ ≤ α∗ ∧ χ. Note that
〈ψ, ϕ〉 and 〈α, α∗〉 are perspective, and hence equivalent by Lemma 19(1).

We claim that either ϕ ≤ γ or γ ≤ α must hold. For otherwise, using the meet
semidistributivity of Con A/ s∼, we would have

α ∧ ϕ = ψ = γ ∧ ϕ s∼ ϕ ∧ (α ∨ γ) = ϕ,
9



a contradiction.
Now suppose that 〈α, α∗〉 ≈ 〈γ, γ∗〉(≈ 〈ψ, ϕ〉). If ϕ ≤ γ, then the quotients

〈ψ, ϕ〉 and 〈γ, γ∗〉 violate Corollary 21 since they are equivalent, nonabelian and not
perspective. Similarly, if γ ≤ α, then 〈γ, γ∗〉 and 〈α, α∗〉 violate Corollary 21. Hence
〈α, α∗〉 6≈ 〈γ, γ∗〉, and thus 〈α, α∗〉 @ 〈γ, γ∗〉. �

It follows immediately from Lemma 22 that Con A contains no Dd-cycle, and
hence we have the desired conclusion.

Theorem 23. For any finite algebra A, the lattice Con A/ s∼ is upper bounded.

Combining this with Theorem 2 and the second part of Theorem 15, we obtain
the following.

Theorem 24. If A is a finite algebra A with 5 /∈ typ(A), then the lattice Con A/ s∼
is both upper and lower bounded.

Recall that an algebra A is neutral if it satisfies the commutator equation [θ, ϕ] =
θ ∧ ϕ for all θ, ϕ ∈ Con A. Thus a finite algebra is neutral if and only if s∼ is the
identity relation on Con A, i.e., when every prime quotient of Con A is nonabelian.

Corollary 25. If A is a finite neutral algebra, then Con A is an upper bounded
lattice.

By virtue of Theorems 16 and 17, applied to each subvariety V(A) with A finite,
we have the following versions for varieties.

Corollary 26. If V is a congruence meet semidistributive variety, then the con-
gruence lattices of finite algebras in V are upper bounded.

Corollary 27. If W is a congruence join semidistributive variety, then the con-
gruence lattices of finite algebras in W are both upper and lower bounded.

As an example of Corollary 26, we can consider the variety of directoids introduced
by J. Ježek and R. Quackenbush in [15]. These are algebras with a single binary
operation, denoted by multiplication, satisfying the following equations:

xx ≈ x

(xy)x ≈ xy

y(xy) ≈ xy

x((xy)z) ≈ (xy)z .

It is an elementary exercise to show that a directoid D can be partially ordered by
letting x ≤ y iff xy = x (equivalently yx = x). With this ordering, the product
xy is the smaller of the two elements if they are comparable, and otherwise xy is
a common lower bound of x and y. This last property implies that the order on
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D is downward directed. Conversely, any downward directed partially ordered set
endowed with a multiplication with these properties yields a directoid.

Using these facts, it is not hard to see that directoids form a variety D with
typ{D} = {5}. Consequently, we have the following generalization of the result for
semilattices.

Corollary 28. If D is a finite directoid, then Con D is an upper bounded lattice.

A non-congruence-distributive example of Corollary 27 is Polin’s variety P from
[27]. This is a finitely generated variety of type {3} (Exercise 9.20(6) of [14]). Thus
the congruence lattices of finite algebras in P are bounded. This was originally
proved by Day and Freese in [6]; in fact, they showed that for each n ∈ ω, Con FP(n)
is a splitting lattice!

5. Lattices of equational theories

In this section we will show that Theorem 23 has structural consequences for
the lattice of subvarieties of any 2-finite variety. These restrictions represent a
strengthening of Bill Lampe’s “zipper condition” for the 2-finite case. While there
have been several refinements of Lampe’s condition (see [8], [18]), let us recall the
basic version [17].

Theorem 29. Let V be a variety of algebras. Then the lattice of subvarieties Lv(V)
satisfies, for each n ≥ 2,

(Zn) [&0≤i<ny ∨ xi ≈ z & x0 ∧ . . . ∧ xn−1 ≈ 0] =⇒ y ≈ z.

This can be interpreted as a kind of join semidistributivity at 0. As is often
the case, we will find it more convenient to work dually with lattices of equational
theories rather than lattices of subvarieties.

If V is a variety, let TV denote the equational theory of V and let L(TV)
denote the lattice of equational theories in the language of V which extend (contain)
TV. Both V and TV are called 2-finite if the free algebra FV(2) is finite. Any
equational theory extending a 2-finite theory is 2-finite. It is well-known that L(TV)
is isomorphic to the lattice of fully invariant congruences on FV(ω). Therefore, if
we expand FV(ω) to an algebra F on the same universe which has for its basic
operations the operations of FV(ω) along with all endomorphisms of FV(ω) as
additional unary operations, we will have an algebra with Con F ∼= L(TV). It was
shown by Ralph McKenzie in [20] that there is a well-defined binary operation ∗ on F
which is compatible with the congruences of F . It is defined in the following way. If
{xi : i ∈ ω} is a free generating set for FV(ω) and s(x0, . . . , xn), t(x0, . . . , xn) ∈ F
where s and t are terms, then

s(x0, . . . , xn) ∗ t(x0, . . . , xn) = s(t(x0, . . . , xn), x1, . . . , xn).
11



We will let F∗ denote the algebra F expanded to include the operation ∗. It is
shown in [22] that

Con F∗ ∼= Con F ∼= L(TV).

The most decisive results on the structure of lattices of equational theories have
been obtained by studying F∗ and closely related algebras. Observe that for any
s(x0, . . . , xn) ∈ F we have

x0 ∗ s(x0, . . . , xn) = s(x0, . . . , xn) and x1 ∗ s(x0, . . . , xn) = x1.

Thus ∗ is a binary operation on F which has a left unit element and a left absorbing
element, viz., x0 and x1 respectively. A well-known result from basic commutator
theory covers this situation.

Lemma 30. If A is an algebra with a binary operation ∗ which has a left zero and
left one, then Con A satisfies the commutator equation [1, θ] = θ. In particular
[1, 1] = 1, so if A is finite and ϕ < 1, then (ϕ, 1) /∈ s∼.

Now we are ready to prove our theorem on equational theories. To explain the
wording, a lattice homomorphism h : L → K is 1-separating if h−1 ◦ h(1) = {1}.
Theorem 31. Let V be any 2-finite variety. If L = L(TV) is the lattice of equa-
tional theories extending the theory of V, then L has a complete, 1-separating ho-
momorphism onto a finite, upper bounded lattice.

Proof. We need to show that Con F∗ has a complete, 1-separating homomorphism
onto a finite, upper bounded lattice. Let e be the endomorphism of FV(ω) de-
termined by e(x0) = x0 and e(xi) = x1 for all i > 0. Let A = e(F ) and define
A = F∗|A. Notice that A is finite since it is exactly the smallest subuniverse of
FV(ω) containing {x0, x1}. The operations of A are all f ∈ Pol A under which A
is closed, which includes ∗.

Observe also that since A is the image of an idempotent polynomial of F∗, by
Theorem 10 the restriction map

|A : Con F∗ → Con A

is a complete, onto lattice homomorphism. We claim that this homomorphism is
1-separating. For this, note that any congruence θ ∈ Con F∗ is a fully invariant
congruence on FV(ω). Hence if θ < 1F , then x0/θ 6= x1/θ. That is,

θ < 1F → x0/θ 6= x1/θ → θ|A < 1A → θ < 1F .

Thus θ < 1F if and only if θ|A < 1A, and |A is 1-separating.
We can finish the proof by showing that Con A has a 1-separating homomorphism

onto an upper bounded lattice. For then the composition of this homomorphism
12



with |A would be a complete, 1-separating homomorphism from Con F ∗ onto a
finite, upper bounded lattice. The homomorphism we seek is the natural map

σ : Con A → Con A/ s∼ .

By Theorem 23, this is a homomorphism onto an upper bounded lattice. But
A = F∗|A is a finite algebra with a binary operation ∗ which has a left zero and left
one, for which case Lemma 30 immediately yields that σ is 1-separating. �
Corollary 32. Let V be any 2-finite variety. Then the lattice of subvarieties of V,
Lv(V), has a complete, 0-separating homomorphism onto a finite, lower bounded
lattice.

In the case when Lv(V) is finite, we can make use of a theorem from the folklore
on bounded lattices.

Theorem 33. If L is a finite lattice, then there exists a least congruence λ ∈ Con L
such that L/λ is lower bounded.

This is because finite lower bounded lattices are closed under finite subdirect
products. It is useful to have a description of λ. Recall the sets Dk(L) ⊆ J(L)
defined in Section 1. For any finite lattice L, let D(L) be the join subsemilattice
of L generated by

⋃
k∈ω Dk(L) ∪ {0}. This is of course a lattice in its own right.

Moreover, D(L) satisfies the hypothesis of Theorem 3.1 of [10], so the mapping
h : L � D(L) by

h(x) =
∨
{u ∈ D(L) : u ≤ x}

is a lattice homomorphism. Using the arguments in say [16], one can easily show
that kerh = λ.

Clearly, L admits a 0-separating homomorphism onto a lower bounded lattice if
and only if 0/λ = {0}. Using the description of λ given above, this translates as
follows.

Theorem 34. A finite lattice L admits a 0-separating homomorphism onto a lower
bounded lattice if and only if every atom of L is in Dk(L) for some k ∈ ω.

For example, two of the atoms in the lattice of convex subsets of a four-element
chain (Figure 1) are not in D(L), and hence this lattice is not isomorphic to Lv(V)
for any 2-finite variety V.

6. Finite lattices of quasivarieties: the locally finite case

An old problem of Garrett Birkhoff [4] asks which lattices can be represented as the
lattice Lq(K) of subquasivarieties of a quasivariety K (cf. Mal’cev [19]). Let us note
that, for historical reasons, it is customary to talk about varieties of algebras, but
quasivarieties of relational systems (allowing both functions and relational symbols

13



in the type). Surely this distinction is for the most part artificial, but the reader
should be aware of it. As an example of where it does make a difference, if we allow
infinitely many relational symbols, then the least element 0 of Lq(K) need not be
dually compact.

Viktor Gorbunov, Wies law Dziobiak and K. V. Adaricheva have made consider-
able progress in this area, including as a special case the following nice representation
theorem from [12] and [2].

Theorem 35. If K is a locally finite quasivariety with only finitely many relations
and Lq(K) is finite, then Lq(K) can be embedded into Sub T for some finite meet
semilattice with one, T = 〈T ;∧, 1〉. Conversely, for every finite semilattice S, there
exists a quasivariety K of finite rings such that Sub S ∼= Lq(K).

Applying Theorem 4, they then obtain the following corollary (which can also be
proved directly).

Corollary 36. If K is a locally finite quasivariety with only finitely many relations
and Lq(K) is finite, then Lq(K) is a lower bounded lattice.

While finite lower bounded lattices do not satisfy any nontrivial lattice equa-
tions [9], we do have the following result.

Theorem 37. For all n ≥ 2, every finite lower bounded lattice satisfies the following
quasi-identities, where i+ 1 and i+ 2 are taken modulo n:
(Sn)
&0≤i<n[xi ≤ xi+1∨yi & xi∧yi ≤ xi+1] & x0∧. . .∧xn−1 ≤ y0∧. . .∧yn−1 =⇒ x0 ≈ x1.

Proof. If xi ≤ xi+1 for all i, then x0 = x1 = xj for all j. So let us suppose xi 6≤ xi+1

for some i, and seek a contradiction. Let

P = {a ∈ J(L) : a ≤ xj , a 6≤ xj+1 for some j}

and let a0 be an element of minimum D-rank, say r, in P .
Now a0 ≤ xj ≤ xj+1 ∨ yj and a0 6≤ xj+1. Also a0 6≤ yj else a0 ≤ xj ∧ yj ≤ xj+1.

Hence there exists B ⊆ Dr−1(L) with B � {xj+1, yj} and a0 ≤
∨
B. Since a0 6≤ yj ,

at least one b0 ∈ B is not below yj , and hence below xj+1. Now b0 � xk for some k
because

∧
xk ≤ yj , so for some m we have b0 ≤ xm and b0 � xm+1. Thus b0 ∈ P ,

while the D-rank of b0 is at most r − 1, contradicting the choice of a0. �
Combining this with Corollary 4.3 of [12] (which is a more general version of

Theorem 35 above), we obtain another result of Gorbunov.

Theorem 38. If K is a locally finite quasivariety with only finitely many relations,
then Lq(K) satisfies (Sn) for every n ≥ 2.

On the other hand, Gorbunov also shows that these quasi-identities do not hold
in arbitrary subquasivariety lattices Lq(Q); in fact, Tumanov has shown that the
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quasivariety Q generated by all lattices of quasivarieties is the class of all lattices
satisfying SD∨ [29]. Nonetheless, we do not know of any finite lattice which is
representable as Lq(K), but not with K locally finite and of finite type.

Problem. If Q is a quasivariety and Lq(Q) is finite, is Lq(Q) necessarily lower
bounded?

7. Lattices of quasivarieties: the general case

In this section we will consider lattices Lq(K) where the quasivariety K is no
longer assumed to be locally finite. Gorbunov and Tumanov have an analogue of
Theorem 35 for the general case (see [13], [12]), but they also have examples which
show that it will not suffice to yield the results we want. So we will have to resort
to other methods to prove the corresponding versions of Corollary 36 and Theorem
38.

Let us recall the closure operator η on Lq(K) introduced by W. Dziobiak in [7], de-
fined by η(X) = H(X)∩K, where H denotes the closure under homomorphic images.
This turns out to be a wonderful tool for investigating the structure of quasivariety
lattices. Its properties have been abstracted by Gorbunov and Adaricheva [3]; we
say that η is an equaclosure operator on the complete lattice L if it has the following
properties.

(1) η is a closure operator on L.
(2) η(0) = 0.
(3) If η(x) = η(y) then η(x) = η(x ∧ y).
(4) η(x) ∧ (y ∨ z) = (η(x) ∧ y) ∨ (η(x) ∧ z) for all x, y, z ∈ L.
(5) η(L) = {x ∈ L : η(x) = x} is a dually algebraic lattice in which an element

is dually compact iff it is dually compact in L.
Note that (1) and (5) immediately imply a property which we will need later.

(6) If {xi : i ∈ I} is a chain in L, then η(
∧
xi) =

∧
η(xi).

(In [2], equaclosure operators are required to satisfy one additional condition, which
we do not need here.)

The original use of equaclosure operators is simply that any quasivariety lattice
Lq(K) has Dziobiak’s operator naturally defined on it. Thus for example the lattice
Co 4, which does not admit an equaclosure operator, is not isomorphic to Lq(K)
for any quasivariety K (see [3]).

Lemma 39. Let L be any finite lattice admitting an equaclosure operator η. If
x, y ∈ J(L) and xD y, then η(x) ≥ η(y).

Proof. Let z ∈ L be such that x ≤ y ∨ z but x 6≤ y∗ ∨ z. Then

x ≤ η(x) ∧ (y ∨ z) = (η(x) ∧ y) ∨ (η(x) ∧ z) ≤ (η(x) ∧ y) ∨ z

whence η(x) ≥ y, and thus η(x) ≥ η(y). �
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Theorem 40. Let L be any finite lattice admitting an equaclosure operator η. If
x0Dx1D . . . Dxn−1Dx0 is a D-cycle in L, then

∧
xi > 0.

Proof. Given a D-cycle in L, by Lemma 39 and property (3) of the definition we
obtain η(xi) = η(xj) = η(

∧
xk). Since η(z) = 0 iff z = 0, this implies

∧
xk > 0. �

If follows from Theorem 40 that in a finite lattice admitting an equaclosure op-
erator, no atom can be in a D-cycle. Thus we can apply Theorem 34.

Corollary 41. Every finite lattice which admits an equaclosure operator has a 0-
separating homomorphism onto a lower bounded lattice.

Thus the property of having an equaclosure operator implies a sort of lower
boundedness at 0. (Adaricheva and Gorbunov observed in [3] that the lattice of
convex subsets of the poset in Figure 3 is lower bounded, but does not admit an
equaclosure operator. Hence admitting an equaclosure operator is a strictly stronger
property than having a 0-separating homomorphism onto a lower bounded lattice.)
Obviously it imposes a strong restriction on the structure of quasivariety lattices.
On the other hand, it does not eliminate any lattice L which is an ordinal sum 1+K,
where K is a finite lattice satisfying SD∨, from being a quasivariety lattice. Indeed,
for comparison one should recall that, despite Lampe’s restrictions and McKenzie’s
additional restrictions in the locally finite case [22], Don Pigozzi has shown that for
any dually algebraic lattice M, the ordinal sum 1 +M is isomorphic to Lv(W) for
some variety W [26].

Figure 3

Next we want an analogue of Theorem 38 not requiring local finiteness. As in
that result, we now allow Lq(K) to be infinite, but for the next theorem we will need
that its least element 0 be dually compact. This will of course be true whenever the
type of K has only finitely many relational symbols.

Theorem 42. If the least element 0 of Lq(K) is dually compact, then Lq(K) sat-
isfies the following quasi-identities for all n ≥ 2, where i+ 1 is taken modulo n:

(Tn) &0≤i<n[xi ≤ xi+1 ∨ yi & xi ∧ yi ≤ xi+1] & x0 ∧ . . . ∧ xn−1 ≈ 0 =⇒ x0 ≈ 0.
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(Gorbunov proved Theorem 42 under the slightly stronger hypothesis that K has
finite type [12].)

Proof. Let xi, yi (0 ≤ i < n) satisfy the hypothesis of condition (Tn) in a complete
lattice L which admits an equaclosure operator η and has its 0 element compact.
Suppose x0 > 0, and we seek a contradiction. For convenience, we can form infinite
cyclically repeating sequences xi, yi (i ∈ ω) with xi = xj and yi = yj iff i ≡ j
mod n. The original sequence satisfies

(i) xi ≤ xi+1 ∨ yi for all i ≥ 0,
(ii) xi ∧ yi ≤ xi+1 for all i ≥ 0,

(iii) x0 > 0.
We want to transform this sequence, inductively replacing xi by x′i, obtaining

sequences of the form 〈x′0, . . . , x′i, xi+1, . . . 〉. Meanwhile, the sequence of yj ’s re-
mains fixed. Assume that after i+ 1 steps we have a sequence 〈x′0, . . . , x′i, xi+1, . . . 〉
satisfying

(1) x′i ≤ xi+1 ∨ yi and xj ≤ xj+1 ∨ yj for j > i,
(2) x′i ∧ yi ≤ xi+1 and xj ∧ yj ≤ xj+1 for j > i,
(3) x′i > 0,
(4) η(x′0) ≥ η(x′1) ≥ · · · ≥ η(x′i),
(5) j < k ≤ i and j ≡ k mod n implies x′j ≥ x′k.

Let x′0 = x0. Certainly these conditions hold after this one step (i = 0).
To get x′i+1, we observe that (1) implies

(†)
x′i ≤ η(x′i) ∧ (xi+1 ∨ yi) = (η(x′i) ∧ xi+1) ∨ (η(x′i) ∧ yi)

≤ (η(x′i) ∧ xi+1) ∨ yi.

Let x′i+1 = η(x′i) ∧ xi+1. Since x′i+1 ≤ xi+1, properties (1) and (2) hold with i
replaced by i + 1. Also x′i+1 ≤ η(x′i) implies η(x′i+1) ≤ η(x′i), whence (4) holds.
Property (4) along with the method of construction yields (5): if j < k ≤ i+ 1 and
j ≡ k mod n, then xj = xk, so for j = 0 we have x′0 = x0 ≥ η(x′k−1)∧xk = x′k, and
for j > 0 we have x′j = η(x′j−1) ∧ xj ≥ η(x′k−1) ∧ xk = x′k. To prove (3), suppose
x′i+1 = 0; then using (†) and assumption (ii) we get x′i ≤ xi ∧ yi ≤ xi+1, and hence
x′i ≤ η(x′i)∧ xi+1 = x′i+1 = 0, contrary to the induction hypothesis. Thus x′i+1 > 0.

Now consider the sequence with all primes 〈x′0, x′1, . . . 〉. For 0 ≤ k < n, we form
the elements

zk =
∧

j≡k mod n

x′j .

By the dual compactness of 0, zk > 0 for all k. Moreover, we have

η(zk) =
∧

j≡k mod n

η(x′j)
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and therefore, by property (4), η(zj) = η(zk) =
∧

i≥0 η(x′i) for all j, k. Hence
η(zj) = η(

∧
zk) = η(0) = 0 since

∧
zk ≤

∧
xk = 0. But this implies zj = 0, which

is a contradiction. We conclude that x0 = 0, and in fact by symmetry xj = 0 for all
j. �

The authors would like to thank Professors Adaricheva, Dziobiak and Gorbunov
for their correspondence, and for providing us with early drafts of several papers.
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