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Introduction

Theorem: (Gödel, 1931) There are true Π0
1 sentences Ψ

which are independent of the axioms of Peano Arithmetic
(PA).

One such Ψ is the formal sentence expressing "PA is
consistent".

Problem: Gödel’s Ψ is arguably "unnatural";

Only refers to logicians’ notions (provability and coding
of syntax) so metamathematical.

No reference to classical or mainstream mathematical
objects.

Motivates a search for independent sentences of a
more "natural" flavor.
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Introduction

Theorem: (Paris-Harrington, 1976) There is a "natural" Π0
2

sentence Φ which is true in ω (the standard model), but also
independent of the axioms of Peano Arithmetic.

Used a combination of ideas from large cardinal
investigations....

Indiscernibles for various models (originated in research
by Ehrenfeucht and Mostowski and also Jack Silver).

Extensive use Ramsey’s Theorem and the partition
calculus.

Φ actually equivalent to 1-consistency of PA and
transfinite induction through ǫ0.
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Ramsey’s Theorem

Theorem: (Ramsey, 1926) For any partition P of increasing
e-tuples from ω into c colors, there exists some infinite
X ⊆ ω such that P is constant on the increasing e-tuples
from X.
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Ramsey’s Theorem

Theorem: (Ramsey, 1926) For any partition P of increasing
e-tuples from ω into c colors, there exists some infinite
X ⊆ ω such that P is constant on the increasing e-tuples
from X.

Such a set X is called homogeneous for the partition P .

Useful notation:
ω → (ω)ec

A finite ("miniature") version is provable using König’s
lemma on finitely branching, infinite trees:

∀l, s, e, c∃u
(

[l, u] → (s)ec
)
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Basic Strategy

Start with a non-standard model M � PA and candidate
sentence Φ such that M � Φ. Given a in M,
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Basic Strategy

Start with a non-standard model M � PA and candidate
sentence Φ such that M � Φ. Given a in M,

Pick least b that satisfies Φ;

Apply Ramsey’s Theorem (or variant) to find large
homogeneous subsets of M;

Use homogeneous sets H as indiscernible elements for
an initial segment I of M.

If we can between get H between a and b, can get I to
contain a but not b (this will guarantee I � ¬Φ).

Show I � PA, and we’re done!

Strategy suggests looking for Φ which are variants of
Ramsey’s Theorem.
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Paris-Harrington Principle (PH)

Call a finite set H ⊆ ω a relatively large set if min(H) < |H|.
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Paris-Harrington Principle (PH)

Call a finite set H ⊆ ω a relatively large set if min(H) < |H|.

The set {3, 5, 26, 1767} is relatively large.

The set {5, 26, 1767, 1010} is not relatively large.

Remark. Notions of largeness for finite sets of integers
play prominent role in modern independence proofs.
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Paris-Harrington Principle (PH)

Given natural numbers e, c, s, u we use the notation

[0, u] →∗ (s)ec

to mean that for every partition P : [0, u]e → c there is a
relatively large H ⊆ [0, u] which is homogeneous for P of
size at least s.
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Paris-Harrington Principle (PH)

Given natural numbers e, c, s, u we use the notation

[0, u] →∗ (s)ec

to mean that for every partition P : [0, u]e → c there is a
relatively large H ⊆ [0, u] which is homogeneous for P of
size at least s.

PH: ∀e, c, s∃u
(

[0, u] →∗ (s)ec
)

(Note this is Π0
2).

Without the ∗ underneath the arrow, this is just the
Finite Ramsey Theorem (which is provable in PA).

PH is a consequence of the Infinite Ramsey Theorem
and the proof cannot be carried out in PA.
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IRT implies PH

Theorem: The Infinite Ramsey Theorem implies the
Paris-Harrington Principle.
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IRT implies PH

Theorem: The Infinite Ramsey Theorem implies the
Paris-Harrington Principle.

Proof. Fix e, c, s and suppose otherwise that no such interval [0, u]
exists satisfying PH. Call P a counterexample for [0, u] if P
partitions [0, u]e into c colors but no H ⊂ [0, u] which is
homogeneous for P is also relatively large.
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IRT implies PH

Theorem: The Infinite Ramsey Theorem implies the
Paris-Harrington Principle.

Proof. Fix e, c, s and suppose otherwise that no such interval [0, u]
exists satisfying PH. Call P a counterexample for [0, u] if P
partitions [0, u]e into c colors but no H ⊂ [0, u] which is
homogeneous for P is also relatively large.

Organize the collection of counterexamples into an infinite, finitely
branching tree T . For P and P ′ counterexamples, put P <T P ′ if
u < u′ and P is the restriction of P ′ to [0, u]e.
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IRT implies PH (cont’d)

Theorem: The Infinite Ramsey Theorem implies the
Paris-Harrington Principle.

Proof. (cont’d)
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Theorem: The Infinite Ramsey Theorem implies the
Paris-Harrington Principle.

Proof. (cont’d)

Apply König’s lemma to get a partition P : [0, ω)e → c where for
every u, P restricted to [0, u]e is a counterexample.
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IRT implies PH (cont’d)

Theorem: The Infinite Ramsey Theorem implies the
Paris-Harrington Principle.

Proof. (cont’d)

Apply König’s lemma to get a partition P : [0, ω)e → c where for
every u, P restricted to [0, u]e is a counterexample.

By IRT there is an infinite H ⊆ ω homogeneous for P . But by
choosing u large enough compared to s and min (H), we have
H ∩ [0, u] is relatively large and homogeneous for P restricted to
[0, u]e, a contradiction. ♦
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IRT implies PH (cont’d)

Theorem: The Infinite Ramsey Theorem implies the
Paris-Harrington Principle.

Proof. (cont’d)

Apply König’s lemma to get a partition P : [0, ω)e → c where for
every u, P restricted to [0, u]e is a counterexample.

By IRT there is an infinite H ⊆ ω homogeneous for P . But by
choosing u large enough compared to s and min (H), we have
H ∩ [0, u] is relatively large and homogeneous for P restricted to
[0, u]e, a contradiction. ♦

Remark. The proof indicates many “self-refining” variants of PH, i.e.,
there are homogeneous sets H with min (H) + s < |H|,
(minH)2 < |H|, etc.
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Theorem: The Infinite Ramsey Theorem implies the
Paris-Harrington Principle.

Proof. (cont’d)
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Original Proof (Outline)

Main ingredients of Paris’ original proof:

Combinatorics of Partitions.

PH implies ♣.

♣ implies a certain theory T is consistent:
1. Given finite T0 ⊆ T , use ♣ to find a collection of

indiscernibles and build a model of T0.
2. Apply Compactness Theorem.

PA proves Con(T ) → Con(PA).

Remark. Nowadays, combinatorics of original proof is
bypassed by showing PH implies KM (another
combinatoric principle) and then showing independence
of KM from PA.
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Some Details

A (long) series of lemmas on partition combinatorics:

Lemma. Given P1 : [0, u]e → c1 and P2 : [0, u]e → c2,
there is P : [0, u]e → c1c2 where any H ⊆ [0, u] is
homogeneous for P iff also homogeneous for both P1

and P2.

Lemma. Given P : [0, u]e → c there is
P ′ : [0, u]e+1 → (1 + 2

√
c) where any H ⊆ [0, u] of size

> e+ 1 is homogeneous for P iff also homogeneous for
P ′.
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More Combinatorics

Lemma. For every c there is P : [0, u]1 → c+ 1 where
any H homogeneous for P of size at least 2 guarantees
e ≤ min (H).
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Lemma. For every c there is P : [0, u]1 → c+ 1 where
any H homogeneous for P of size at least 2 guarantees
e ≤ min (H).
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homogeneous for P iff every subset of H of size e+ 1 is
homogeneous for P .

Lemma. For every c there is P : [0, u]1 → c+ 1 where
any H homogeneous for P of size at least 2 guarantees
e ≤ min (H).

Corollary. Given a finite number of partitions P1, . . . , Pi,
can “glue" them all together into a single partition P
where a set H of appropriate size is homogeneous for
P iff also homogeneous for each Pi.
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Fast-Growing Functions

Definition: f0(x) = x+ 2, fn+1(x) = f
[x]
n (2) where the

exponent [x] on f denotes composition with itself x
times.
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exponent [x] on f denotes composition with itself x
times.

Lemma. For each m there is P : [0, u]2 → c (where c
depends only on m) such that any H homogeneous for
P and relatively large has the property that x, y ∈ H

where x < y implies fm(x) < y.
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Fast-Growing Functions

Definition: f0(x) = x+ 2, fn+1(x) = f
[x]
n (2) where the

exponent [x] on f denotes composition with itself x
times.

Lemma. For each m there is P : [0, u]2 → c (where c
depends only on m) such that any H homogeneous for
P and relatively large has the property that x, y ∈ H

where x < y implies fm(x) < y.

Lemma. For any given m, P : [0, u]e → c with 2 ≤ e there
is P ′ : [0, u]e → c′ (where c′ depends only on m, e, and c)
such that if there is a relatively large H of size > e

homogeneous for P ′, there is an H ′ homogeneous for P
with max (e+ 1, fm(min (H ′)) ≤ |H ′|.
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Fast-Growing Functions

Definition: f0(x) = x+ 2, fn+1(x) = f
[x]
n (2) where the

exponent [x] on f denotes composition with itself x
times.

Lemma. For each m there is P : [0, u]2 → c (where c
depends only on m) such that any H homogeneous for
P and relatively large has the property that x, y ∈ H

where x < y implies fm(x) < y.

Lemma. For any given m, P : [0, u]e → c with 2 ≤ e there
is P ′ : [0, u]e → c′ (where c′ depends only on m, e, and c)
such that if there is a relatively large H of size > e

homogeneous for P ′, there is an H ′ homogeneous for P
with max (e+ 1, fm(min (H ′)) ≤ |H ′|.
Corollary: Relatively large homogeneous sets can be
sufficiently “spread out". (This is what we want!)
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Even More Combinatorics!

Lemma. ♣: For all e, s, c there is a u such that for any
family {Pα : α < 2u} of partitions Pα : [0, u]e → c there is
an X of size at least s such that
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Lemma. ♣: For all e, s, c there is a u such that for any
family {Pα : α < 2u} of partitions Pα : [0, u]e → c there is
an X of size at least s such that
1. a, b ∈ X and a < b implies a2 < b.
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Lemma. ♣: For all e, s, c there is a u such that for any
family {Pα : α < 2u} of partitions Pα : [0, u]e → c there is
an X of size at least s such that
1. a, b ∈ X and a < b implies a2 < b.
2. a ∈ X and α < 2a implies X − (a+ 1) is

homogeneous for Pα.
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Even More Combinatorics!

Lemma. ♣: For all e, s, c there is a u such that for any
family {Pα : α < 2u} of partitions Pα : [0, u]e → c there is
an X of size at least s such that
1. a, b ∈ X and a < b implies a2 < b.
2. a ∈ X and α < 2a implies X − (a+ 1) is

homogeneous for Pα.

Lemma. PH implies ♣.
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The Theory T

Let c1, c2, . . . be a countable sequence of new constant
symbols and add them to the language of PA. Define a
theory T in this new language with the following axioms:
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(i) Usual recursive axioms for +,×, < and induction axioms
for formulas with bounded quantifiers.
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theory T in this new language with the following axioms:

(i) Usual recursive axioms for +,×, < and induction axioms
for formulas with bounded quantifiers.

(ii) The axiom c2
i
< ci+1 for each i ∈ ω.
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Let c1, c2, . . . be a countable sequence of new constant
symbols and add them to the language of PA. Define a
theory T in this new language with the following axioms:

(i) Usual recursive axioms for +,×, < and induction axioms
for formulas with bounded quantifiers.

(ii) The axiom c2
i
< ci+1 for each i ∈ ω.

(iii) For each finite subset ī = i1, . . . , ir ⊆ ω, let
c(̄i) = ci1 , . . . , cir . For each j < min (k̄, k̄′) and each ∆0

formula ψ(ȳ; z̄) where k̄, k̄′ and z̄ all have the same
length, we have the axiom

∀ȳ < j
[

ψ(ȳ; c(k̄)) ↔ ψ(ȳ; c(k̄′))
]

.
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symbols and add them to the language of PA. Define a
theory T in this new language with the following axioms:

(i) Usual recursive axioms for +,×, < and induction axioms
for formulas with bounded quantifiers.

(ii) The axiom c2
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< ci+1 for each i ∈ ω.

(iii) For each finite subset ī = i1, . . . , ir ⊆ ω, let
c(̄i) = ci1 , . . . , cir . For each j < min (k̄, k̄′) and each ∆0

formula ψ(ȳ; z̄) where k̄, k̄′ and z̄ all have the same
length, we have the axiom

∀ȳ < j
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formula ψ(ȳ; z̄) where k̄, k̄′ and z̄ all have the same
length, we have the axiom
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Con(T ) implies Con(PA)

Proof. Let A � T and let I be the initial segment of A of those
elements a < ci for some i ∈ ω. I is closed under + and ×. So it
suffices to show that I � PA.
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suffices to show that I � PA.

Given a formula θ(ȳ) in prenex form (in the language of PA), say
θ(ȳ) = ∃x1 . . . ∀xrϕ(x̄, ȳ) define another formula
θ∗(ȳ; z̄) = ∃x1 < z1 . . . ∀xr < zrϕ(x̄, ȳ; z̄).
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Now, given θ(ȳ), ci1 < · · · < cik of same length as ȳ, and any
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I � ∃x1 . . . ∀xrϕ(x̄, ā) ⇔ A � ∃x1 < ci1 . . . ∀xr < cikϕ(x̄, ā).

Follows by induction on θ, using the third set of axioms for T . ♦

The Paris-Harrington Theorem: – p. 16/21



Con(T ) implies Con(PA)

Proof. Let A � T and let I be the initial segment of A of those
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Now, given θ(ȳ), ci1 < · · · < cik of same length as ȳ, and any
tuple ā, each member of which is < ci1 , show

I � ∃x1 . . . ∀xrϕ(x̄, ā) ⇔ A � ∃x1 < ci1 . . . ∀xr < cikϕ(x̄, ā).

Follows by induction on θ, using the third set of axioms for T . ♦

Remark. Above proof can be formalized and carried out in PA.
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Model-Theoretic Proof of PH

Theorem: (Bovykin) The statement “for all e, s, c there exists
u such that for every P : [0, u]e → c there is H ⊆ [0, u]

homogeneous for P with max (s, e · (2e·min (H) + 1)) < |H|" is
not a theorem of PA.
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u such that for every P : [0, u]e → c there is H ⊆ [0, u]

homogeneous for P with max (s, e · (2e·min (H) + 1)) < |H|" is
not a theorem of PA.

Proof. WLOG, let c = 2, M � PA be non-standard, pick d a
non-standard integer. Let
ϕ1(x1, . . . , xd, y), . . . , ϕd(x1, . . . , xd, y) be an enumeration of
the first d∆0 formulas in at most the free variables shown.
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Let u be the minimal point in M such that for every
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|H| > d · (2d·min (H) + 1).
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ϕ1(x1, . . . , xd, y), . . . , ϕd(x1, . . . , xd, y) be an enumeration of
the first d∆0 formulas in at most the free variables shown.

Let u be the minimal point in M such that for every

P : [0, u]2d+1 → 2 there is a P -homogeneous H ⊆ [0, u] with

|H| > d · (2d·min (H) + 1).

Note that exponent e in this case is really 2d+ 1.
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Model-Theoretic Proof of PH

Proof. cont’d. Define our coloring P ′ by setting
P ′(a, b1, . . . , bd, c1, . . . cd) = 0 if for all x < a,

{i ≤ d : ϕi(b1, . . . , bd, x)} = {i ≤ d : ϕi(c1, . . . , cd, x)}

and 1 otherwise.
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Proof. cont’d. Define our coloring P ′ by setting
P ′(a, b1, . . . , bd, c1, . . . cd) = 0 if for all x < a,

{i ≤ d : ϕi(b1, . . . , bd, x)} = {i ≤ d : ϕi(c1, . . . , cd, x)}

and 1 otherwise.

Using the definition of u, extract a P ′-homogeneous set H ⊆ [0, u]

of size greater than d · (2d·min (H) + 1).
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Model-Theoretic Proof of PH

Proof. cont’d. For every increasing d-tuple b1 < · · · < bd in
H − {min (H)} define the following sequence of d-many subsets of
[0,min (H)):

〈{x < min (H) : ϕ1(b1, . . . , bd, x)}, . . . ,

. . . , {x < min (H) : ϕd(b1, . . . , bd, x)}〉.
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. . . , {x < min (H) : ϕd(b1, . . . , bd, x)}〉.

There are at most 2d·min (H) such sequences, so by Pigeonhole
Principle, there are b1 < b2 < · · · < bd < c1 < · · · < cd in
H − {min (H)} such that

P ′(min (H), b1, . . . , bd, c1, . . . , cd) = 0.
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Model-Theoretic Proof of PH

Proof. cont’d. Let H̄ = {h1, . . . , hd} denote the last d elements of H .

Then for any a < b1 < · · · < bd < c1 < · · · < cd in H − H̄ we have
for every x < a:

{i ≤ d : ϕi(b1, . . . , bd, x)} = {i ≤ d : ϕi(h1, . . . , hd, x)}
= {i ≤ d : ϕi(c1, . . . , cd, x)}.
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This is the indiscernibility condition we need.
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Let I contain all points of M below some element in the first
ω-many elements of H .
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Let I contain all points of M below some element in the first
ω-many elements of H .

Then I � PA and also satisfies the negation of our statement. ♦
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End

Thank You
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