
 

The Math in “Laser Light Math” 
 
When graphed, many mathematical curves are beautiful to view.  These curves are usually 
brought into graphic form by incorporating such devices as a plotter, printer, video screen, or 
mechanical spirograph tool.  While these techniques work, and can produce interesting images, 
the images are normally small and not animated.  To create large-scale animated images, such as 
those encountered in the entertainment industry, light shows, or art installations, one must call 
upon some unusual graphing strategies.  It was this desire to create large and animated images of 
certain mathematical curves that led to our design and implementation of the Laser Light Math 
projection system.  In our interdisciplinary efforts to create a new way to graph certain 
mathematical curves with laser light, Professor Lessley designed the hardware and software and 
Professor Beale constructed a simplified set of harmonic equations. 
 
Of special interest was the issue of graphing a family of mathematical curves in the roulette or 
spirograph domain with laser light. Consistent with the techniques of making roulette patterns, 
images created by the Laser Light Math system are constructed by mixing sine and cosine 
functions together at various frequencies, shapes, and amplitudes.  Images created in this fashion 
find birth in the mathematical process of making “roulette” or “spirograph” curves. From your 
childhood, you might recall working with a spirograph toy to which you placed one geared wheel 
within the circumference of another larger geared wheel.  After inserting your pen, then rotating 
the smaller gear around or within the circumference of the larger gear, a graphed representation 
emerged of a certain mathematical curve in the roulette family (such as the epitrochoid, 
hypotrochoid, epicycloid, hypocycloid, or perhaps the beautiful rose family). The spirograph, of 
course, is simply a clever mechanical plotting device.  Performing this same artistry with a laser 
beam and its tiny dot of light is, however, a more demanding process. 
 
 

The Problem: Moving from the Spirograph to the Laser 
 
Herein lies the problem: the spirograph, as a graphing device, utilizes a geared wheel running 
inside or outside of another larger geared wheel.  The larger wheel does not rotate.  Having the 
larger wheel remain stationary will not work for laser projection devices. To form a complete 
projected pattern(s) of any mathematical curve with a small laser “dot” requires a modified and 
dynamic approach. To do this, you must “scan” the laser dot rapidly through a complete image 
path at least sixteen times a second before the image will appear solid.  This effect is known as 
“persistence of vision.”  
 
For a better understanding of this idea, take a hand-held laser pointer and move it back and forth 
faster than sixteen times per second. This action will create the appearance of a horizontal line.  
Similarly, moving the pointer rapidly in a circular pattern will create the appearance of a solid 
circle in light.  In reality, what you create by moving a dot of laser light quickly is the “illusion” 
of a solid line or pattern  (thanks to the persistence of vision effect).  Essentially, this is the secret 
to creating any laser image. Of course, it is important to remember that instead of moving the 
laser itself you must use some  “hardware” to “reflect” the laser dot rapidly through its defined 
pattern. More on the hardware will follow later.  



 
If you use the laser pointer to draw a series of smaller circles that follow the path of a larger 
circle (a roulette shape), you will discover that--unlike the mechanical spirograph--the trace and 
the base circles rotate simultaneously.  Additionally, it will become clear that both circles can 
possess individual frequency and diameter factors.  
 
For an informative historical example of this idea, think back to your basic astronomy class and 
the lectures on Ptolemy and how he tried to explain the visual motion of the planets by 
developing the idea of “epicycles.” A full discussion of Ptolemy’s ideas is beyond the scope of 
this paper, but of critical importance is how he demonstrated the idea of creating roulette patterns 
in a slightly different manner than with our conventional spirograph. To be exact, his approach 
(that of “epicycles”) has our trace circle rotating “on the circumference” of the base circle.  And, 
especially important, both circles can maintain differing rotational speeds (frequencies) and 
rotational directions. 
 
Figure 1 compares Ptolemy’s epicycle approach to the traditional spirograph technique.  
 

 
Figure 1: Traditional Spirograph Device Compared to Ptolemy’s Epicycle Approach 

 
The first two drawings in Figure 1 follow the normal graphing strategy used by a spirograph 
device.  The third element shows how the tracing strategy in Laser Light Math follows Ptolemy’s 
idea and how it differs from the normal spirograph method (the trace circle runs on the 
circumference of the base circle). 
 
After embracing the idea of using an epicycle approach, we began to form the math required to 
make this all work within the context of a laser projection system where digital and analog 
devices must co-exist. The usual equations for making roulette or spirograph curves are modified 
to incorporate the epicycle approach where two circles can rotate at differing frequencies, 
sometimes in differing directions, and often with differing diameters.  Additionally, the revised  



 

Figure2: A Typical Hypotrochoid Image 
 
equations carefully engage the idea of “offset” in which there are times when the laser dot does 
not ride on the circumference of the trace circle: instead, it can be inside or outside of that 
circumference.  By incorporating offset into the epicycle strategy, we can create a multitude of 
striking images from the epitrochoid and hypotrochoid curve families. 
 
Figure 2 and Figure 3 are examples of curves created with the epicycle approach.  Both images 
were created with the Laser Light Math projection system.  To see more examples, just go to the 
home page of this site where you can find links to color photos, moving images, and additional 
information regarding the Laser Light Math project. 
 
Creating the laser image in Figure 2 requires a mathematical approach similar to the traditional 
graphing of a hypotrochoid curve.  The equation, however, must be modified to accommodate 
the “dynamic” nature of the scanning (base and trace circles).  The traditional parametric 
equation for graphing a hypotrochoid curve is: 
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In our approach, however, we use base and trace oscillators to form the images so the equations 
become 
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fbase  is the number of times per second that the base 
oscillator completes a cycle. 
 
In Figure 3, which is from the epitrochoid family, the numbers at the top of the laser image photo 
represent the regular graphing variables, and the numbers in the lower right hand corner 
represent the modified values that are applied to various control faders within our projection 
system.  Translating the traditional values into required revised values usually requires only 
simple addition and subtraction.   
 
In creating the Figure 3 epitrochoid image we use the following parametric equations for our x 
and y data input:  
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Figure 3: A Typical Epitrochoid Image 
 
Please note that when graphing epitrochoid or hypotrochoid functions with a mechanical 
spirograph plotter, you usually incorporate a specific offset value to the trace point in association 
with the trace circle.  However, in the case of our epicycle approach, where the trace circle’s 



center always follows the path of the base circle’s circumference (the Ptolemy epicycle idea), the 
effect of offset is accomplished through varying the diameter ratios of the two circles and the 
rotational speeds of each circle.  
 
Perhaps the most fascinating aspect of these laser images is the manner in which they evolve 

with time. If the two frequencies are incommensurate (
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is not a fraction but rather an irrational number), then the various colors in the image slowly 
rotate with respect to each other. Dramatic changes in the colors in the image occur periodically 
when the rotating patterns overlap. This is caused by the spectral additions of colors and their 
interaction with human color perception.  Additionally, in Laser Light Math, when two traces 
converge or overlap, a striking effect occurs where it appears as if the image suddenly pauses.  
This “illusion of pause” probably relates to the overlap of Gaussian beams.  Such overlap causes 
the combined beam to appear not only more intense and wider but also temporarily stationary; 
and the color we observe at the overlap point is the additive value of the two trace lines.  A red 
beam overlapping a green beam creates a yellow composite. 
 
Laser Light Math does virtually all of this work within the frame of epitrochoid and 
hypotrochoid functions. This practice does not necessarily limit the range of images, however, 
since a number of “special cases” exist that can be generated within this basic framework.  The 
special cases are: 
 

hypotrochoid: 
 hypocycloid: h=b 
 ellipse: a=2*b 
 rose: a=(2n)*h/(n+1), b=(n-1)/(n+1)*h  where “n” is the number of petals 
 
epitrochoid: 
 epicycloid: h=b 
 limacon: a=b 
 circle: a=0 
 

In terms of comprehending how Laser Light Math works, it is quite important to understand one 
essential idea in relationship to sine and cosine math: in a sine/cosine relationship, in which two 
waves are both sinusoidal in shape, you can create a circle when the x and y waveforms have the 
same frequency and are exactly ninety degrees out of phase. In electronics, this is referred to as a 
“quadrature” relationship. Oscillations are in quadrature relationship when they are separated in 
phase by 90° (π/ 2 radians, or ¼ of a period).  The wave shapes produced in Laser Light Math 
are heavily dependent upon maintaining a quadrature relationship. 
 
To gain greater artistic flexibility, we can also mix other waveforms in quadrature (saw, triangle, 
square, saw tooth for example) inside of sinusoidal waves. Fourier analysis shows that any 
periodic function can be constructed by a sum of sines and cosines. Some unusual effects can be 
generated in this manner. By mixing two square waves of equal frequency and amplitude in a 
quadrature relationship, the system produces a nicely defined square.  Similarly, two triangle 
waves in quadrature relationship (one on the X axis and the other on the Y axis) will produce a 



diamond image.  Thus, by using sinusoidal waves, square waves, triangle waves, and saw tooth 
waves, it is possible to create a diverse range of unusual and beautiful images that cannot be 
generated through the traditional spirograph plotter technique (which normally uses only 
sinusoidal functions).  By possessing this increased image making capacity, the Laser Light 
Math system opens up new image-making possibilities for laser artists. 
 


