CSCI5254: Convex Optimization & Its Applications

Convex Sets

- subspaces, affine sets, and convex sets
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Subspace

 $S \subset \mathcal{R}^n$ is a subspace if

$$x, y \in S, \ \lambda, \mu \in \mathcal{R} \ \Rightarrow \ \lambda x + \mu y \in S$$

example: the range of a matrix $A = [a_1, a_2, \cdots, a_m]$

$$\begin{aligned} \operatorname{range}(A) &= \{Aw|w \in \mathcal{R}^m\} \\ &= \{w_1a_1 + w_2a_2 + \dots + w_ma_m|w_i \in \mathcal{R}\} \\ &= \operatorname{span}(a_1, a_2, \dots, a_m) \end{aligned}$$

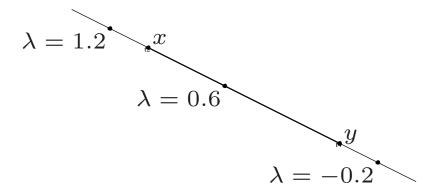
linear combination $y = \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k, \ \theta_i \in \mathcal{R}$

Affine set

 $S \subset \mathbb{R}^n$ is affine if

$$x, y \in S, \ \lambda + \mu = 1 \ \Rightarrow \ \lambda x + \mu y \in S$$

geometrically: $x, y \in S \implies \text{line through } x, y \in S$



example: solution set of linear equations $\{x \mid Ax = b\}$

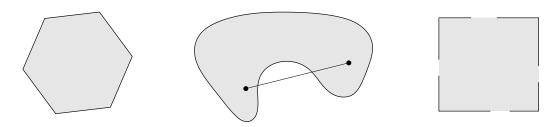
affine combination
$$y = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k, \ \sum_i \theta_i = 1$$

Convex set

 $S \subset \mathcal{R}^n$ is convex if

$$x, y \in S, \ \lambda, \mu \ge 0, \ \lambda + \mu = 1 \ \Rightarrow \ \lambda x + \mu y \in S$$

examples (one convex, two nonconvex sets):



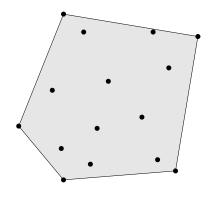
Convex combination and convex hull

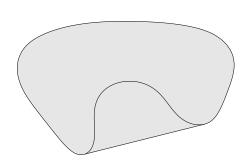
convex combination of x_1, \ldots, x_k :

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull $\operatorname{\mathbf{conv}} S$: set of all convex combinations of points in S

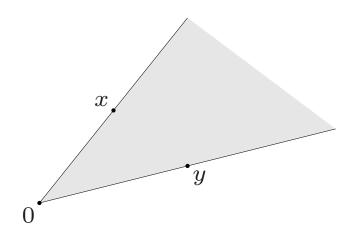




Convex cone

 $S \subset \mathbb{R}^n$ is a cone if $x \in S$, $\lambda \ge 0 \implies \lambda x \in S$

 $S\subset \mathcal{R}^n$ is a convex cone if $x,y\in S,\ \lambda,\mu\geq 0\ \Rightarrow\ \lambda x+\mu y\in S$ geometrically: $x,y\in S\ \Rightarrow$ 'pie slice' between $x,y\in S$

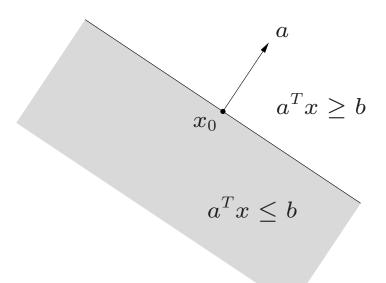


conic combination $y = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k, \ \theta_i \ge 0$

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b, \ a \neq 0\}$

halfspace: set of the form $\{x \mid a^T x \leq b, \ a \neq 0\}$



- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

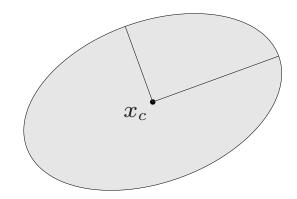
Euclidean ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)



other representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular

Norm balls and norm cones

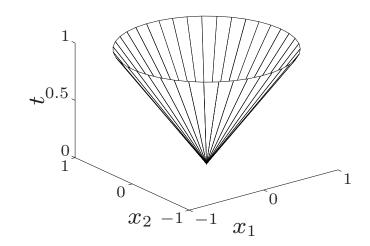
norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0 (positivity)
- ||tx|| = |t| ||x|| for $t \in \mathbf{R}$ (positive scalability)
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality)

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm norm ball with center x_c and radius r: $\{x\mid \|x-x_c\|\leq r\}$

norm cone: $\{(x,t) | ||x|| \le t\}$

Euclidean norm cone is called secondorder cone



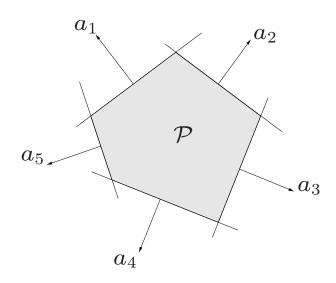
norm balls and cones are convex

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \leq \text{is componentwise inequality})$



polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

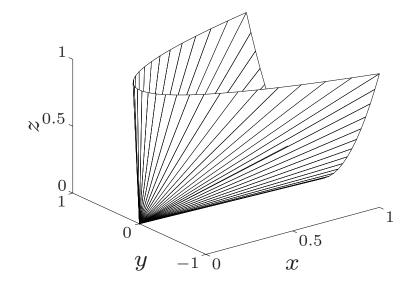
- S^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 \mathbf{S}^n_+ is a convex cone

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

example: $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_{+}^{2}$



Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

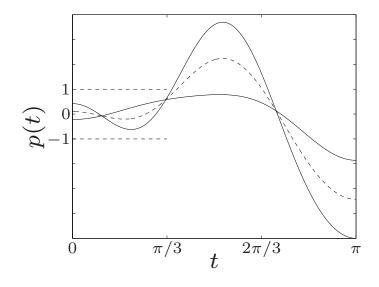
the intersection of (any number of) convex sets is convex

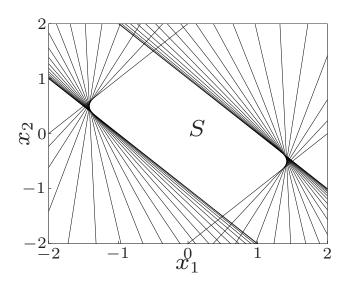
example:

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m=2:





Affine function

suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ convex}$$

examples:

- scaling, translation, projection
- solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbf{S}^p$)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 $dom P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbf{R}^n \to \mathbf{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 $\mathbf{dom} f = \{x \mid c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

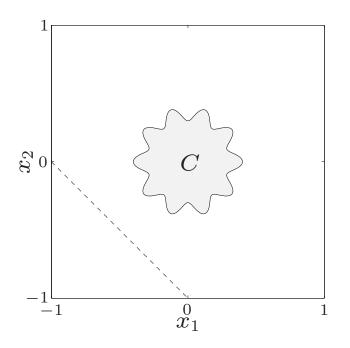
proof: line segment is preserved: for $x, y \in dom f$

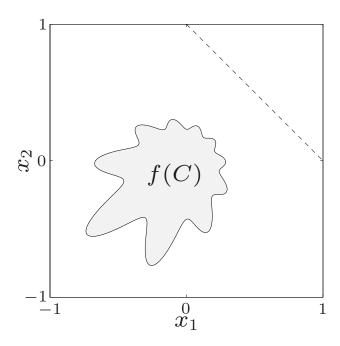
$$f([x, y]) = [f(x), f(y)]$$

thus, if $S \subset \text{dom} f$, then f(S) is convex

example of a linear-fractional function

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$





Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^n$ is a proper cone if

- K is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- *K* is pointed (contains no line)

examples:

- nonnegative orthant $K = \mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x_i \ge 0, i = 1, \dots, n\}$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$
- nonnegative polynomials on [0,1]:

$$K = \{ x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$$

generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

examples:

• componentwise inequality $(K = \mathbf{R}_{+}^{n})$

$$x \preceq_{\mathbf{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq_{\mathbf{S}^n_+} Y \quad \Longleftrightarrow \quad Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in \leq_K properties: many properties of \leq_K are similar to \leq on \mathbf{R} , e.g.,

$$x \leq_K y, \quad u \leq_K v \implies x + u \leq_K y + v$$

Minimum and minimal elements

 \preceq_K is not in general a *linear ordering*: we can have $x \not\preceq_K y$ and $y \not\preceq_K x$ $x \in S$ is the minimum element of S with respect to \preceq_K if

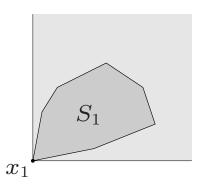
$$y \in S \implies x \leq_K y$$

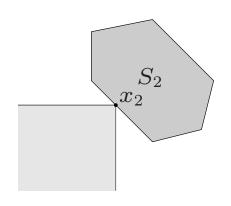
 $x \in S$ is a minimal element of S with respect to \leq_K if

$$y \in S, \quad y \leq_K x \quad \Longrightarrow \quad y = x$$

example $(K = \mathbf{R}_+^2)$:

 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2

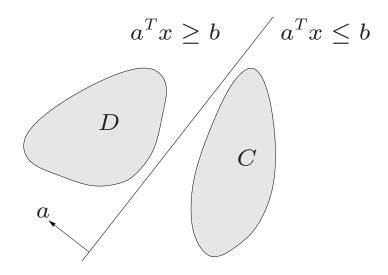




Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that

$$a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$$



the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

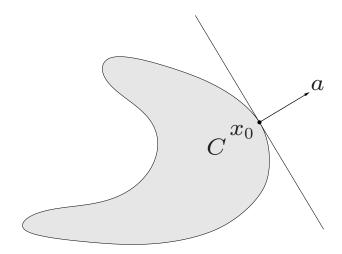
strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$



supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual cones and generalized inequalities

dual cone of a cone K:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

- $\bullet K = \mathbf{R}_+^n \colon K^* = \mathbf{R}_+^n$
- $K = \mathbf{S}_{+}^{n}$: $K^{*} = \mathbf{S}_{+}^{n}$
- $K = \{(x,t) \mid ||x||_2 \le t\}$: $K^* = \{(x,t) \mid ||x||_2 \le t\}$
- $K = \{(x,t) \mid ||x||_1 \le t\}$: $K^* = \{(x,t) \mid ||x||_\infty \le t\}$

first three examples are self-dual cones

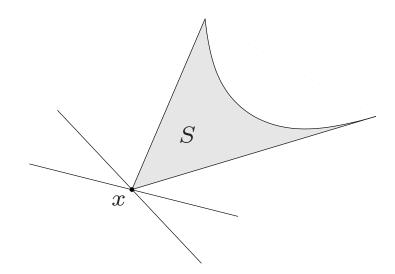
dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

Minimum and minimal elements via dual inequalities

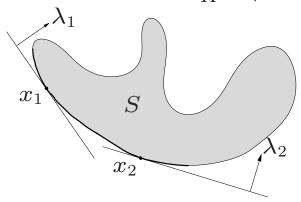
minimum element w.r.t. \preceq_K

x is minimum element of S iff for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over S



minimal element w.r.t. \leq_K

• if x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^*} 0$, then x is minimal



• if x is a minimal element of a *convex* set S, then there exists a nonzero $\lambda \succeq_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

optimal production frontier

- different production methods use different amounts of resources $x \in \mathbb{R}^n$
- ullet production set P: resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \mathbf{R}^n_+

example (n=2)

 x_1 , x_2 , x_3 are efficient; x_4 , x_5 are not

