CSCI5254: Convex Optimization & Its Applications

Convex Sets

e subspaces, affine sets, and convex sets
e operations that preserve convexity

e generalized inequalities

e separating and supporting hyperplanes

e dual cones and generalized inequalities



Subspace

S C 'R™ is a subspace if

r,yeS, Mt eR = x+uyeSs

geometrically: x,y € S = plane through 0,2,y € S

example: the range of a matrix A = [a1, a2, - , Q]

range(A) = {Aw|w e R™}
= {wia1 + weas + -+ + Wnam|w; € R}

= span(ay,as, - ,am)

linear combination y = 0121 + 0sxo + - - + Orxi, 0, €ER
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Affine set

S C R™ is affine if

r,YyeS, A+u=1 = Xx+uyes

geometrically: z,y € S = line through z,y € S

A= —0.2
example: solution set of linear equations {x | Az = b}

affine combination y = 6121 + Gaxa + - - + Oy, > . 0; =1
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Convex set

S C'R™ is convex if

r,ye S, A\ u>0, A\+u=1 = Ix+uyes

geometrically: z,y € S = line segment through z,y € S

examples (one convex, two nonconvex sets):
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Convex combination and convex hull

convex combination of z4,. . ., Tk:
56291561+¢92£C2+"°—|—9k£6k

with 0 4+---+0,=1,0; >0

convex hull conv S: set of all convex combinations of points in S
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Convex cone

SCR"isaconeif rte€S, A>0 = MxeSs

SCR" isaconvex coneif z,ye S, A, u>0 = I +uyes

geometrically: z,y € S = ‘pie slice’ between z,y € S

conic combination y = 0121 + 025+ - - + Orxp, 6; >0
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Hyperplanes and halfspaces

hyperplane: set of the form {z | a2z = b, a # 0}

halfspace: set of the form {z | alx < b, a # 0}

a
afz > b
Io —
alz < b

e «a Is the normal vector

e hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

Euclidean ball with center x. and radius r:

B(we,r) = 12 | |z = zclla <7p = {we +ru | flulls < 1}

ellipsoid: set of the form
{z|(z—a)"' Pz =) <1}

with P € S| (i.e., P symmetric positive definite)

other representation: {x.+ Au | ||ul|2 < 1} with A square and nonsingular
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Norm balls and norm cones

norm: a function || - || that satisfies

o |z|| >0;

z|| = 0 if and only if z = 0 (positivity)
o |[tx|| = |t|||x]|| for t € R (positive scalability)

o ||z +y|| < |z| + ||y|| (triangle inequality)
notation: || - || is general (unspecified) norm; || - ||symp is particular norm

norm ball with center x. and radius r: {x | ||[x — z.|| < r}

norm cone: {(x,t) | [|z| < t}

Euclidean norm cone is called second-
order cone

= O

norm balls and cones are convex
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Polyhedra

solution set of finitely many linear inequalities and equalities
Ax < b, Cxr=d

(A e R™" C e RP*" < is componentwise inequality)

aq ao

as
as

0 7]

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone

notation:

e S” is set of symmetric n X n matrices

o S ={X €S"| X = 0}: positive semidefinite n x n matrices
XesS <= 2TX2>0 for all 2

S’rfr IS a convex cone

o SV, ={X €S"| X > 0}: positive definite n x n matrices

Convex Sets
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Operations that preserve convexity

practical methods for establishing convexity of a set
1. apply definition

ri,120€C, 0<0<]1 = 9$1+(1—9)£IZ2€C

2. show that C' is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, . . . ) by operations that preserve convexity

e intersection

e affine functions

e perspective function

e linear-fractional functions

Convex Sets 12



Intersection

the intersection of (any number of) convex sets is convex

example:
S={zeR"||p(t)| <1forlt]| <7m/3}

where p(t) = x1 cost + xycos 2t + - - - + x,, cOsME

for m = 2:

p(t)

Convex Sets
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Affine function
suppose f : R" — R is affine (f(z) = Az + b with A € R™*", b € R™)
e the image of a convex set under f is convex

S CR"convex = f(S)={f(z)|x €S} convex

e the inverse image f~!(C) of a convex set under f is convex

C CR™convex = fHC)={xecR"| f(z)ec C} convex

examples:

e scaling, translation, projection

e solution set of linear matrix inequality {x | v141 + -+ + ,, A, X B}
(Wlth A;, B € Sp)

e hyperbolic cone {x | 21 Pz < (c'z)?, ¢’z > 0} (with P € ST})
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Perspective and linear-fractional function

n

perspective function P : R"™' — R™:
P(x,t) = z/t, dom P = {(x,t) | t > 0}
images and inverse images of convex sets under perspective are convex

linear-fractional function f : R" — R"":

B Ax +b

= o d dom f = {z | c'z +d > 0}

f(z)

images and inverse images of convex sets under linear-fractional functions
are convex

proof: line segment is preserved: for x,y € domf

flz, y) = 1f (), f(y)]

thus, if S C domf, then f(5) is convex
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example of a linear-fractional function

1
fz) = z
r1+x2+1

1 1
g0 S0
1 1

—1 0 1 —1 0 1

T o
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Generalized inequalities

a convex cone K C R" is a proper cone if

e K is closed (contains its boundary)
e K is solid (has nonempty interior)

e K is pointed (contains no line)

examples:
e nonnegative orthant K =R} ={x € R" | z; > 0,i=1,...,n}
e positive semidefinite cone K = S/

e nonnegative polynomials on [0, 1]:

K={zcR" |z +agt +a3t> + -+ 2,t" >0 fort €[0,1]}
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generalized inequality defined by a proper cone K:

r gy << y—x¢€kK, T <K1Yy <= y—zreintk

examples:

e componentwise inequality (K = Rﬁi)
:UjRiy — z; <]y, 1=1,...,n
e matrix inequality (K = S%)

X jsi Y <= Y — X positive semidefinite

these two types are so common that we drop the subscript in <g

properties: many properties of <x are similar to < on R, e.g.,

rTKY, UKV — T+UKYTU
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Minimum and minimal elements

<K is not in general a linear ordering: we can have x Ax y and y Ak =

x € S is the minimum element of S with respect to <k if

yGS — iEjKy

x € 5 is a minimal element of S with respect to <g if

yesS, y<xkr — y==x

example (K = R?):

21 i1s the minimum element of S,
x9 is a minimal element of Sy 1
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Separating hyperplane theorem

if C' and D are disjoint convex sets, then there exists a # 0, b such that

aT:CSbfor:CGC, a'x>bforxze D

the hyperplane {z | a’z = b} separates C and D

strict separation requires additional assumptions (e.g., C' is closed, D is a
singleton)

Convex Sets
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Supporting hyperplane theorem
supporting hyperplane to set C' at boundary point xg:
{|a'z =a’zo)}

where a # 0 and al'z < alzg forall x € C

supporting hyperplane theorem: if C' is convex, then there exists a
supporting hyperplane at every boundary point of C
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Dual cones and generalized inequalities
dual cone of a cone K:
K*={y|y'z>0forall z € K}

examples

e K =R": K*=RY}

o K =S": K*=S%

o K ={(x,t)|lzllz <tj: K ={(x,t) [ ||lxll2 <t}
o K ={(z,t) ||zl <t} K ={(z,1) | [|z]loc <t}

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

yr-gx0 <= yT:UZOforaII:UEKO
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Minimum and minimal elements via dual inequalities

minimum element w.r.t. <pg

2 1s minimum element of S iff for all
A =g+ 0, x Is the unique minimizer
of Mz over S

minimal element w.r.t. <g

e if £ minimizes ATz over S for some \ =+ 0, then = is minimal

M

L1

i)

e if x is a minimal element of a convex set S, then there exists a nonzero
A\ >+ 0 such that = minimizes \' z over S
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optimal production frontier

e different production methods use different amounts of resources € R"
e production set P: resource vectors x for all possible production methods

e efficient (Pareto optimal) methods correspond to resource vectors x
that are minimal w.r.t. R}

fuel

example (n = 2)

xr1, To, T3 are efficient; x4, x5 are not

labor
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