CSCI5254: Convex Optimization & Its Applications
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Lagrangian
standard form problem (not necessarily convex)

minimize  fo(x)
subject to  fi(x) <0, i=1,...,m
—0

variable x € R", domain D, optimal value p*

Lagrangian: L : R" x R™ x R” — R, with dom L =D x R™ x R?,

p
Lz, A\, v) —|—Z)\ fi(x +ZV¢hz‘($)
i=1

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(x) <0

e ; is Lagrange multiplier associated with h;(x) =0
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Lagrange dual function

Lagrange dual function: ¢ : R x R? — R,

g(A\,v) = inf L(z,\,v)

x€D
= Inf <f0(55’) + ) Nifil@)+ > Vﬂ%(@)
i=1 i=1

g is concave, can be —oo for some A\, v

*

lower bound property: if A = 0, then g(\,v) <p

proof: if T is feasible and A > 0, then

fol#) > L(#,\,v) > inf Lz, \,v) = g\, v)
xre

minimizing over all feasible & gives p* > g(\, v)
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Least-norm solution of linear equations

minimize 2%z

subject to Az =0b
dual function
e Lagrangianis L(z,v) = 22 + v1(Az —b)

e to minimize L over x, set gradient equal to zero:

Vol(z,v)=204+A'v=0 — z=—-(1/2)A'v

e plug in in L to obtain g:
1
g(v) = L((-1/2)ATv,v) = —ZI/TAATI/ —bly
a concave function of v

lower bound property: p* > —(1/4)vT AATY — bl'v for all v
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Standard form LP

minimize ¢!z

subjectto Ax=0b, x>0
dual function
e Lagrangian is
Lz, \v) = cao+vi(Az—b) -z
= b+ (c+ATv Nz
e [ is affine in z, hence

bl ATy —A+¢=0
—00 otherwise

g\, v) =1inf L(z,\,v) = {
g is linear on affine domain {(\,v) | A’v — XA+ ¢ = 0}, hence concave

lower bound property: p* > —blvif ATv+¢>0
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Equality constrained norm minimization
minimize  ||z||
subject to Az =0b

dual function

vlv ATy, <1

g(v) = %f(HxH — v Az + bTV) - { —0o0 otherwise

where [|v||. = supy,<; v’ v is dual norm of | - ||

proof: follows from inf,(||z|| — y2) = 0 if ||ly||« < 1, —oco otherwise
o if ||ly|l« <1, then ||z|| — y'z > 0 for all z, with equality if z =0

o if [|y|l. > 1, choose x = tu where |Ju]] < 1, uly = ||y||. > 1:
|zl = y"2 = t(Jull = |ylls) = —c0 ast— oo

lower bound property: p* > bl v if || ATy, <1
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Two-way partitioning
minimize ! Wx
subjectto z?=1, i=1,...,n

e a nonconvex problem; feasible set contains 2" discrete points

e interpretation: partition {1,...,n} in two sets; W;, is cost of assigning
i, J to the same set; —WV;; is cost of assigning to different sets

dual function

x

g(v) = inf(z? Wz + Z vi(z? —1)) = infa? (W + diag(v))z — 1'v

B —1Tv W + diag(v) = 0
o —00 otherwise

lower bound property: p* > —11v if W + diag(v) = 0
example: v = —Apin(W)1 gives bound p* > nAyin(W)
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Lagrange dual and conjugate function

minimize  fo(x)
subject to Az <b, Cx=d

dual function

g(\, V) inf (fo(z)+ (A"X+C"v) 'z —b"N—d"v)

redom fj

= —fr(=AT'N=CTv)—bvIX—d'v

e recall definition of conjugate f*(y) = Sup,cqom s (' = — f())

e simplifies derivation of dual if conjugate of fy is known

example: entropy maximization

n

mn
— E x;log x;, edi™
i=1

1=1
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The dual problem

Lagrange dual problem

maximize g(\,v)
subjectto A >0

e finds best lower bound on p*, obtained from Lagrange dual function
e a convex optimization problem; optimal value denoted d*
e )\, v are dual feasible if A = 0, (\,v) € domg

e often simplified by making implicit constraint (A, ) € dom g explicit

example: standard form LP and its dual (page 5)

minimize ¢’z maximize —b'v
subject to Az =0b subject to ATv 4+ ¢ >0
x>0
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Weak and strong duality
weak duality: d* < p*
e always holds (for convex and nonconvex problems)

e can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize —1Tv
subject to W 4 diag(v) = 0

gives a lower bound for the two-way partitioning problem on page 7
strong duality: d* = p*
e does not hold in general

e (usually) holds for convex problems

e conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem
minimize

fo()
subject to  fi(x) <0, i=1,...,m
Ax =10

if it is strictly feasible, i.e.,

dzr € int D : filx) <0, i=1,...,m, Ax =D

e also guarantees that the dual optimum is attained (if p* > —o0)

e can be sharpened: e.g., can replace int D with relint D (interior

relative to affine hull); linear inequalities do not need to hold with strict
inequality, . . .

e there exist many other types of constraint qualifications
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Inequality form LP

primal problem

minimize ¢z

subject to Ax <b

dual function

g\) =inf ((c+ A" Nz —b"\) =

x

{ —bIN ATXA+c=0

—00 otherwise

dual problem
maximize —bl )\
subjectto ATA4+c¢=0, A>0

e from Slater’s condition: p* = d* if Ax < b for some ¥

e in fact, p* = d* except when primal and dual are infeasible

Duality

12



Quadratic program

primal problem (assume P € S% )
minimize ! Px

subject to Az <b

dual function

1
g(\) =inf (z" Pz + X" (Az — b)) = —EATAP”AT)\ —blA

T

dual problem

maximize —(1/4H)NTAP7TATN — b1\
subjectto A >0

e from Slater’s condition: p* = d* if Ax < b for some ¥

e in fact, p* = d* always
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A nonconvex problem with strong duality

minimize zf Ax + 201
subject to z'z <1

A % 0, hence nonconvex

dual function: g(A\) = inf, (21 (A + X)x + 2bTz — \)

e unbounded below if A+ A # Oorif A+ Al >=0and b R(A+ \)
e minimized by x = —(A + M )Tb otherwise: g(\) = —bT (A + XI)Tb — )

dual problem and equivalent SDP:

maximize —bT (A + \I)Th — ) maximize —t — A
subjectto A+ A =0 A+ b

be R(A+ ) subject to [ Tt

E

strong duality although primal problem is not convex (not easy to show)
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Geometric interpretation

for simplicity, consider problem with one constraint fi(z) <0

interpretation of dual function:

o) = inf (t4Xu).  where G={(fi(x). fo(@) | * € D}

e \u+t=g(\)is (non-vertical) supporting hyperplane to G
e hyperplane intersects t-axis at t = g(\)

Duality
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epigraph variation: same interpretation if G is replaced with

A= {(u,t) | fi(x) <wu, fo(xr) <t for some x € D}
t

A

Au+t = g(A)\p
g(N)

strong duality

e holds if there is a non-vertical supporting hyperplane to A at (0, p*)

e for convex problem, A is convex, hence has supp. hyperplane at (0, p*)

~

e Slater’s condition: if there exist (u,t) € A with @ < 0, then supporting
hyperplanes at (0, p*) must be non-vertical
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Complementary slackness

*

assume strong duality holds, x* is primal optimal, (A*, v*) is dual optimal

inf <fo(fv) T N fil@) + ) v m-(sv))

< fo@)+ Y N fila) + Y vihi(a)
=1 1=1
< fo(z")

fola™) = g\, ")

hence, the two inequalities hold with equality
e x* minimizes L(xz, \*,v*)

e \'fi(x*)=0fori=1,...,m (known as complementary slackness):

)\: > (0= fz(ﬂj*) = 0, fz(ﬂj*) < 0= )\: =0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

primal feasibility: f;(z) <0,i=1,...,m, hi(x) =0,i=1,...,p

dual feasibility: A = 0

complementary slackness: \;f;(z) =0,1=1,...,m

= W b =

. first order condition (gradient of Lagrangian with respect to x vanishes):

V.L(z,\v) = Vfo(z +Z)\sz +Zuﬁh

from page 17: if strong duality holds and x, A, v are optimal, then they
must satisfy the KKT conditions
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KKT conditions for convex problem

~

if x, \, U satisfy KKT for a convex problem, then they are optimal:

e from complementary slackness: fo(&) = L(&, \, D)

e from 4th condition (and convexity): g(\,7) = L(&, \, D)

~

hence, fo(7) = g(A,v)

if Slater’s condition is satisfied:

x Is optimal if and only if there exist A, v that satisfy KKT conditions

e recall that Slater implies strong duality, and dual optimum is attained

e generalizes optimality condition V fy(x) = 0 for unconstrained problem
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example: water-filling (assume «; > 0)

minimize —>_ "  log(x; + a;)
subjectto x>0, 1lz=1

z is optimal iff z = 0, 17z = 1, and there exist A € R”, v € R such that

1

—I—)\Z‘:V
T; + Qy

o ifv<l/a;: \y=0and z; =1/v — q
o ifv>1/a;: \j=v—1/a; and z; =0

e determine v from 17z =>"" max{0,1/v — a;} =1

Interpretation

e n patches; level of patch ¢ is at height o L/
14
1

e flood area with unit amount of water

e resulting level is 1/v*
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Perturbation and sensitivity analysis
(unperturbed) optimization problem and its dual
minimize  fo(x) maximize g(\,v)

subject to  fi(x) <0, i=1,...,m subjectto A >0
hi(x) =0, i1=1,...,p

perturbed problem and its dual

min. fo(x) max. g(\,v)—ulX—ovly
st.  file)<wu;,, 1=1,...,m s.t. A>=0
hz(x) =v;, t=1,...,p

e 1 is primal variable; u, v are parameters
e p*(u,v) is optimal value as a function of u, v

e we are interested in information about p*(u,v) that we can obtain from
the solution of the unperturbed problem and its dual
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global sensitivity result

assume strong duality holds for unperturbed problem, and that \*, v* are
dual optimal for unperturbed problem

apply weak duality to perturbed problem:

p*(u,v) > g\, vr) —ut A — oty

= p*(0,0) —u' N —o'V*

sensitivity interpretation

e if \ large: p* increases greatly if we tighten constraint ¢ (u; < 0)
e if \¥ small: p* does not decrease much if we loosen constraint ¢ (u; > 0)

e if v large and positive: p* increases greatly if we take v; < 0;
if v large and negative: p* increases greatly if we take v; > 0

o If VZ‘
*

if v

small and positive: p* does not decrease much if we take v; > 0;
small and negative: p* does not decrease much if we take v; < 0
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local sensitivity: if (in addition) p*(u,v) is differentiable at (0,0), then

v 9p(0,0) . 9p*(0,0)
v 8uz ’ ¢ 8’07;

proof (for A¥): from global sensitivity result,

8p (070) — lim p (teiao) — P (070) > _)\:
ou; t—0T t
8uz- t—0— t

hence, equality

p*(u) for a problem with one (inequality)
constraint:

interpretation: A quantitative measure of
the tightness of a constraint at the optimal

p* (u)

p*(0) — N\*u
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Duality and problem reformulations

e equivalent formulations of a problem can lead to very different duals

e reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

e introduce new variables and equality constraints
e make explicit constraints implicit or vice-versa

e transform objective or constraint functions

e.g., replace fo(x) by ¢(fo(x)) with ¢ convex, increasing
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Introducing new variables and equality constraints

minimize  fo(Ax + b)

e dual function is constant: g = inf, L(z) = inf, fo(Az + b) = p*

e we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize  fo(y) maximize blv — fE(v)
subjectto Ax+b—y =0 subject to A'v =0

dual function follows from
glv) = inf(foly) —v'y+v" Az +0'v)
:B’y
B { —fEw)+ bty ATy =0

—00 otherwise

Duality
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norm approximation problem: minimize ||Ax — b

minimize  ||y]|
subjectto y=Ax —b

can look up conjugate of || - ||, or derive dual directly

glv) = inf(lyll +v'y —v' Az +b'v)
w7y

b"v +infy([[yll +v"y) ATv =0
—00 otherwise

{ v Atv =0, |v|.<1

—o0  otherwise

(see page 4)

dual of norm approximation problem

maximize blv
subject to ATv =0, v, <1

Duality
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Implicit constraints

LP with box constraints: primal and dual problem

minimize ¢’z maximize —b'v—1TX; —17),
subject to Az =0b subjectto c+ ATV + X =Xy =0
—].jﬂ?j]_ )\1&0, )\QEO

reformulation with box constraints made implicit

e —1<x=<1
00 otherwise

minimize  fo(z) = {
subject to Az =1b
dual function
glv) = _fgiﬂ(ch + v (Ax — b))
= —blv—||ATv +¢|s

dual problem: maximize —b'v — ||ATv + ¢||;

Duality
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Problems with generalized inequalities

minimize  fo(x)
subject to  fi(z) <k, 0, i=1,...,m
hz():O, 221,,]9

<k, Is generalized inequality on R"i
definitions are parallel to scalar case:
e Lagrange multiplier for f;(x) <k, 0 is vector \; € RFi

e Lagrangian L: R" x R" x ... x R"™ x R? — R, is defined as

L(.CE, )‘17 T 7>‘m7 I/) — fO(:E) + Z A?fz(w) + Z I/th(ilf)
1=1 =1

e dual function g : R* x -+ x R"" x R? — R, is defined as

g A1, s Am,v) = inf L(x, A1, , A, V)

x€eD
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lower bound property: if \; EK; 0, then g( A1, ..., A, v) < p*

proof: if T is feasible and A EK; 0, then

Sk

fo(z) = fo(f)ﬂLZ)\ini(f)JrZVihi(f)

> inf L(x, A1, ..., Am, V)

xzeD
= g(>\1,...,>\m,V)
minimizing over all feasible = gives p* > g(A1,..., A, )
dual problem
maximize  g(A1, ..., Am, V)
subject to  \; ~ K 0, 2=1,....m

e weak duality: p* > d* always

e strong duality: p* = d* for convex problem with constraint qualification
(for example, Slater’s: primal problem is strictly feasible)
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Semidefinite program

primal SDP (F;, G € S¥)
minimize clx
subjectto 1 F1+---+x,F, G
e Lagrange multiplier is matrix Z € S¥
e Lagrangian L(z,Z) = cla +tr (Z(x1Fy + -+ + 2, F, — G))

e dual function

9(Z) = igfL(:C, Z) = { — 00 otherwise

dual SDP

maximize —tr(GZ2)
subjectto Z >0, tr(F;Z)+c¢;=0, i=1,...,n

—tr(GZ) tr(FiZ)+c¢; =0, i1=1,...

, N

p* = d* if primal SDP is strictly feasible (3z with 21 F} + - - - 4+ 2, F,, < G)
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