
CSCI5254: Convex Optimization & Its Applications

Equality constrained minimization

• equality constrained minimization

• eliminating equality constraints

• Newton’s method with equality constraints

• implementation
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Equality constrained minimization

minimize f(x)
subject to Ax = b

• f convex, twice continuously differentiable

• A ∈ Rp×n with rankA = p

• we assume p⋆ is finite and attained

optimality conditions: x⋆ is optimal iff there exists a ν⋆ such that

∇f(x⋆) +ATν⋆ = 0, Ax⋆ = b
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equality constrained quadratic minimization (with P ∈ Sn
+)

minimize (1/2)xTPx+ qTx+ r
subject to Ax = b

optimality condition:

[
P AT

A 0

] [
x⋆

ν⋆

]
=

[
−q
b

]

• coefficient matrix is called KKT matrix

• KKT matrix is nonsingular if and only if

Ax = 0, x 6= 0 =⇒ xTPx > 0

• equivalent condition for nonsingularity: P +ATA ≻ 0
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Eliminating equality constraints

represent solution of {x | Ax = b} as

{x | Ax = b} = {Fz + x̂ | z ∈ Rn−p}

• x̂ is (any) particular solution

• range of F ∈ Rn×(n−p) is nullspace of A (rankF = n− p and AF = 0)

reduced or eliminated problem

minimize f(Fz + x̂)

• an unconstrained problem with variable z ∈ Rn−p

• from solution z⋆, obtain x⋆ and ν⋆ as

x⋆ = Fz⋆ + x̂, ν⋆ = −(AAT )−1A∇f(x⋆)
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example: optimal allocation with resource constraint

minimize f1(x1) + f2(x2) + · · ·+ fn(xn)
subject to x1 + x2 + · · ·+ xn = b

eliminate xn = b− x1 − · · · − xn−1, i.e., choose

x̂ = ben, F =

[
I

−1T

]
∈ Rn×(n−1)

reduced problem:

minimize f1(x1) + · · ·+ fn−1(xn−1) + fn(b− x1 − · · · − xn−1)

(variables x1, . . . , xn−1)
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Newton step

Newton step ∆xnt of f at feasible x is given by solution v of

[
∇2f(x) AT

A 0

] [
v
w

]
=

[
−∇f(x)

0

]

interpretations

• ∆xnt solves second order approximation (with variable v)

minimize f̂(x+ v) = f(x) +∇f(x)Tv + (1/2)vT∇2f(x)v
subject to A(x+ v) = b

• ∆xnt equations follow from linearizing optimality conditions

∇f(x+ v) + ATw ≈ ∇f(x) +∇2f(x)v + ATw = 0, A(x+ v) = b
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Newton decrement

λ(x) =
(
∆xT

nt∇
2f(x)∆xnt

)1/2
=

(
−∇f(x)T∆xnt

)1/2

properties

• gives an estimate of f(x)− p⋆ using quadratic approximation f̂ :

f(x)− inf
Ay=b

f̂(y) =
1

2
λ(x)2

• directional derivative in Newton direction:

d

dt
f(x+ t∆xnt)

∣∣∣∣
t=0

= −λ(x)2

• in general, λ(x) 6=
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

Equality constrained minimization 7



Newton’s method with equality constraints

given starting point x ∈ dom f with Ax = b, tolerance ǫ > 0.

repeat

1. Compute the Newton step and decrement ∆xnt, λ(x).

2. Stopping criterion. quit if λ2/2 ≤ ǫ.

3. Line search. Choose step size t by backtracking line search.

4. Update. x := x + t∆xnt.

• a feasible descent method: x(k) feasible and f(x(k+1)) < f(x(k))

• affine invariant
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Newton’s method and elimination

Newton’s method for reduced problem

minimize f̃(z) = f(Fz + x̂)

• variables z ∈ Rn−p

• x̂ satisfies Ax̂ = b; rankF = n− p and AF = 0

• Newton’s method for f̃ , started at z(0), generates iterates z(k)

Newton’s method with equality constraints

when started at x(0) = Fz(0) + x̂, iterates are

x(k) = Fz(k) + x̂

hence, don’t need separate convergence analysis
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Newton step at infeasible points

2nd interpretation of page 6 extends to infeasible x (i.e., Ax 6= b)

linearizing optimality conditions at infeasible x (with x ∈ dom f) gives

[
∇2f(x) AT

A 0

] [
∆xnt

w

]
= −

[
∇f(x)
Ax− b

]
(1)

primal-dual interpretation

• write optimality condition as r(y) = 0, where

y = (x, ν), r(y) = (∇f(x) + ATν,Ax− b)

• linearizing r(y) = 0 gives r(y +∆y) ≈ r(y) +Dr(y)∆y = 0:

[
∇2f(x) AT

A 0

] [
∆xnt

∆νnt

]
= −

[
∇f(x) +ATν

Ax− b

]

same as (1) with w = ν +∆νnt
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Infeasible start Newton method

given starting point x ∈ dom f , ν, tolerance ǫ > 0, α ∈ (0, 1/2), β ∈ (0, 1).

repeat

1. Compute primal and dual Newton steps ∆xnt, ∆νnt.

2. Backtracking line search on ‖r‖2.

t := 1.

while ‖r(x + t∆xnt, ν + t∆νnt)‖2 > (1 − αt)‖r(x, ν)‖2, t := βt.

3. Update. x := x + t∆xnt, ν := ν + t∆νnt.

until Ax = b and ‖r(x, ν)‖2 ≤ ǫ.

• not a descent method: f(x(k+1)) > f(x(k)) is possible

• directional derivative of ‖r(y)‖2 in direction ∆y = (∆xnt,∆νnt) is

d

dt
‖r(y + t∆y)‖2

∣∣∣∣
t=0

= −‖r(y)‖2
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Solving KKT systems

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]

solution methods

• LDLT factorization

• elimination (if H nonsingular)

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

• elimination with singular H: write as

[
H +ATQA AT

A 0

] [
v
w

]
= −

[
g + ATQh

h

]

with Q � 0 for which H +ATQA ≻ 0, and apply elimination
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Equality constrained analytic centering

primal problem: minimize −
∑n

i=1 log xi subject to Ax = b

dual problem: maximize −bTν +
∑n

i=1 log(A
Tν)i + n

two methods for an example with A ∈ R100×500, different starting points

1. Newton method with equality constraints (requires x(0) ≻ 0, Ax(0) = b)
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2. Newton method applied to dual problem (requires ATν(0) ≻ 0)
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3. infeasible start Newton method (requires x(0) ≻ 0)
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complexity per iteration of two methods is identical

1. use block elimination to solve KKT system

[
diag(x)−2 AT

A 0

] [
∆x
w

]
=

[
diag(x)−11

0

]

reduces to solving Adiag(x)2ATw = b

2. solve Newton system Adiag(ATν)−2AT∆ν = −b+ Adiag(ATν)−11

conclusion: in each case, solve ADATw = h with D positive diagonal

Equality constrained minimization 15



Network flow optimization

minimize
∑n

i=1 φi(xi)
subject to Ax = b

• directed graph with n arcs, p+ 1 nodes

• xi: flow through arc i; φi: cost flow function for arc i (with φ′′
i (x) > 0)

• node-incidence matrix Ã ∈ R(p+1)×n defined as

Ãij =





1 arc j leaves node i
−1 arc j enters node i
0 otherwise

• reduced node-incidence matrix A ∈ Rp×n is Ã with last row removed

• b ∈ Rp is (reduced) source vector

• rankA = p if graph is connected
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KKT system

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]

• H = diag(φ′′
1(x1), . . . , φ

′′
n(xn)), positive diagonal

• solve via elimination:

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

sparsity pattern of coefficient matrix is given by graph connectivity

(AH−1AT )ij 6= 0 ⇐⇒ (AAT )ij 6= 0

⇐⇒ nodes i and j are connected by an arc
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Analytic center of linear matrix inequality

minimize − log detX
subject to tr(AiX) = bi, i = 1, . . . , p

variable X ∈ Sn

optimality conditions

X⋆ ≻ 0, −(X⋆)−1 +

p∑

j=1

ν⋆jAi = 0, tr(AiX
⋆) = bi, i = 1, . . . , p

Newton equation at feasible X :

X−1∆XX−1 +

p∑

j=1

wjAi = X−1, tr(Ai∆X) = 0, i = 1, . . . , p

• follows from linear approximation (X +∆X)−1 ≈ X−1 −X−1∆XX−1

• n(n+ 1)/2 + p variables ∆X , w
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solution by block elimination

• eliminate ∆X from first equation: ∆X = X −
∑p

j=1wjXAjX

• substitute ∆X in second equation

p∑

j=1

tr(AiXAjX)wj = bi, i = 1, . . . , p (2)

a dense positive definite set of linear equations with variable w ∈ Rp

flop count (dominant terms) using Cholesky factorization X = LLT :

• form p products LTAjL: (3/2)pn
3

• form p(p+ 1)/2 inner products tr((LTAiL)(L
TAjL)): (1/2)p

2n2

• solve (2) via Cholesky factorization: (1/3)p3
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