CSCI5254: Convex Optimization and Its Applications

Introduction

- course logistics, goals, and topics
- mathematical optimization
- least-squares and linear programming
- convex optimization and nonlinear optimization
- brief history of convex optimization
- examples

Course logistics

basic information

- canvas: TBA
course website: http://spot.colorado.edu/~lich1539/cvxopt.html
- time and location: WM 1:25-2:40pm, DLC 1B20
zoom: https://cuboulder.zoom.us/j/6933927360
(will be recorded and posted)
- office hours:
- Tue 3:00pm-5:00pm on zoom (tentative)
- by appointment (email is most convenient)
- main textbook: Convex Optimization, Boyd \& Vandenberghe
- prerequisite: calculus and linear algebra, exposure to probability
- review Appendix A
- acknowledgement: lecture slides are adapted mainly from Dr. Stephen Boyd's lecture notes on convex optimization at Stanford University.
grading, homework, and final
- grading: 40% homework, 50% final, 10% participation
- homework:
- 8 homework sets
- due by midnight on Mondays
- collaboration strongly encouraged, but write your own solutions
- final: 24 -hour take-home; more detail later in the semester

Course goals and topics

goals

- recognize/formulate convex optimization problems that arise in engineering and applied science
- characterize optimal solution and understand how such problems are solved numerically
- develop skills to use tools and methods of optimization in your researches or applications

topics

- convex analysis: convex sets, functions, optimization problems
- optimization theory: linear, quadratic, semidefinite, and geometric programming; optimality conditions and duality theory
- basic applications: signal processing, control, communications, networks, statistics, machine learning, circuit design, and mechanical engineering, etc; will adapt depending on your interest and time
- some optimization algorithms: descent methods and interior-point methods
- some advanced topics: stochastic gradient algorithms, reinforcement learning, if time permits

Mathematical optimization

(mathematical) optimization problem

```
minimize }\quad\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq\mp@subsup{b}{i}{},\quadi=1,\ldots,
```

- $x=\left(x_{1}, \ldots, x_{n}\right)$: optimization variables
- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$: objective function
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, m$: constraint functions
optimal solution x^{\star} has smallest value of f_{0} among all vectors that satisfy the constraints

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max/min investment per asset, minimum return
- objective: overall risk or return variance

communications

- variables: transmission power to each user in a cell
- constraints: power budget, maximal interference to users in other cells
- objective: total or sum rate
data fitting and machine learning
- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

networks

- variables: flow rates (the source sending rate of each communication)
- constraints: link capacities
- objective: total network utility

sparse recovery

- variables: unknown sparse signal
- constraints: measurements of signal
- objective: sparsity or recovery error

Solving optimization problems

general optimization problem

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution
exceptions: certain problem classes can be solved efficiently and reliably
- least-squares problems
- linear programming problems
- convex optimization problems
"In fact the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."
- Rockafellar, SIAM Review, 1993

Least-squares

$$
\operatorname{minimize}\|A x-b\|_{2}^{2}
$$

solving least-squares problems

- analytical solution: $x^{\star}=\left(A^{T} A\right)^{-1} A^{T} b$
- reliable and efficient algorithms and software
- computation time proportional to $n^{2} k\left(A \in \mathbf{R}^{k \times n}\right)$; less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Linear programming

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to $n^{2} m$ if $m \geq n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_{1} - or ℓ_{∞}-norms, piecewise-linear functions)

Convex optimization problem

```
minimize }\quad\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq\mp@subsup{b}{i}{},\quadi=1,\ldots,
```

- objective and constraint functions are convex:

$$
\begin{aligned}
& \qquad f_{i}(\lambda x+\mu y) \leq \lambda f_{i}(x)+\mu f_{i}(y) \\
& \text { if } \lambda+\mu=1, \lambda \geq 0, \mu \geq 0
\end{aligned}
$$

- includes least-squares problems and linear programs as special cases

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max \left\{n^{3}, n^{2} m, F\right\}$, where F is cost of evaluating f_{i} 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize, but surprisingly many applications
- critical to efficient computation
- critical to distributed computation/decision, many implications for architecture and operation of complex networked systems
- important to learn skills to formulate problems as convex problems and explore (hidden) convexity

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises
local optimization methods (nonlinear programming)

- find a point that minimizes f_{0} among feasible points near it
- fast, can handle large problems; but require initial guess, provide no information about distance to global optimum
global optimization methods
- find the (global) solution
- worst-case complexity is exponential with problem size
insights from convex optimization is helpful
- initialization for local optimization methods
- convex relaxation can lead to good bound, efficient algorithm, and even exact solution

Brief history of convex optimization

theory (convex analysis): 1900-1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco \& McCormick, Dikin, . . .)
- 1970s: ellipsoid method and other subgradient methods
- 1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)
- late 1980s-now: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov \& Nemirovski 1994)

applications

- before 1990: mostly in operations research; few in engineering
- since 1990: many new applications in engineering (control, signal processing, communications, circuit design, machine learning, . . .); new problem classes (semidefinite and second-order cone programming, robust optimization)

Example

m lamps illuminating n (small, flat) patches

- lamp power p_{j}.

intensity I_{k} at patch k depends linearly on lamp powers p_{j} :

$$
I_{k}=\sum_{j=1}^{m} a_{k j} p_{j}, \quad a_{k j}=r_{k j}^{-2} \max \left\{\cos \theta_{k j}, 0\right\}
$$

problem: achieve desired illumination $I_{\text {des }}$ with bounded lamp powers

$$
\begin{array}{ll}
\operatorname{minimize} & \max _{k=1, \ldots, n}\left|\log I_{k}-\log I_{\text {des }}\right| \\
\text { subject to } & 0 \leq p_{j} \leq p_{\max }, \quad j=1, \ldots, m
\end{array}
$$

how to solve?

1. use uniform power: $p_{j}=p$, vary p
2. use least-squares:

$$
\operatorname{minimize} \quad \sum_{k=1}^{n}\left(I_{k}-I_{\mathrm{des}}\right)^{2}
$$

round p_{j} if $p_{j}>p_{\text {max }}$ or $p_{j}<0$
3. use weighted least-squares:

$$
\operatorname{minimize} \quad \sum_{k=1}^{n}\left(I_{k}-I_{\text {des }}\right)^{2}+\sum_{j=1}^{m} w_{j}\left(p_{j}-p_{\max } / 2\right)^{2}
$$

iteratively adjust weights w_{j} until $0 \leq p_{j} \leq p_{\text {max }}$
4. use linear programming:

$$
\begin{array}{ll}
\operatorname{minimize} & \max _{k=1, \ldots, n}\left|I_{k}-I_{\mathrm{des}}\right| \\
\text { subject to } & 0 \leq p_{j} \leq p_{\max }, \quad j=1, \ldots, m
\end{array}
$$

which can be solved via linear programming
of course these are approximate (suboptimal) 'solutions'
5. use convex optimization: problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(p)=\max _{k=1, \ldots, n} h\left(I_{k} / I_{\mathrm{des}}\right) \\
\text { subject to } & 0 \leq p_{j} \leq p_{\max }, \quad j=1, \ldots, m
\end{array}
$$

with $h(u)=\max \{u, 1 / u\}$

f_{0} is convex because maximum of convex functions is convex
exact solution obtained with effort \approx modest factor \times least-squares effort
additional constraints: does adding 1 or 2 below complicate the problem?

1. no more than half of total power is in any 10 lamps
2. no more than half of the lamps are on $\left(p_{j}>0\right)$
additional constraints: does adding 1 or 2 below complicate the problem?
3. no more than half of total power is in any 10 lamps
4. no more than half of the lamps are on $\left(p_{j}>0\right)$

- answer: with (1), still easy to solve; with (2), extremely difficult
- moral: (untrained) intuition doesn't always work; without the proper background very easy problems can appear quite similar to very difficult problems

Example: Linear discrimination

separate two sets of points $\left\{x_{1}, \ldots, x_{N}\right\},\left\{y_{1}, \ldots, y_{M}\right\}$ by a hyperplane:

$$
a^{T} x_{i}+b>0, \quad i=1, \ldots, N, \quad a^{T} y_{i}+b<0, \quad i=1, \ldots, M
$$

homogeneous in a, b, hence equivalent to

$$
a^{T} x_{i}+b \geq 1, \quad i=1, \ldots, N, \quad a^{T} y_{i}+b \leq-1, \quad i=1, \ldots, M
$$

a set of linear inequalities in a, b

Robust linear discrimination

(Euclidean) distance between hyperplanes

$$
\begin{aligned}
\mathcal{H}_{1} & =\left\{z \mid a^{T} z+b=1\right\} \\
\mathcal{H}_{2} & =\left\{z \mid a^{T} z+b=-1\right\}
\end{aligned}
$$

is $\operatorname{dist}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)=2 /\|a\|_{2}$
to separate two sets of points by maximum margin,

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2)\|a\|_{2} \\
\text { subject to } & a^{T} x_{i}+b \geq 1, \quad i=1, \ldots, N \tag{1}\\
& a^{T} y_{i}+b \leq-1, \quad i=1, \ldots, M
\end{array}
$$

(after squaring objective) a QP in a, b

Approximate linear separation of non-separable sets

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} u+\mathbf{1}^{T} v \\
\text { subject to } & a^{T} x_{i}+b \geq 1-u_{i}, \quad i=1, \ldots, N \\
& a^{T} y_{i}+b \leq-1+v_{i}, \quad i=1, \ldots, M \\
& u \succeq 0, \quad v \succeq 0
\end{array}
$$

- an LP in a, b, u, v
- at optimum, $u_{i}=\max \left\{0,1-a^{T} x_{i}-b\right\}, v_{i}=\max \left\{0,1+a^{T} y_{i}+b\right\}$
- can be interpreted as a heuristic for minimizing \#misclassified points

Support vector classifier

$$
\begin{array}{ll}
\operatorname{minimize} & \|a\|_{2}+\gamma\left(\mathbf{1}^{T} u+\mathbf{1}^{T} v\right) \\
\text { subject to } & a^{T} x_{i}+b \geq 1-u_{i}, \quad i=1, \ldots, N \\
& a^{T} y_{i}+b \leq-1+v_{i}, \quad i=1, \ldots, M \\
& u \succeq 0, \quad v \succeq 0
\end{array}
$$

produces point on trade-off curve between inverse of margin $2 /\|a\|_{2}$ and classification error, measured by total slack $\mathbf{1}^{T} u+\mathbf{1}^{T} v$
same example as previous page, with $\gamma=0.1$:

