
CSCI5254: Convex Optimization and Its Applications

Introduction

• course logistics, goals, and topics

• mathematical optimization

• least-squares and linear programming

• convex optimization and nonlinear optimization

• brief history of convex optimization

• examples
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Course logistics

basic information

• canvas: TBA

course website: http://spot.colorado.edu/∼lich1539/cvxopt.html

• time and location: WM 1:25-2:40pm, DLC 1B20

zoom: https://cuboulder.zoom.us/j/6933927360

(will be recorded and posted)

• office hours:

– Tue 3:00pm-5:00pm on zoom (tentative)
– by appointment (email is most convenient)
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• main textbook: Convex Optimization, Boyd & Vandenberghe

• prerequisite: calculus and linear algebra, exposure to probability

– review Appendix A

• acknowledgement: lecture slides are adapted mainly from Dr. Stephen
Boyd’s lecture notes on convex optimization at Stanford University.

grading, homework, and final

• grading: 40% homework, 50% final, 10% participation

• homework:

– 8 homework sets
– due by midnight on Mondays
– collaboration strongly encouraged, but write your own solutions

• final: 24-hour take-home; more detail later in the semester
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Course goals and topics

goals

• recognize/formulate convex optimization problems that arise in
engineering and applied science

• characterize optimal solution and understand how such problems are
solved numerically

• develop skills to use tools and methods of optimization in your
researches or applications

topics

• convex analysis: convex sets, functions, optimization problems

• optimization theory: linear, quadratic, semidefinite, and geometric
programming; optimality conditions and duality theory
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• basic applications: signal processing, control, communications,
networks, statistics, machine learning, circuit design, and mechanical
engineering, etc; will adapt depending on your interest and time

• some optimization algorithms: descent methods and interior-point
methods

• some advanced topics: stochastic gradient algorithms, reinforcement
learning, if time permits
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Mathematical optimization

(mathematical) optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• x = (x1, . . . , xn): optimization variables

• f0 : R
n → R: objective function

• fi : R
n → R, i = 1, . . . ,m: constraint functions

optimal solution x⋆ has smallest value of f0 among all vectors that satisfy
the constraints
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Examples

portfolio optimization

• variables: amounts invested in different assets

• constraints: budget, max/min investment per asset, minimum return

• objective: overall risk or return variance

communications

• variables: transmission power to each user in a cell

• constraints: power budget, maximal interference to users in other cells

• objective: total or sum rate

data fitting and machine learning

• variables: model parameters
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• constraints: prior information, parameter limits

• objective: measure of misfit or prediction error

networks

• variables: flow rates (the source sending rate of each communication)

• constraints: link capacities

• objective: total network utility

sparse recovery

• variables: unknown sparse signal

• constraints: measurements of signal

• objective: sparsity or recovery error
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Solving optimization problems

general optimization problem

• very difficult to solve

• methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

• least-squares problems

• linear programming problems

• convex optimization problems

“In fact the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.”

– Rockafellar, SIAM Review, 1993
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Least-squares

minimize ‖Ax− b‖2
2

solving least-squares problems

• analytical solution: x⋆ = (ATA)−1AT b

• reliable and efficient algorithms and software

• computation time proportional to n2k (A ∈ Rk×n); less if structured

• a mature technology

using least-squares

• least-squares problems are easy to recognize

• a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Linear programming

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

solving linear programs

• no analytical formula for solution

• reliable and efficient algorithms and software

• computation time proportional to n2m if m ≥ n; less with structure

• a mature technology

using linear programming

• not as easy to recognize as least-squares problems

• a few standard tricks used to convert problems into linear programs
(e.g., problems involving ℓ1- or ℓ∞-norms, piecewise-linear functions)
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Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• objective and constraint functions are convex:

fi(λx+ µy) ≤ λfi(x) + µfi(y)

if λ+ µ = 1, λ ≥ 0, µ ≥ 0

• includes least-squares problems and linear programs as special cases
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solving convex optimization problems

• no analytical solution

• reliable and efficient algorithms

• computation time (roughly) proportional to max{n3, n2m,F}, where F
is cost of evaluating fi’s and their first and second derivatives

• almost a technology

using convex optimization

• often difficult to recognize, but surprisingly many applications

• critical to efficient computation

• critical to distributed computation/decision, many implications for
architecture and operation of complex networked systems

• important to learn skills to formulate problems as convex problems and
explore (hidden) convexity
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Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

• find a point that minimizes f0 among feasible points near it

• fast, can handle large problems; but require initial guess, provide no
information about distance to global optimum

global optimization methods

• find the (global) solution

• worst-case complexity is exponential with problem size

insights from convex optimization is helpful

• initialization for local optimization methods

• convex relaxation can lead to good bound, efficient algorithm, and even
exact solution
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Brief history of convex optimization

theory (convex analysis): 1900–1970

algorithms

• 1947: simplex algorithm for linear programming (Dantzig)

• 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . . )

• 1970s: ellipsoid method and other subgradient methods

• 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

• late 1980s–now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications

• before 1990: mostly in operations research; few in engineering
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• since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, machine learning, . . . );
new problem classes (semidefinite and second-order cone programming,
robust optimization)
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Example

m lamps illuminating n (small, flat) patches

lamp power pj

illumination Ik

rkj
θkj

intensity Ik at patch k depends linearly on lamp powers pj:

Ik =
m∑

j=1

akjpj, akj = r−2

kj max{cos θkj, 0}

problem: achieve desired illumination Ides with bounded lamp powers

minimize maxk=1,...,n | log Ik − log Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m
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how to solve?

1. use uniform power: pj = p, vary p

2. use least-squares:

minimize
∑n

k=1
(Ik − Ides)

2

round pj if pj > pmax or pj < 0

3. use weighted least-squares:

minimize
∑n

k=1
(Ik − Ides)

2 +
∑m

j=1
wj(pj − pmax/2)

2

iteratively adjust weights wj until 0 ≤ pj ≤ pmax

4. use linear programming:

minimize maxk=1,...,n |Ik − Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

which can be solved via linear programming

of course these are approximate (suboptimal) ‘solutions’
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5. use convex optimization: problem is equivalent to

minimize f0(p) = maxk=1,...,n h(Ik/Ides)
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

with h(u) = max{u, 1/u}

0 1 2 3 4
0

1

2
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4

5

u

h
(u
)

f0 is convex because maximum of convex functions is convex

exact solution obtained with effort ≈ modest factor × least-squares effort

Introduction 19



additional constraints: does adding 1 or 2 below complicate the problem?

1. no more than half of total power is in any 10 lamps

2. no more than half of the lamps are on (pj > 0)
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additional constraints: does adding 1 or 2 below complicate the problem?

1. no more than half of total power is in any 10 lamps

2. no more than half of the lamps are on (pj > 0)

• answer: with (1), still easy to solve; with (2), extremely difficult

• moral: (untrained) intuition doesn’t always work; without the proper
background very easy problems can appear quite similar to very difficult
problems
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Example: Linear discrimination

separate two sets of points {x1, . . . , xN}, {y1, . . . , yM} by a hyperplane:

aTxi + b > 0, i = 1, . . . , N, aTyi + b < 0, i = 1, . . . ,M

homogeneous in a, b, hence equivalent to

aTxi + b ≥ 1, i = 1, . . . , N, aTyi + b ≤ −1, i = 1, . . . ,M

a set of linear inequalities in a, b
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Robust linear discrimination

(Euclidean) distance between hyperplanes

H1 = {z | aTz + b = 1}

H2 = {z | aTz + b = −1}

is dist(H1,H2) = 2/‖a‖2

to separate two sets of points by maximum margin,

minimize (1/2)‖a‖2
subject to aTxi + b ≥ 1, i = 1, . . . , N

aTyi + b ≤ −1, i = 1, . . . ,M
(1)

(after squaring objective) a QP in a, b
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Approximate linear separation of non-separable sets

minimize 1
Tu+ 1

Tv
subject to aTxi + b ≥ 1− ui, i = 1, . . . , N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M
u � 0, v � 0

• an LP in a, b, u, v

• at optimum, ui = max{0, 1− aTxi − b}, vi = max{0, 1 + aTyi + b}

• can be interpreted as a heuristic for minimizing #misclassified points
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Support vector classifier

minimize ‖a‖2 + γ(1Tu+ 1
Tv)

subject to aTxi + b ≥ 1− ui, i = 1, . . . , N
aTyi + b ≤ −1 + vi, i = 1, . . . ,M
u � 0, v � 0

produces point on trade-off curve between inverse of margin 2/‖a‖2 and
classification error, measured by total slack 1

Tu+ 1
Tv

same example as previous page,
with γ = 0.1:
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