CSCI5254: Convex Optimization & Its Applications

Statistical estimation

e maximum likelihood estimation
e optimal detector design

e experiment design



Parametric distribution estimation

e distribution estimation problem: estimate probability density p(y) of a
random variable from observed values

e parametric distribution estimation: choose from a family of densities
p(y), indexed by a parameter x

maximum likelihood estimation

maximize (over z) log p.(v)

e y is observed value
o [(x) =logp.(y) is called log-likelihood function
e can add constraints x € C explicitly, or define p,.(y) =0 for x & C

e a convex optimization problem if log p.(y) is concave in x for fixed y
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Linear measurements with |ID noise

linear measurement model
T .
yi=a; r+v;, 1=1,...,m

e © € R" is vector of unknown parameters

e v; is IID measurement noise, with density p(z2)

e y; is measurement: y € R™ has density p.(y) = [[\~, p(y; — a} x)

maximum likelihood estimate: any solution x of

maximize [(xz) =" logp(y; — a] x)

(y is observed value)
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examples

e Gaussian noise N'(0,02): p(z) = (2m02)~1/2e=2"/(207),

m
m

[(z) = ——log(2m0?) —

2 202 4

=1
ML estimate is LS or £5-norm approximation

e Laplacian noise: p(z) = (1/(2a))e~1?I/e,

1 m
[(x) = —mlog(2a) — - Z [
i=1

ML estimate is £1-norm approximation

e uniform noise on [—a,al:

() = { ~mlog(2a) ajz -yl <a, i=1....m
B — O otherwise

ML estimate is any = with |alz — y;| < a
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Logistic regression

random variable y € {0, 1} with distribution

exp(alu + b)
p = prob(y =1) 1 + exp(a’u +b)

e a, b are parameters; u € R" are (observable) explanatory variables

e estimation problem: estimate a, b from m observations (u;, ;)

log-likelihood function (for y1 = =y =1, ypr1 = = ym = 0):
k T m
exp(a, u; + b) 1
[(a,b) = 1
(a,0) 6 ZI;[l 1 +exp(au; +b) Z_:lgrl 1 +exp(a’u; +b)
k m
— Z(aTuz- +b) — Z log(1 + exp(a’ u; + b))
i=1 i=1

concave in a, b
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example (n = 1, m = 50 measurements)
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e circles show 50 points (u;, y;)

e solid curve is ML estimate of p = exp(au + b)/(1 + exp(au + b))
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(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable X € {1,...,n}, choose between:

e hypothesis 1: X was generated by distribution p = (p1,...,pn)
e hypothesis 2: X was generated by distribution ¢ = (¢1, ..., qn)

randomized detector

e a nonnegative matrix T € R**™, with 177 = 17

e if we observe X = k, we choose hypothesis 1 with probability 1,
hypothesis 2 with probability to

e if all elements of T are 0 or 1, it is called a deterministic detector
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detection probability matrix:

1_pr an

D:[Tp Tq}: Py, | _ P,

e P4, is probability of selecting hypothesis 2 if X is generated by
distribution 1 (false positive)

e P, is probability of selecting hypothesis 1 if X is generated by
distribution 2 (false negative)
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detection probability matrix:

1 — P Py

D:[Tp Tq}: Py, | _ P,

e P4, is probability of selecting hypothesis 2 if X is generated by
distribution 1 (false positive)

e P, is probability of selecting hypothesis 1 if X is generated by
distribution 2 (false negative)

multicriterion formulation of detector design

Coe 2
minimize (w.r.t. RY) (P, Pm) = ((Tp)2, (T'q)1)
subject to tipt+tor=1, k=1,...,n

b >0, i=12 k=1,....n

variable T' € R**"
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scalarization (with weight A > 0)

minimize  (Tp)2 + AN(T'q)1
subject to tix +top =1, t; >0, 1=1,2, k=1,....n

an LP with a simple analytical solution

’ (Oa 1) Pr < >\Qk

e a deterministic detector, given by a likelihood ratio test

o if p. = Aqi for some k, any value 0 <t <1, t1 = 1 — t9; is optimal
(i.e., Pareto-optimal detectors include non-deterministic detectors)

minimax detector

minimize  max{ Py, Pt} = max{(1p)2, (T'q)1}
subject to t1x +top =1, t;3 >0, 1=1,2, k=1,....n

an LP; solution is usually not deterministic
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example

[ 0.70 0.10

0.20 0.10

P= 0.05 0.70
| 0.05 0.10 |

solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector
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Experiment design

m linear measurements y; = al x +w;, i = 1,...,m of unknown z € R"

e measurement errors w; are |ID N (0, 1)

e ML (least-squares) estimate is

m —1 m
. T
Tr = E a;a; E Yia;
® error e = L — x has zero mean and covariance
m —1
E=Eee! = g a;a;
i=1

confidence ellipsoids are given by {z | (z — 2)'E~}(x — %) < B}

experiment design: choose a; € {v1,...,v,} (a set of possible test vectors)
to make E ‘small’
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vector optimization formulation
L n  —p 7 —1
minimize (w.r.t. ) E = (37_; myupv})
subject to mp >0, mi+---+my,=m
my € Z

e variables are my, (# vectors a; equal to vy)

e difficult in general, due to integer constraint

relaxed experiment design

assume m > p, use Ay = my/m as (continuous) real variable

minimize (w.r.t. %) E
subject to A

e common scalarizations: minimize logdet E, tr E, Apax(E), . . .

e can add other convex constraints, e.g., bound experiment cost '\ < B
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D-optimal design

minimize logdet( izlkkvkv?)_l

subjectto A >0, 1A =1

interpretation: minimizes volume of confidence ellipsoids

dual problem

maximize logdet W + nlogn
subject to U,Z’va <1, k=1,...,p

interpretation: {x | xI Wz < 1} is minimum volume ellipsoid centered at
origin, that includes all test vectors vy,

complementary slackness: for A\, W primal and dual optimal
Mol =i W) =0, k=1,....p
optimal experiment uses vectors v on boundary of ellipsoid defined by W
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example (p = 20)
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design uses two vectors, on boundary of ellipse defined by optimal W
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derivation of dual of page 14

first reformulate primal problem with new variable X:

minimize logdetX_1
subject to X =Y 7P_ Mvgvi, A =0, 1TA=1

p
L(X,\ Z, z,v) = logdet X '+tr (Z <X -y Akvkv;{)) — I +r(1TA-1)
k=1
e minimize over X by setting gradient to zero: — X 14+ 27 =0
e minimum over )\ is —oo unless —v{ Zvy — 2 +v =0

dual problem

maximize n + logdet Z — v
subject to v} Zvp <v, k=1,...,p

change variable W = Z/v, and optimize over v to get dual of page 14
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