CSCI5254: Convex Optimization & Its Applications
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Unconstrained minimization

minimize f(x)

e f convex, twice continuously differentiable (hence dom f open)

e we assume optimal value p* = inf, f(x) is attained (and finite)

unconstrained minimization methods

e produce sequence of points z(*) € dom f, k= 0,1, ... with

f(z®) — p*

e can be interpreted as iterative methods for solving optimality condition

Vfx*)=0
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Initial point and sublevel set

algorithms in this chapter require a starting point z(°) such that
o (9 ¢ dom f
e sublevel set S = {z | f(z) < f(2(?)} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

e equivalent to condition that epi f is closed
e true if dom f = R"

e true if f(x) — oo as + — bddom f

examples of differentiable functions with closed sublevel sets:

f(x) =log() explajx+b),  flx)=— Z log(b; — a; )

1=1
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Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

V2f(x) = ml for all z € S

implications

o forxz,y €85,
Fy) = f(@)+ V@) (y =) + Sl = yl3

hence, S is bounded

e p* > —o0, and for x € S,

1
F@) = p* < o V)3

useful as stopping criterion (if you know m)
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Descent methods

20D = ) 4R AZR)  ith £(20HD) < f(2(0)

e other notations: 7 =z + tAx, x := x + tAx
e Ax is the step, or search direction; t is the step size, or step length

e from convexity, f(z™) < f(x) implies Vf(z)' Az < 0
(i.e., Az is a descent direction)

General descent method.

given a starting point x € dom f.

repeat
1. Determine a descent direction Ax.
2. Line search. Choose a step size t > 0.
3. Update. © := = + tAx.

until stopping criterion is satisfied.
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Line search types

exact line search: ¢t = argmin,, f(x + tAz)

backtracking line search (with parameters a € (0,1/2), 8 € (0,1))

e starting at t = 1, repeat t := (3t until

flx+tAz) < f(z) + atVf(z)' Ax

e graphical interpretation: backtrack until ¢ < ¢,

f(z + tAx)

Cf@) + V@) A [(@) + otV ()" A
t =0 to
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Gradient descent method

general descent method with Az = —V f(x)

given a starting point x € dom f.

repeat
1. Ax := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := = + tAx.

until stopping criterion is satisfied.

e stopping criterion usually of the form |V f(z)|2 < €

e convergence result: for strongly convex f,

@™y —p* < F(f() —pY)

c € (0,1) depends on m, 29, line search type

e very simple, but often very slow; rarely used in practice
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quadratic problem in R?

flz) = (1/2) (] + ya3) (v > 0)

with exact line search, starting at (%) = (v, 1):

k k
(k) (%*v wm_(7—1>
:El - f}/ ’ :62 — - -
~+ 1 ~+ 1

e veryslowif y>1orvy<1

e example for v = 10:

4,
g 0f .
— 4}
—10 0 10
L1
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nonquadratic example

329—0.1 —3259—0.1 —21-0.1
f(z1, ) = 17572 + 17 o%2 +e M

backtracking line search exact line search
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a problem in

f(z®) —p*
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‘linear’ convergence, i.e., a straight line on a semilog plot
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Steepest descent method

normalized steepest descent direction (at x, for norm || - ||):
Azpeq = argmin{V f(z)'v | ||[v]| = 1}

interpretation: for small v, f(z +v) ~ f(z) + Vf(x)lv;

direction Ax,sq is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction
Azsqa = ||V f(2)]|+AZnsa

satisfies Vf(2)! Agqa = — ||V f(2)])?

steepest descent method
e general descent method with Ax = Az

e convergence properties similar to gradient descent
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examples

e Euclidean norm: Axyq = —Vf(x)
e quadratic norm ||z| p = (2T Px)1/? (P €S}.): Azgq = —P~ 'V f(x)
e /1-norm: Axgq = —(9f(x)/0x;)e;, where |0f(x)/0x;| = |V f(x)| s

unit balls and normalized steepest descent directions for a quadratic norm
and the ¢1-norm:

—Vf(x)
—Vf(x)

Ax
nsd Amnsd
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choice of norm for steepest descent

e steepest descent with backtracking line search for two quadratic norms
e ellipses show {z | ||z — 2®)||p = 1}

e equivalent interpretation of steepest descent with quadratic norm || - || p:
gradient descent after change of variables z = P1/2z

shows choice of P has strong effect on speed of convergence
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Newton step

Azy = —V2f(x) 'V f(x)
Interpretations

e r + Ax,; minimizes second order approximation

AN

Fla+v) = f(@) + V1) 0+ 50"V f (o)

e r + Aux,; solves linearized optimality condition

Vi +v) = Vf(z+v)= Vi) + V() =0

#/
J

(@ + Az, (@ + Aza))
(a, (@)

.

(z, f(z))

(33 + A33nta f(x + Aajnt)). f
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o Aux, is steepest descent direction at x in local Hessian norm

1/2
lullv2p@) = (u" V2 f(z)u)

dashed lines are contour lines of f; ellipse is {z + v | v!VZf(x)v = 1}

arrow shows —V f(x)
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Newton decrement

_ 1/2
Az) = (V@) "V f(2) 'V f(2))
a measure of the proximity of x to x*
properties

*

e gives an estimate of f(xz) — p*, using quadratic approximation f

() — inf Fly) = 5M ()3

e equal to the norm of the Newton step in the quadratic Hessian norm

1/2

Az) = (Az V2 f(2) Azy)

e directional derivative in the Newton direction: Vf(2)? Axy = —\(x)?

e affine invariant (unlike ||V f(z)]|2)
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Newton’s method

given a starting point x € dom f, tolerance ¢ > 0.
repeat
1. Compute the Newton step and decrement.
Azy = —V2if(z) 'Vi(z), N :=Vf(x)'Vif(z) 'Vf(x).
2. Stopping criterion. quit if A\*/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + tAxyt.

affine invariant, 7.e., independent of linear changes of coordinates:

Newton iterates for f(y) = f(T'y) with starting point y(©) = 7120 are
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Classical convergence analysis

assumptions

e [ strongly convex on S with constant m

e V2f is Lipschitz continuous on S, with constant L > 0:
IV2f(z) = V2f(y)lla < Lz = yll2
(L measures how well f can be approximated by a quadratic function)

outline: there exist constants € (0,m?/L), v > 0 such that

o i [VS(@)l > 1. then f(@+D) = f(a) < —
o if |[V£(@)]2 <7, then

(k+1) L o)
el VI Dz < (G197 )e)

2m2
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damped Newton phase (||V f(x)||2 > n)

e most iterations require backtracking steps
e function value decreases by at least ~

e if p* > —00, this phase ends after at most (f(z(9)) — p*) /~ iterations

quadratically convergent phase ([|[Vf(z)||2 < n)

e all iterations use step sizet =1

o ||V f(x)||2 converges to zero quadratically: if |V f(2*)||s < n, then

L l L ) 2l—k 1 2l—k
2—mgHVf(fU)||2§ 2—mQHVf(iU )2 < 5 , [ >k
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conclusion: number of iterations until f(x) — p* < € is bounded above by

(0)y — p*
x

A 7) Py log, log,(€o/€)
e 7, ¢ are constants that depend on m, L, (%)

e second term is small (of the order of 6) and almost constant for
practical purposes

e in practice, constants m, L (hence 7, €y) are usually unknown

e provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)
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Examples

example in R* (page 9)

e backtracking parameters aa = 0.1, 5 = 0.7

e converges in only 5 steps

e quadratic local convergence
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example in R (page 10)

10° 2
exact line search
, 10" 1.5
S} =
| backtracking
acktrackin Q
1070 e N 4
=2 wn
VE% . o
— exact line search 9
S n .
1010 0.5 acktracking
—15 I O L |
107 2 4 6 8 10 0 2 4 6 8
k k

e backtracking parameters a = 0.01, 5 = 0.5
e backtracking line search almost as fast as exact |.s. (and much simpler)

e clearly shows two phases in algorithm
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example in R'"%Y (with sparse a;)

10000 100000

Zlogl—az Zlog —al x)

0 5 10 15 20
k

e backtracking parameters a = 0.01, 8 = 0.5.

e performance similar as for small examples
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Self-concordance

shortcomings of classical convergence analysis

e depends on unknown constants (m, L, .. .)

e bound is not affinely invariant, although Newton’'s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

e does not depend on any unknown constants
e gives affine-invariant bound
e applies to special class of convex functions (‘self-concordant’ functions)

e developed to analyze polynomial-time interior-point methods for convex
optimization
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Self-concordant functions

definition

e convex f: R — R is self-concordant if | ()| < 2f"(x)3/? for all
xr € dom f

e f:R" — R is self-concordant if g(t) = f(x + tv) is self-concordant for
all zr € dom f, v € R”

examples on R
e linear and quadratic functions
e negative logarithm f(z) = —logx

e negative entropy plus negative logarithm: f(x) = zlogz — logx
affine invariance: if f : R — Ris s.c., then f(y) = f(ay + b) is s.c.:

f"(y) = a’f"(ay+b),  ['(y) =a’f"(ay +b)
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Self-concordant calculus

properties
e preserved under positive scaling o > 1, and sum
e preserved under composition with affine function

e if g is convex with domg = Ry, and |¢"'(z)| < 3¢"(x)/x then

f(x) =log(—g(x)) — log x

is self-concordant

examples: properties can be used to show that the following are s.c.

o f(z)=—->" log(bi—alz)on{x|alx<by i=1,...,m}
o f(X)= —logdetX on S _

o f(z)=—log(y* —a'z) on {(z,y) | lz]2 <y}

Unconstrained minimization
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Convergence analysis for self-concordant functions

summary: there exist constants n € (0,1/4], v > 0 such that

o if \(x) > n, then
FD) — f(a¥) < —

o if \(z) <, then
2
oA (zk+D) < (2A(;c<k>))

(7 and « only depend on backtracking parameters «, ()

complexity bound: number of Newton iterations bounded by

f(29) —p*

+ log, log,(1/€)

for « = 0.1, 8 =0.8, ¢ = 107'°, bound evaluates to 375(f(z(%)) — p*) + 6
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numerical example: 150 randomly generated instances of

minimize f(z) = —>_"  log(b; — ai z)

7
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e number of iterations much smaller than 375(f(z(?)) — p*) + 6

e bound of the form c(f(z(?) — p*) 4+ 6 with smaller ¢ (empirically) valid
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