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Abstract—We present a model for the joint design of congestion
control and media access control (MAC) for ad hoc wireless net-
works. Using contention graph and contention matrix, we formu-
late resource allocation in the network as a utility maximization
problem with constraints that arise from contention for channel
access. We present two algorithms that are not only distributed
spatially, but more interestingly, they decompose vertically into
two protocol layers where TCP and MAC jointly solve the system
problem. The first is a primal algorithm where the MAC layer at
the links generates congestion (contention) prices based on local
aggregate source rates, and TCP sources adjust their rates based
on the aggregate prices in their paths. The second is a dual sub-
gradient algorithm where the MAC sub-algorithm is implemented
through scheduling link-layer flows according to the congestion
prices of the links. Global convergence properties of these algo-
rithms are proved. This is a preliminary step towards a systematic
approach to jointly design TCP congestion control algorithms and
MAC algorithms, not only to improve performance, but more im-
portantly, to make their interaction more transparent.

Index Terms— Congestion control, Media access control, Con-
vex optimization, Cross-layer design, Dual decomposition, Sub-
gradient method, Ad hoc wireless network.

I. I NTRODUCTION

We consider the problem of congestion control over a mul-
tihop wireless ad hoc network. This has been an active re-
search area over the past few years (see, e.g., [15], [5], [9],
[30], [12], [37], [38], [6]) with many fascinating and complex
issues, involving, e.g., mobility, channel estimation, power con-
trol, MAC, routing, etc. Unlike most of previous work however
we focus on the interaction of congestion control at the trans-
port layer and channel contention at the MAC layer, and ignore
all other issues. Our goal is to present a systematic approach
to jointly design TCP congestion control algorithms and MAC
algorithms, not only to improve performance, but more impor-
tantly, to make their interaction more transparent.

This is motivated by two observations. First, wireless chan-
nel is a shared medium and interference-limited. Link is only
a logical concept and links are correlated due to the interfer-
ence with each other. Under the MAC strategies such as time-
division multiple access and random access, these links contend
for exclusive access to the physical channel. Unlike in the wire-
line network where flows compete for transmission resources
only when they share the same link, here, network layer flows
that do not even share a wireless link in their paths can compete.
Thus, in ad hoc wireless networks the contention relations be-
tween link-layer flows provide fundamental constraints for re-

source allocation. Second, TCP congestion control algorithms
can be interpreted as distributed primal-dual algorithms over
the Internet to maximize aggregate utility, and a user’s utility
function is (often implicitly) defined by its TCP algorithm, see
e.g. [18], [22], [21]. This series of work implicitly assumes a
wireline network where link capacities are fixed and shared by
flows that traverse common links. A natural formulation for the
joint design of congestion and media access control is then the
utility maximization framework with new constraints that arise
from channel contention.

After a brief description of the interaction between TCP con-
gestion control and MAC in Section II and a brief review of
related work in Section III, we explain in Section IV contention
graph and introduce contention matrix to model resource con-
straints in wireless networks, and state our utility maximiza-
tion problem with MAC constraints. In Section V, we follow
[18] and derive a primal algorithm to solve a relaxation of the
problem, and prove its global convergence. The algorithm is
not only distributed spatially, more interestingly, it decomposes
vertically into two protocol layers where the MAC layer at the
links generates congestion (contention) prices based on local
aggregate source rates, and TCP sources adjust their rates based
on the aggregate prices in their paths. Whereas congestion
prices are generated by AQM (active queue management) al-
gorithms in routers in wireline networks (e.g. [23]), here they
are generated by the MAC layer. We discuss how to design con-
tention resolution protocols to generate the necessary prices.

In Section VI, we apply duality theory to derive another de-
composition of the system problem into congestion control sub-
problem and MAC subproblem. The key idea is to introduce
the “effective capacity” of a link, which is the maximum av-
erage data rate a link can achieve without violating schedu-
lability constraint. The Lagrangian of the resulting problem
separates into two maximization subproblems, one over source
rates, to be solved by TCP, and the other over effective capacity,
to be solved by MAC. The introduction of the effective capacity
makes the primal problem not strictly concave, and hence the
dual function non-differentiable. A subgradient algorithm that
generalizes the algorithm of [22] is derived to solve the dual
problem, and proved to approach arbitrarily close to an optimal
point starting from any initial condition. This algorithm moti-
vates a joint design scheme where link-layer flows are sched-
uled according to congestion prices of the links. We illustrate
with numerical examples of such a design.



Finally, we conclude in Section VII with limitations of this
paper and possible extensions.

II. M OTIVATION

TCP was originally designed for wireline networks, where
the links are assumed to be reliable and with fixed capaci-
ties. This may not be true for wireless networks, where the
links are “elastic” due to the fact that the wireless channel is
unreliable (e.g., fading and node mobility) and interference-
limited. We need to exploit the interaction between transport
and MAC/physical layers, in order to improve the performance.

This paper does not consider the node mobility or channel
fading, but focuses on the broadcast and interference-limited
nature of wireless channel. In this context, a fundamental
problem is to provide an efficient bandwidth sharing mecha-
nism among the competing link-layer flows. Many existing
wireless MAC protocols, such as distributed coordination func-
tion (DCF) specified in IEEE 802.11 standard[17], are traffic-
independent and do not consider the actual requirements of the
flows competing for the channel. These MAC protocols suf-
fer from the unfairness problem, caused by the location de-
pendency of the contentions, and exacerbated by the contention
resolution mechanisms such as the binary exponential backoff
algorithm adopted in DCF. When they interact with TCP, TCP
will further penalize these flows with more contention. This
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Fig. 1. Example of ad hoc wireless network

will result in significant TCP unfairness in ad hoc wireless net-
works [13], [28], [35], [36], [37]. To illustrate this, consider
the example in Fig.1, and assume there are four network-layer
flows A → B, C → D, E → F andG → H. The flow
C → D experiences more contention and will build up queue
faster than the other three flows. TCP will further penalize it
by reducing the congestion window more aggressively, and the
resulting throughput of flowC → D will be much less than that
of other flows.

In addition to the location dependency of contentions, corre-
lation among links is also the key to understand the interaction
between transport and MAC layers. In wireline networks, link
bandwidth is well-defined and links are disjoint resources. But
in wireless networks, as we mentioned above, links are cor-
related due to the interference with each other, and network-
layer flows, which do not transverse a common link, may still
compete with each other. Thus, congestion is located at some
spatial contention region [37]. Consider again the example in
Fig.1, and assume there are two network-layer flowsA → F
andG → H. Link-layer flows 2, 3, 4 and 6 contend with each
other, and congestion is located in the spatial contention region
denoted by the rectangle. So, unlike wireline networks where
link capacities provide constraints for resource allocation, in ad
hoc wireless networks the contention relations between link-

layer flows provide fundamental constraints for resource allo-
cation.

In this paper we will model the contention relations between
link-layer flows as a flow contention graph (see, e.g., [25],
[11]). This construction captures the location-dependent con-
tention among link-layer flows. Based on the contention graph,
we will use a contention matrix to mathematically formulate
the contention constraints imposed by the MAC layer. We then
model the resource allocation for ad hoc wireless networks as
a concave utility maximization problem with MAC layer con-
straints, with which we can explicitly exploit the interaction be-
tween transport and MAC layers, and systematically carry out
joint design of congestion and media access control.

III. R ELATED WORK

The work in [18], [22], [21], [23] provides a utility-based
optimization framework for internet congestion control. The
same framework has been applied to study the congestion con-
trol over ad hoc wireless networks (see, e.g., [6], [38]). In [38],
the authors study congestion control in ad hoc wireless net-
work with primary interference, and formulate rate allocation
as a utility maximization problem with time constraint. It as-
sumes that the MAC protocol is given, and does not consider
the problem of how the link-layer flows share the congestion
price generated by the constraint. In our work, we will consider
the networks with both primary and secondary interference, and
jointly design congestion control and MAC.

Many schemes have been proposed for fair bandwidth shar-
ing at link layer (see, e.g., [25], [33], [24], [16], [29], [?]). Some
of these schemes try to achieve weighted fairness, but they usu-
ally assume the weights are given and do not address the issue
of how to choose those weights. In our work, these weights
or their equivalent are related to the actual flow requirements
or the congestion prices of the links, which guarantees some
kind of network layer fairness. In [29], the authors propose a
maximin fair scheduling which assigns congestion-dependent
weights to the flows with primary interference and schedules
the flows via maximum weighted matching. In [25], [11], the
authors use the flow contention graph to characterize the con-
tention among link-layer flows, and propose utility-based op-
timization to achieve MAC layer fairness. We will modify a
multiple access scheme proposed in [25] to implement AQM
for congestion control. Also, some of our discussions on the
flow feasibility is recaptured from [11] for completeness.

In [37], the authors propose a neighborhood RED scheme to
improve TCP fairness in ad hoc wireless networks. Basically,
this scheme assigns more share of congestion price to the flows
with less contention to alleviate TCP unfairness. We try to ad-
dress the unfairness problem that arise in the MAC layer by
using traffic-dependent MAC scheme.

Cross-layer design in communication networks, especially in
wireless networks, have attracted great attention recently (see,
e.g., [26] for an overview). Our work belongs to the category
of cross-layer design via dual decomposition in optimization
framework. Other work that can be put into this category in-
cludes TCP/IP interaction in [31], joint routing and resource
allocation in [34] and joint TCP and power control in [6]. The
work on joint congestion control and MAC design is the first



step in our attempt to provide a unified framework for system-
atically carrying out cross-layer design through dual decompo-
sition. We will extend the framework to include other layers in
the future.

IV. SYSTEM MODEL

Consider an ad hoc wireless network with a setV of vertices
(nodes) and a setL of logical links. We assume a static topology
and each linkl has a fixed finite capacityc0

l packets per second
when active, i.e., we implicitly assume a power control algo-
rithm that maintains a constant data rate in the face of fading
and other channel imperfections. Wireless channel is a shared
medium and interference-limited. In this paper, we assume log-
ical links contend for channel access and the successful link
transmits at ratec0

l for the duration it holds the channel. We
will focus on the interaction of MAC and TCP, and characterize
the contention relations using contention graph and contention
matrix. The joint MAC and TCP design is then formulated as
a utility maximization problem with the constraints that arise
from MAC layer contention.

A. Flow Contention Graph and Contention Matrix

Wireless nodes are assumed to be able to communicate with
at most one other node at any given time. This follows from
the fact that a node cannot transmit or receive simultaneously.
Links mutually interfere with each other whenever either the
sender or the receiver of one is within the interference range
of the sender or receiver of the other. Under these assump-
tions, we can construct a flow contention graph that captures
the contention relations between the links of the network (see,
e.g., [25], [11]). In the contention graph, each vertex represents
an active link, and an edge between two vertices denotes the
contention between the corresponding links: two links interfere
with each other and cannot be active at the same time. An ac-
curate flow contention graph could be constructed based on the
protocol model or physical SIR model, and also depends on the
the basic multiple access strategy used. In practice, when we
construct the flow contention graph, we can assume two links
contend with each other if they are within each other’s carrier
sensing range.

Given a contention graph, we can identify all its maximal
cliques1. Maximal cliques are local constructions and capture
the local contention relations of the flows. Flows within the
same maximal clique cannot transmit simultaneously, but flows
in different cliques may transmit simultaneously. For example,
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Fig. 2. Flow contention graph and maximal cliques: flows (1, 2, 3) and flows
(3, 4, 5) are two maximal cliques of size 3, flows (2, 3, 4, 6) is a maximal clique
of size 4.

1A maximal clique of a graph is a maximal complete subgraph of the graph.

Fig. 2 shows the flow contention graph that corresponds to the
ad hoc wireless network of Fig. 1 with 6 active link-layer flows.
Flows 1, 2 and 3, which are in the same clique, cannot transmit
simultaneously, neither can flows 2, 3, 4 and 6 . But flows
1 and 6 can be activated simultaneously, since they belong to
different cliques. Thus, each maximal clique in the contention
graph represents a “channel resource” with flows in the clique
contending for exclusive access to the resource [25]. The flows
within the same clique share the “capacity” of the clique. A
flow may belong to several cliques, and can successfully trans-
mit if and only if it is the only active flow in all cliques to which
it belongs.

We now consider the problem of determining if a set of link
flows are feasible, i.e., whether a schedule can be found to
achieve this set of flows (see, e.g., [14], [20]). This will be
the constraint imposed by the MAC layer. Assume that we are
given aL-dimensional vectory whereyl is the desired flow on
link l, in packets per second. We refer toy as the link-layer flow
vector. On average, given link flowyl, the fraction of time re-
quired to send this amount of flow isyl/c0

l . We refer toyl/c0
l as

the normalized flow rate of linkl. Since flows within the same
clique cannot transmit simultaneously, we obtain a necessary
scheduling constraint:

∑

l

yl

c0
l

≤ 1

where the summation is over those links that belong to the same
clique. We can represent the scheduling constraints in a com-
pact form by introducing contention matrix. Suppose the flow
contention graph can be decomposed into a setN of maximal
cliques indexed byn. Each cliquen contains a setLn ⊂ L of
links. The setsLn define aN × L contention matrixF

Fnl =
{

1/c0
l if l ∈ Ln

0 otherwise

Thus, the above scheduling constraints can be written as

Fy ≤ 1 (1)

where1 denotes aN -dimensional vector with each component
being1.

Fig. 3. Ring graph of size 5: by equation (1) the maximal normalized sum rate
is 5

2
, but the actual maximal sum rate is 2.

Since the above description is a fluid-level description, i.e.,
we average the scheduling variables over time, constraint (1) is
only a necessary condition for the feasibility of the flow vector
y. To illustrate this, consider the example in Fig.3, where the
contention graph is a ring of size 5. According to the constraint



(1), each flow should attain a normalized rate of1/2 if the max-
min fairness allocation criterion is used. However, scheduling
the links according to the max-min fairness criterion allocates
only a rate of2/5 to each link, since at anytime at most two
links can transmit simultaneously.

Given a flow vectory, it is not an easy job to verify its feasi-
bility, since this is equivalent to finding a schedule that achieves
y. It can be shown that a feasible flow vector must be a convex
combination of the characteristic vectors of all independent sets
of the flow contention graph2, and that the set of achievable flow
vectors is a closed, convex and compact set (see [1], also cited
in [11]). In addition, constraint (1) is also a sufficient condition
for the feasibility of the flow vector if and only if the contention
graph is a perfect graph3 (see [1], also cited in [11]). According
to the strong perfect graph theorem [8], [7], a graph is perfect if
and only if it has no induced subgraph that is isomorphic to an
odd hole4, or its complement. Therefore if there exist odd holes
in a contention graph, the sum of the normalized flow rates of
any clique that includes edges of an odd hole should be reduced.

In general, it is hard to tell whether a graph is perfect or not.
Such classification may require the global topology information
of the graph (e.g., an odd hole can span the whole graph). Since
the algorithms for ad hoc networks are desired to be distributed
and depend at most on local message passing, we need to trade
off the accuracy (and even some performance optimality) for
the simplicity of the design. Hence, we will not verify whether
a graph is perfect or not, but reduce the sum of the normalized
rates of a clique to ensure flow feasibility. Determining exactly
by how much we should reduce the sum rate is difficult and also
depends on the basic fairness criterion we choose. In this paper,
we will not further discuss this issue, but assume a maximal
clique sum rate vectorε. The value ofε will depend on local
topology of the contention graph. Thus, the constraint imposed
by the MAC layer can be written as

Fy ≤ ε (2)

We will see later that we do not need to know the value ofε,
since in the joint design in section V we will relax the constraint
(2), and in the joint design in Section VI this constraint can be
replaced with the constraint (1) with some additional constraint
on the value thaty can take.

Note that the contention graph and contention matrix is a
rather general construction. It includes wireline networks as
a special case where the contention matrixF is aL×L identity
matrix, since there is no interference among the links. It can be
used to characterize the interference relations among wireless
and wired links in hybrid wireline-wireless networks. It can
also be modified to characterize the contention relations in the
frequency-division or other strategies for channel access.

B. Problem Formulation

Assume the network is shared by a setS of sources indexed
by s. Each sources uses a setLs ⊂ L of links. The setsLs

2An independent set of a graph is a subset of the vertices such that no two
vertices in the subset are adjacent.

3A graph is perfect if for every induced subgraph its chromatic number is
equal to the clique number of the graph [8].

4A hole is a graph induced by a chordless cycle of length at least 4. A hole is
odd if it contains an odd number of vertices [7].

define anL× S routing matrix

Rls =
{

1 if l ∈ Ls

0 otherwise

We will fix the routing matrixR and focus on congestion con-
trol. Each sources attains a utilityUs(xs) when it transmits
at ratexs packets per second. We assumeUs is continuously
differentiable, increasing, strictly concave, and unbounded as
xs → 0. Our objective is to choose source ratesx so as to [18],
[22], [21]:

max
xs≥0

∑
s

Us(xs) (3)

subject to FRx ≤ ε (4)

The constraint (4) follows from (2) withy = Rx. A unique
maximizer exists, since the objective function is strictly con-
cave and feasible set is convex and compact.

We can see the system problem (3)-(4) from two comple-
ment perspectives. On one hand, it is a utility-based congestion
control problem with the MAC layer constraints. As such, the
congestion prices are not decided by the link capacity, but de-
termined by the contention region. In other words, the MAC
layer imposes the ultimate constraints to the achievable rates.
On the other hand, it is a media access control problem, which
is to allocate physical bandwidth to each link, with the objective
of maximizing aggregate end user utilities. As such, the result-
ing MAC protocol is traffic-dependent and will allocate more
bandwidth to the links with more contention to alleviate flow
congestion.

Solving the system problem (3)-(4) directly requires coor-
dination among possibly all sources and is impractical in real
network. According to the theory of convex optimization, dis-
tributed algorithms can be derived by considering its relaxation
and dual problem. In the next two sections, we will solve these
two problems and give them different interpretations in the con-
text of joint design of congestion control and media access con-
trol.

V. JOINT DESIGN I: GENERATING CONGESTIONPRICE

DIRECTLY FROM THE MAC L AYER

In this section, a primal algorithm is derived by solving the
relaxation of the system problem (3)-(4), first proposed in [18].
Based on the algorithm, we propose a traffic-dependent scheme
for media access control and generate congestion price directly
from the MAC layer.

A. Primal Algorithm and Its Convergence

Instead of solving the system problem (3)-(4), let us consider
its relaxation:

max
xs≥0

V (x) (5)

with

V (x) =
∑

s

Us(xs)−
∑

n

∫ zn(x)

0

λn(v)dv (6)



wherezn(x) =
∑

ls FnlRlsxs is normalized sum rate of clique
n for given source ratesx, andλn(·) is the penalty function,
which can be interpreted as the price for sending traffic at nor-
malized ratezn on cliquen. We further assumeλn(·) is a non-
negative, non-decreasing, continuous function, and not identi-
cally zero.

TABLE I
SUMMARY OF MAIN NOTATION

Term Definition
c0
l capacity of link l when active

cl effective capacity of link l
yl aggregate flow on link l
xs source rate of source s
zn normalized sum rate of clique n
λn price of clique n
pl congestion price of link l
R routing matrix
F contention matrix

γt, γ stepsize
Π feasible rate region

Lemma 1:Under the above assumption, the functionV (x)
defined in (6) is strictly concave. Thus, the problem (5) admits
a unique solution in the interior of the feasible set.

Proof: Let

f(x) =
∑

n

∫ zn(x)

0

λn(v)dv

Sinceλn(·) is non-decreasing, for anyx, x̄ ≥ 0

f(x)− f(x̄) =
∑

n

∫ zn(x)

zn(x̄)

λn(v)dv

≥
∑

n

λn (zn(x̄))

×
∑

ls

FnlRls(xs − x̄s)

=
∑

s

(xs − x̄s)
∂f

∂x̄s
(x̄)

Thus, according to the first-order condition of convexity for dif-
ferentiable functions [4],f(x) is a convex function and−f(x)
is a concave function. SinceUs(·) is strictly concave,V (x)
is the sum of a strictly concave function and a concave func-
tion. Thus,V (x) is strictly concave. Note thatV (x) → −∞
asxs → 0 or asxs → ∞ for anys ∈ S. So, the problem (5)
admits a unique solution that is in the interior of the convex set
x ≥ 0.

The optimal source rates satisfy

∂V

∂xs
= 0, s ∈ S

which gives

U ′
s(xs)−

∑

nl

λn(zn(x))FnlRls = 0, s ∈ S

Define qs =
∑

nl λn(zn)FnlRls. Applying the gradient
method to (5)–(6), we obtain the following congestion control
algorithm

ẋs = κs (U ′
s(xs(t))− qs(t)) , s ∈ S (7)

whereκs is a positive. Note that the primal algorithm (7) is
completely distributed.

Here, the aggregate normalized priceqs(t) is a feedback sig-
nal sources observes. As discussed in [18],λn(zn) can be
interpreted as a congestion (contention) price that measures the
degree of contention in cliquen when the total normalized flow
through the clique iszn. Hence,qs(t) measures the degree of
contention in all the cliques that contains any link in sources’s
path (a largerqs(t) indicates a greater degree of contention).
The congestion control mechanism for each source is to adjust
its ratexs(t) according to the network contention it perceives.
In the next subsection, we will design a MAC protocol to gen-
erate these ‘contention prices’ in a distributed manner.

The following theorem, following [18], shows that the pri-
mal algorithm (7) is globally stable, i.e., the unique solution to
problem (5) is a stable point, to which all trajectories converge.

Theorem 2:Starting from any initial ratesx(0) ≥ 0, the con-
gestion control algorithm (7) will converge to the unique solu-
tion of the problem (5).

Proof: From lemma 1,V (x) is a strictly concave function,
and problem (5) admits a unique solutionx∗. Further

V̇ =
∑

s

∂V

∂xs
ẋs =

∑
s

κs (U ′
s(xs)− qs)

2 ≥ 0

Note thatV̇ > 0 for x 6= x∗ and is equal zero forx = x∗.
Thus,V (x(t)) is strictly increasing witht, unlessx(t) = x∗.
More precisely, chooseV (x∗) − V (x) as a Lyapunov function
for system (7). By Lyapunov’s theorem [19], the trajectories of
(7) converge tox∗, starting from any initial conditionx(0).

Note that algorithm (7) solves the system problem (3)-(4)
only approximately. By choosing appropriate price functions
λn(·), the optimal solution can be guaranteed to satisfy the con-
straint (4), and even solve the system problem (3)-(4) exactly
[32]. In practice, the price functionsλn(·) determine the ef-
ficiency of the congestion control scheme, as we will further
discuss in the next subsection.

B. Generating Congestion Price from the MAC Layer

Unlike the price function in wireline networks which is a
function of aggregate flow rate of the link [18], [22], [21], the
price functionλn(·) is required to be a function of the normal-
ized sum ratezn of clique n. This is consistent with the fact
that, in wireless networks, link is only a logical concept and the
contention region is the “resource” that flows share and con-
tend for access. However, the clique is only a virtual entity and
no centralized controller exists to monitor its congestion sta-
tus, how can we implement the congestion price? We need to
design an active queue management scheme where each logi-
cal link generates or shares a portion of the congestion price
such that their summation is equal toλn(zn) for cliquen. Ob-
serve that a similar problem appears in scheduling flows over



ad hoc wireless networks, and that each logical link will get the
right portion of the congestion price automatically if the links
are granted channel access according to the flow requirements.
We propose a multiple access scheme and generate congestion
price directly from it.

In multiple access protocols, contention resolution is usu-
ally achieved through two mechanisms: persistence and backoff
[25]. In the persistence mechanism, each contending node or
link-layer flow maintains a persistence probability and contends
for the channel with this probability. In the backoff mechanism,
each contending node or link-layer flow maintains a backoff
window and waits for a random amount of time bounded by the
backoff window before a transmission. When multiple simul-
taneous transmissions cause collisions, the persistence proba-
bility or backoff window is adjusted appropriately so that colli-
sions are reduced. Thus, the persistence probability and backoff
window are functions of the estimated contention, and different
contention resolution algorithms differ in terms of how they ad-
just these parameters in response to collisions and successful
transmissions.

In our problem, the normalized sum ratezn =
∑

ls FnlRlsxs

is the natural measure of the contention in cliquen. Thus, the
design of multiple access is to adjust persistence probability
or/and backoff window according tozn. The intuition behind
this is the same with that behind congestion control algorithm
(7), which suggests that we can jointly design congestion con-
trol and media access control, and generate congestion price di-
rectly from the MAC layer. Note that the normalized flow rate∑

s FnlRlsxs is the fraction of time that is required to transmit
the amount of flowyl =

∑
s Rlsxs, and the normalized sum

rate of a clique must not exceed 1 (see constraint (1)). It has
a natural interpretation as a probability. Thus, in our proposed
scheme, we approximate the normalized flow rateyl/c0

l as a
persistence probability with which the flowl contends for the
channel. Furthermore, since each flowl contends for the chan-
nel with the probabilityyl/c0

l , the flows should contend for the
channel in the same way after they decide to contend, consis-
tent with the fact that the congestion price is a function of the
normalized sum rate. This implies that all flows should have
the same backoff window.

To be more specific, definepl = min{ yl

c0
l
, 1}, and letw de-

note the backoff window. The joint design of congestion con-
trol and media access control works as follows: each link-layer
flow yl will contend for the channel with probabilitypl when
it senses the channel is idle. If it decides to contend for the
channel, it randomly chooses a waiting timeBl from the inter-
val [0, w] uniformly. After the waiting time, the flow senses the
channel and acquires the channel if it is idle. If either the chan-
nel is busy or there is collision, the flow will drop or mark the
packet as the congestion signal. Upon receiving the congestion
signal, the source will adjust its rate according to algorithm (7).
We can see that the bandwidth is allocated in proportional to
the normalized flow rate of each link. Thus, we obtain a traffic-
dependent multiple access scheme.

Note that links needn’t know explicitly flow contention graph
and the cliques they belong to. But, in order to be consistent
with the derivation and convergence analysis of the primal al-
gorithm, the congestion priceλn of cliquen must be a function

of the normalized sum ratezn. Unfortunately, the proposed
MAC scheme is very difficult to analyze. For the simple case
with no backoff, i.e.,w = 0, under the assumption of Poisson
arrival process, the above scheme does generate approximately
the right price function

λn = 1− e−zn − zne−zn

This price is just the probability when there are two or more
packets, and can be readily derived following similar analysis
carried out for Aloha [2]. For the general case with backoff, we
have not yet obtained an explicit price function.

We can also implement active queue management through
designing other kinds of traffic-dependent multiple access
schemes. In practice, different designs will give different price
functions, which in turn will determine the performance of the
congestion control schemes.

VI. JOINT DESIGN II: SCHEDULING L INK -LAYER FLOWS

ACCORDING TOCONGESTIONPRICE

In this section, a dual algorithm is derived by solving the dual
problem of the system problem (3)-(4)[22], [23]. The solution
to the dual problem motivates a scheme for media access con-
trol in which link-layer flows are scheduled according to con-
gestion prices.

A. Dual Algorithm and Its Convergence

The system problem (3)-(4) does not involve explicitly the
variables for links. We now introduce an auxiliary variablec,
which is aL-dimensional vector with each componentcl inter-
preted as effective or average capacity of linkl. Consider the
following problem:

max
xs≥0,cl≥0

∑
s

Us(xs) (8)

subject to Rx ≤ c & Fc ≤ ε (9)

The first constraint says that the aggregate source rate at any
link l does not exceed the effective link capacity. The second
constraint says that the effective link capacities satisfy the MAC
layer constraint. It is easy to show that this problem is equiva-
lent to the system problem (3)-(4).

Consider the dual problem

min
p≥0

D(p) (10)

with partial dual function

D(p) = max
xs≥0,cl≥0

∑
s

Us(xs)− pT (Rx− c) (11)

subject to Fc ≤ ε (12)

where we relax only the constraintsRx ≤ c by introducing
Lagrange multiplierp. The maximization problem in (11) can
be decomposed into the following two subproblems

D1(p) = max
xs≥0

∑
s

Us(xs)− pT Rx (13)



and

D2(p) = max
c≥0

pT c subject toFc ≤ ε (14)

The first subproblem is just TCP [22], [23], and the second
one is the scheduling which is to maximize the weighted sum
of effective link capacities with the congestion prices as the
weights. Thus, by dual decomposition, the flow optimization
problem decomposes into separate “local” optimization prob-
lems of transport and link layers, respectively, and these two
layers interact through the congestion prices.

Note that the objective function
∑

s Us(xs) is not strictly
concave with respect to variable(x, c), hence the dual func-
tion D(p) might not be differentiable. Indeed, the problem (13)
admits a unique maximizer

xs(p) = U ′
s
−1

(∑

l

plRls

)
(15)

andD1(p) is differentiable, but problem (14) may have multi-
ple maxima andD2(p) is a piecewise linear function and not
differentiable. Thus,D(p) is not differentiable at every pointp
[3], and we cannot use the usual gradient methods, which are
developed for differentiable problems, to solve the dual prob-
lem. Here we will solve the dual problem using subgradient
method.

Supposec(p) is a maximizer of the problem (14), i.e.,

c(p) ∈ arg max
c≥0

pT c subject toFc ≤ ε (16)

then

g(p) = c(p)−Rx(p) (17)

is a subgradient5 of dual functionD(p) at pointp. To see this,
consider any two pointsp andp̄, by definition

D(p̄) = max
xs≥0,cl≥0

∑
s

Us(xs)− p̄T (Rx− c)

subject to Fc ≤ ε

hence

D(p̄) ≥
∑

s

Us(xs(p))− p̄T (Rx(p)− c(p))

= D(p) + (p̄T − pT )(c(p)−Rx(p))

Thus, by the subgradient method [3], we obtain the following
algorithm for price adjustment for linkl

pl(t + 1) = [pl(t) + γt(
∑

s

Rlsxs(p(t))− cl(p(t)))]+ (18)

whereγt is a positive scalar stepsize, and ‘+’ denotes the pro-
jection onto the set<+ of non-negative real numbers. (15),
(16) and (18) are the congestion control algorithm. The algo-
rithm has a nice interpretation in terms of law of supply and

5Given a convex functionf : Rn 7→ R, a vectord ∈ Rn is a subgradient
of f at a pointu ∈ Rn if f(v) ≥ f(u) + (v − u)T d, v ∈ Rn.

demand and their regulation through price. Eq.(18) says that, if
the demand

∑
s Rlsxs(p(t)) for bandwidth at linkl exceeds the

supplycl, the pricepl will rise, which will in turn decrease the
demand (see eq. (15)) and increases supply (see eq. (16)). Also,
note that equations (15) and (18) are completely distributed. We
will study the distributed solution to problem (14) in the next
subsection.

Subgradient may not be a direction of descent at pointp, but
makes an angle less than90 degrees with all descent directions
at p. The new iteration may not improve the dual cost for all
values of the stepsize. There exists many results on the conver-
gence of the subgradient method [27], [3]. For constant step-
size, the algorithm is guaranteed to converge to within a range
of the optimal value6. For diminishing stepsize, the algorithm is
guaranteed to converge to the optimal value. For our purposes,
we would like an asynchronous implementation of the subgra-
dient algorithm, and thus a constant stepsize is desired. Note
that the dual cost will usually not monotonically approach the
optimal value, but wander around it under the subgradient algo-
rithm. The usual criterion for stability and convergence is not
applicable. Here we define convergence in a statistical sense.

Definition 3: Let p∗ denote an optimal value of the dual vari-
able. The algorithm (15), (16) and (18) with constant stepsize is
said to convergestatisticallyto p∗, if for any givenδ > 0 there
exists a stepsizeγ such thatlim supt→∞

1
t

∑t
τ=1 D(p(τ)) −

D(p∗) ≤ δ.
The following theorem guarantees the statistical convergence

of the subgradient method. Clearly, an optimal valuep∗ exists.
Theorem 4:Let p∗ be an optimal price. Letγ denote the

constant stepsize. If the norm of the subgradients is bounded,
i.e., there existsG such that||g(t)||2 ≤ G for all t, then the
algorithm (15), (16) and (18) convergesstatistically to within
γG2/2 of the optimal value.

Proof: By equation (18), we have

||p(t + 1)− p∗||22
= ||[p(t)− γg(p(t))]+ − p∗||22
≤ ||p(t)− γg(p(t))− p∗||22
= ||p(t)− p∗||22 − 2γg(p(t))T (p(t)− p∗)

+γ2||g(p(t))||22
≤ ||p(t)− p∗||22 − 2γ(D(p(t))−D(p∗))

+γ2||g(p(t))||22
where the last inequality follows from the definition of subgra-
dient. Applying the inequalities recursively, we obtain

||p(t + 1)− p∗||22 ≤ ||p(1)− p∗||22 − 2γ

t∑
τ=1

(D(p(τ))

−D(p∗)) + γ2
t∑

τ=1

||g(p(τ))||22

Since||p(t + 1)− p∗||22 ≥ 0, we have

2γ

t∑
τ=1

(D(p(τ))−D(p∗))

6The gradient algorithm with constant stepsize converges to the optimal
value, provided the stepsize is small enough.



≤ ||p(1)− p∗||22 + γ2
t∑

τ=1

||g(p(τ))||22

≤ ||p(1)− p∗||22 + tγ2G2

From this inequality we obtain

1
t

t∑
τ=1

D(p(τ))−D(p∗) ≤ ||p(1)− p∗||22 + tγ2G2

2tγ

Thus

lim sup
t→∞

1
t

t∑
τ=1

D(p(τ))−D(p∗) ≤ γG2

2
(19)

i.e., the algorithm converges statistically to withinγG2/2 of the
optimal value.

The assumption of bounded norm for subgradientg(p) is rea-
sonable, sincec is finite and we can also enforce an upper bound
to x. We see that, by choosing appropriate value of the stepsize,
the algorithm can approach the optimal value arbitrarily close
within a finite number of steps.

The system described by equations (15), (16) and (18) is a
hybrid system. Although Theorem 4 guarantees that its dynam-
ics is bounded in an average sense, it is unstable in the strict
sense. It may have complex behaviors such as limit cycles, i.e.,
it may go through an ergodic sequence. The reason for this
instability is that the dual function is nondifferentiable or non-
smooth. One way to avoid instability is to add some regular-
ization terms, such as strictly convex/concave terms, to make
the dual function differentiable. For example, in our problem
we can add a concave utilityVl(cl) to each linkl. The result-
ing system is stable but may not maximize the end user utili-
ties. So, there exists a tradeoff between stability and end user
utility maximization (see also [31]). However, in our problem
the oscillatory behavior in the “steady state” corresponds to the
scheduling process.

B. Scheduling Link-layer Flows according to Congestion Price

Scheduling is to decide which links and when to transmit,
which is equivalent to choosing an independent set of flow con-
tention graph to be active at each time slot. However, solving
problem (14) cannot guarantee that we obtain a rate vector cor-
responding to an independent set.

Recall that the reason why constraint (1) may not be a suffi-
cient condition is that it is a fluid level description. However,
when the flow vectory is such that each componentyl takes
value at0 or c0

l while satisfying constraint (1), it is also fea-
sible. Such a flow vector corresponds to an independent set
of flow contention graph. Thus, we propose to replace the con-
straint in the problem (14) withFc ≤ 1, and solve the following
scheduling problem with an additional discrete constraint

max
c≥0

pT c (20)

subject to Fc ≤ 1

cl = 0 or c0
l , l ∈ L

Having done that, we need to clarify with respect to which
system problem the above algorithm converges. To see this,

we first represent an independent seti as aL-dimensional rate
vectorri with

ri
l =

{
c0
l if l ∈ i
0 otherwise

The feasible rate regionΠ at the link-layer is then defined to be
the convex hull of these rate vector [1]

Π := {r : r =
∑

i

air
i, ai ≥ 0,

∑

i

ai = 1}

It is easy to verify that solving problem (20) is equivalent to
solving the following problem

max
c≥0

pT c

subject to c ∈ Π

Thus, the whole joint congestion control and scheduling algo-
rithm is to solve the following system problem

max
xs≥0

∑
s

Us(xs)

subject to Rx ≤ c & c ∈ Π

Note that the original problem (8)-(9) is a relaxation to the
above problem.

We now come to solve the problem (20). If the contention
graph is perfect, all the extreme points of constraintFc ≤ 1 are
independent sets. In this situation, we can just solve the prob-
lem (20) by neglecting the discrete constraint, which has the
same optimal solution as the original discrete problem. This
is similar to what happens in network flow optimization prob-
lems [3]. When the contention graph is not perfect, not all the
extreme points ofFc ≤ 1 are independent sets. In this situ-
ation, we will first solve the relaxed problem without discrete
constraint, and then round up the solution to the nearest inde-
pendent set, since the objective functionpT c is continuous with
respect toc.

Although the computational complexity of linear program-
ming is polynomial, the known algorithms for general linear
programming are not suitable for large scale optimization prob-
lems such as those in networks. Instead, an efficient, distributed
algorithm with only local information is required for these sys-
tems. In our problem, we assume that each link only knows
its own weight and the constraints it is involved in. We will
again use dual decomposition and subgradient method to ob-
tain a distributed algorithm to solve problem (20). Note that by
solving the dual problem we obtain the optimal dual variable,
but the optimal primal variable is not immediately available and
need to be recovered with care. One simple way to obtain fea-
sible primal solution is to add a small regularization term to the
primal function. Here, we add a small quadratic term to the
objective function, and maximize

pT c− δcT c

whereδ is a small positive number. Asδ approaches zero, the
solution obtained approaches an exact solution to the original



problem. This approach is closely related to penalty and aug-
mented Lagrangian methods for solving the dual of a convex
program [3].

Consider the dual problem

min
λ≥0

L(λ) (21)

with

L(λ) = max
c≥0

pT c− δcT c− λT (Fc− 1)

The gradient algorithm to the dual problem (21) is

cl(t) =

[(
pl −

∑
n

λnFnl

)
/(2δ)

]+

(22)

λn(t + 1) =

[
λn(t) + β

(∑

l

Fnlcl(t)− 1

)]+

(23)

whereβ is a positive stepsize. The convergence analysis of such
algorithms is well-known [3]. Let̄O denote the maximal size
of cliques, andN̄ the largest number of cliques that contain the
same link. The range of the stepsize with which the algorithm
converges can be defined as in [22]:

0 < β <
4δ

ŌN̄

After obtaining a value ofcl, link l rounds it up toc0
l or 0,

whichever is closer. This does not guarantee that the resulting
c is optimal or even an independent set all the time, but we can
use the notion ofε-subgradient7 to analyze the effect of error
[3].

Theorem 5:Suppose at each iterationt a εt-subgradient is
used. Assume thatεt ≤ ε for all t or limt εt → ε , then under the
same assumptions as in Theorem 4 the algorithm (15), (16) and
(18) converges statistically to withinγG2/2 + ε of the optimal
value.

Proof: We skip the details, since it is the same as the proof
of Theorem 4 except that we useε-subgradient here.

To derive a distributed algorithm for scheduling, we have as-
sumed that each link knows its own constraints. In order to
achieve this, each link will collect its local flow information8,
constructs its local contention graph and decomposes it into a
set of maximal cliques. Since the clique is only a virtual entity,
the price adjustment algorithm (23) for a clique will be carried
out by the links within the clique. To be able to calculate new
price for a clique, each link needs to exchange new flow rate
information, which is calculated by links using algorithm (22),
with all its contending flows within one hop. This can be done
by periodically broadcasting the flow rate information.

In order for this joint design to work, we require that schedul-
ing be carried out at a much faster time scale than congestion
control. Within a time intervalγ, the MAC layer should be able

7Given a convex functionf : Rn 7→ R andε ≥ 0, a vectord ∈ Rn is aε-
subgradient off at a pointu ∈ Rn if f(v) ≥ f(u)−ε+(v−u)T d, v ∈ Rn.

8This can be achieved by passively listening to other links broadcasting flow
information or actively sending inquiring message to other links to ask for flow
information.

to decide which links to transmit and then finish the transmis-
sions. The time scale matching problem is difficult to solve for
cross-layer design in general. The key to solving this issue is to
be able to design fast, efficient algorithms. For example, in our
joint design we can carry out scheduling by heuristically iden-
tifying the set of concurrently active links that can achieve the
maximization in (14) approximately (see, e.g., [10]).

C. A Numerical Example

To illustrate the characteristics of the joint congestion control
and scheduling algorithm (15), (16) and (18), and their impli-
cations for the algorithm’s implementation in ad hoc wireless
networks, we consider a simple example with the network in
Fig. 1. We assume that all the links have the same capacity
when active. We further assumec0

l = 1, l ∈ L, and that all
network layer flowss have the same utilityUs(xs) = log(xs).
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Fig. 4. Ad hoc wireless network with three network layer flows.

Suppose there are three network layer flowsG → H, A → B
andD → F in the network as shown in Fig. 4, with the rates
denoted byx1, x2 andx3. We simulate the algorithm (15), (16)
and (18) with different choices of stepsizeγ. The left panel of
Fig. 5 shows the evolution of dual function with the stepsize
γ = 0.1. We can see that the dual function approaches the opti-
mal very fast, but not monotonically. It will oscillate around the
optimal. As we have discussed before, this oscillating behav-
ior mathematically results from the non-differentiability of the
dual function and physically can be interpreted as correspond-
ing to the scheduling process. The right panel of Fig. 5 shows
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Fig. 5. The evolution of dual function and source rates with stepsizeγ = 0.1.
The optimal flow rates are (1/3,1/9,1/3).

the evolution of source rate of each flow. Similarly, the flow



rates approach the primal optimal very fast, but not monoton-
ically. We also note that the performance of the algorithm is
much better than the boundγ/2 specified in Theorem 4. Thus,
we can say that, if a protocol is design based on this algorithm,
it will likely converge fast.

The choice of the stepsizeγ is important. It characterizes the
“optimality” of the algorithm, as shown in Theorem 4. Fig. 6
shows the evolutions of the dual function and source rates with
the same initial state but different stepsizeγ = 0.5. Compared
with the case with stepsizeγ = 0.1, it almost has the same
convergence speed, but with a bigger oscillation. Note that,
near the primal optimal, the flow rates oscillates between the
feasible set and non-feasible set of the constraint (4). The big-
ger oscillation means that the network will be underloaded and
overloaded more often. Thus it will has poorer performance
such as lower throughput. So, a smaller stepsize leads to a bet-
ter performance.
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Fig. 6. The evolution of dual function and source rates with stepsizeγ = 0.5.
The optimal flow rates are (1/3,1/9,1/3).

However, the stepsizeγ also specifies an upper bound for the
length of time slot used in the scheduling. As we mentioned
before, within time intervalγ the MAC layer should decide
which links to transmit and then finish the transmissions. So,
the stepsize cannot be too small. Thus, there exists a tradeoff
between congestion control, which prefers a smaller stepsize,
and the scheduling, which prefers a larger stepsize. In practice,
the stepsize should take value of order of fromms to tens of
ms.

In all the simulations, we use distributed algorithm (22)-(23)
to solve the scheduling in (16). To evaluate the performance
of our scheduling algorithm, we also use a linear programming
software to solve the scheduling. We do not find any distin-
guishable difference between the simulations using the linear
programming software and the algorithm (22)-(23).

Our simulations are based on ideal implementation of the al-
gorithm (15), (16) and (18). In its practical implementation in
ad hoc wireless networks, we need to take into consideration
such issues as the signaling overhead, the propagation delay,
and the time used to make scheduling decision, etc. To design

a practical protocol based on this algorithm will be one of our
future work.

VII. C ONCLUSION

We have presented a model for the joint design of congestion
control and media access control for ad hoc wireless networks,
where the resulting algorithms are to solve a utility maximiza-
tion problem with constraints that arise from contention for the
wireless channel. We have derived two algorithms that are not
only distributed spatially, but more interestingly, they decom-
pose vertically into two protocol layers where TCP and MAC
jointly solve the system problem. The first is a primal algo-
rithm which motivates a joint design where the multiple access
scheme is traffic dependent and the congestion prices are gener-
ated directly from the MAC layer. The second is a subgradient
algorithm for the dual problem and it motivates a joint design
where link-layer flows are scheduled according to the conges-
tion prices of the links.

This paper is a preliminary step towards a systematic ap-
proach to jointly design TCP congestion control algorithms and
MAC algorithms, not only to improve performance, but more
importantly, to make their interaction more transparent. Much
work remains. First it would be interesting to derive a formal
MAC protocol in our joint design I, prove that it generates cor-
rect prices, and analyze its dynamic properties. Second, for
our joint design II, we will need a faster and more efficient al-
gorithm to solve the scheduling problem if it is to be applied
to broadband wireless environment. Third, in cross-layer de-
sign through dual decomposition, we often encounter objective
functions that are not strictly concave or feasible sets that are
not convex. This results in non-differentiable dual function.
While subgradient method is applicable to derive a distributed
solution, the resulting algorithm is often not stable in the usual
sense. This instability that arises from cross-layer interactions
need to be understood in order to control cross-layer interac-
tions and to characterize the performance of the design.
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