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Abstract— Recent advances in network coding have shown
great potential for efficient information multicasting in commu-
nication networks, in terms of both network throughput and
network management. In this paper, we address the problem of
rate control at end-systems for network coding based multicast
flows. We develop two adaptive rate control algorithms for
the networks with given coding subgraphs and without given
coding subgraphs, respectively. With random network coding,
both algorithms can be implemented in a distributed manner, and
work at transport layer to adjust source rates and at network
layer to carry out network coding. We prove that the proposed
algorithms converge to the globally optimal solutions for intra-
session network coding. Some related issues are discussed, and
numerical examples are provided to complement our theoretical
analysis.

Index Terms— Rate control, Network coding, Multicast, Cod-
ing subgraph, Distributed algorithm.

I. INTRODUCTION

Network coding extends the functionality of network nodes
from storing/forwarding packets to performing algebraic op-
erations on received data. Starting with the work of [1],
which shows that employing coding at intermediate nodes is
sometimes needed to maximize multicast throughput, various
potential benefits of network coding have been shown, includ-
ing robustness to link/node failures [13] and packet losses [4],
[18]. Distributed random linear coding schemes, see, e.g., [7],
[3], have made practical implementation of network coding
possible. In this paper, we address the problem of rate control
at end-systems for network coding based multicast flows with
elastic rate demand.

Most existing work on network coding considers coding
among packets of each multicast session, and assumes that
the communication rates for each session and the network link
capacities are fixed and known. Given a cost function in terms
of the flow on each link, a min-cost flow optimization problem
is obtained and solved to find the optimal coding subgraphs,
which specify how much of each session’s data should be sent
on each link, see, e.g., [19], [27], [30]. For this reason, we call
coding subgraphs of this kind capacitated subgraphs.

However, in many practical networks, traffic is bursty and
elastic with varying rates, and since the network is shared by
many users with unknown or changing demands, the available
link capacities are unknown and variable. In such cases, it is
not practical to solve a min-cost flow optimization to obtain
capacitated subgraphs. Also, rate control is needed to make full
use of bandwidth while avoiding congestion and maintaining
certain fairness among the competing flows in the network.

One approach we propose is to use coding subgraphs that
are un-capacitated (i.e., specifying which links are used by

a session but not the amount of the data sent on each link)
and chosen based on general cost criteria that are independent
of flow rates. This is a practical approach; most existing
routing approaches specify analogously un-capacitated routes.
Since each session uses only a limited set of trees, this
approach may give lower rates compared to optimizing over
the entire network, but it is much less complex. We give an
algorithm that combines rate control at fast timescales and
adaptive traffic shifting at slower timescales based on end-to-
end congestion feedback in the network.

Another approach we consider does not explicitly find
coding subgraphs, but makes dynamic routing and coding
decisions based on queue length gradients. This approach,
termed back-pressure, was first proposed for optimal routing
and scheduling in [25] and extended to various contexts (e.g.,
[21], [16]) including network coding in [10]; our contribution
in this part of the paper is to incorporate rate control with
network coding.

Our consideration of rate control uses the framework of
utility maximization, which can provide the flexibility of
modelling user application needs or performance objectives
and guide the design of distributed algorithms. As shown
in, e.g., [12], [17], [14], TCP congestion control algorithms
can be interpreted as distributed primal-dual algorithms over
the Internet to maximize aggregate utility. We extend the
basic utility maximization formulation to incorporate the two
network coding approaches described above, and propose two
corresponding dual-based adaptive rate control algorithms to
meet the new challenges associated with network coding. With
random network coding, both algorithms can be implemented
in a distributed manner, and work at the transport layer to
adjust source rates and at the network layer to do network
coding. We prove that the proposed algorithms converge to the
globally optimal solutions for intra-session network coding.

The main contribution of this paper is to present optimiza-
tion models and propose adaptive, distributed rate control
algorithms for network coding based multicast flows. Our
algorithms are promising in practical implementation, and
can be extended to handle different environments such as
multilayer network coding and multirate multicasting.

II. RELATED WORK

There are several recent works on rate control of multicast
flows, see, e.g., [11], [5], which consider traditional routing-
based multicasting. In contrast, this paper studies rate control
for network coding based multicasting.

With network coding, the work that are most similar to
our work are [19], [30], [28], [29]. We use a similar model
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but without network cost for the networks without given
coding subgraphs, see subsection III-C. What differentiates our
work from others are the following. First, we use a different
decomposition and obtain a dynamic scheme that uses only
local information, see section V. As an important consequence
of such alternative decomposition, our solution requires the
least communication overhead. Our solution can also be
readily extended to the case with network cost. Second, our
rate control algorithm is a dual subgradient algorithm whose
dual variables admit concrete and meaningful interpretation as
congestion prices. Third, our work also differs from [19], [30]
in that we do not relax the network constraint (3) but to exploit
it to do session scheduling.

The session scheduling component of our algorithm for
the network without given coding subgraphs is similar to the
joint network coding and scheduling algorithms in [10] for
wired networks. However, our work is different in that we
also includes the transport layer, and as such, the network will
use congestion control to automatically explore the achievable
rate region while optimizing some global objective for the end
users.

All existing work on network coding solves for the optimal
coding subgraphs based on a flow model that is similar to
multicommodity flow model for routing [6]. However, as
discussed in the Introduction, it is often impractical to do
so. In analogy to what happens with routing, we consider
the case where subgraphs are chosen based on general cost
criteria. Thus, we also study rate control for networks with
given coding subgraphs, see sections III-B and IV.

Related work also includes [22] that studies congestion con-
trol with adaptive multipath routing using a multi-commodity
model for the routing. Our model for networks without given
coding subgraphs is also a multi-commodity model but with
the additional constraints from network coding, and moreover,
we propose a different solution approach. For the case with
given coding subgraphs, we use a technique similar to that
from [22], [6].

III. MODELS AND PROBLEM FORMULATIONS

A. Network and Coding Model

Consider a network, denoted by a graph G = (N,L), with
a set N of nodes and a set L of directed links. We denote a
link either by a single index l or by the directed pair (i, j)
of nodes it connects. Each link l has a fixed finite capacity cl

packets per second.
Let M denote the set of multicast sessions, indexed by m.

Each session m has one source sm ∈ N 1 and a set Dm ⊂
N of destinations. Network coding allows flows for different
destinations of a multicast session to share network capacity
by being coded together: for a single multicast session m of
rate xm, information must flow at rate xm to each destination;
with coding the actual physical flow on each link need only be
the maximum of the individual destination’s flows [1]. These

1Our analysis can extend to handle multi-source multicasting in a straight-
forward way.

constraints can be expressed as

∑
j:(i,j)∈L

gmd
i,j −

∑
j:(j,i)∈L

gmd
j,i =




xm if i = sm

−xm if i = d ,
0 otherwise

(1)

∀ d ∈ Dm,

gmd
i,j ≤ fm

i,j , ∀ d ∈ Dm, (2)

where for each link (i, j), gmd
i,j gives the information flow for

destination d of session m, and fm
i,j gives the physical flow for

session m. Note that the information flow balance equation
(1) is formally similar to the physical flow balance equation
for routing of data flows in the network. The inequality (2)
reflects the network coding condition relating physical rate
and information rate:

fm
i,j = max

d
{gmd

i,j }, d ∈ Dm. (3)

Figure 1 gives an example, adapted from [1], of a lin-
ear network code, and the corresponding flow variables
(fi,j , g

d1
i,j , g

d2
i,j). For packet networks, the result is stated for-

mally in Theorem 1 of [19], which we reproduce here, slightly
adapted:

Theorem 1: The rate vector f satisfies the constraints (1)-
(2) if and only if there exists a network code that sets up a
multicast connection at rate arbitrarily close to xm from source
sm to destinations in set Dm and that injects packets at rate
arbitrarily close to fi,j on each link (i, j).
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Fig. 1. An example network coding subgraph with one source s and two
destinations d1 and d2 (left graph), where links (s, u), (u, w) and (u, d2)
are assumed to have one unit of capacity, and all other links have two units
of capacity; and the corresponding flow variables (right graph), where each
link (i, j) is marked by the triple (fi,j , gd1

i,j , gd2
i,j).

For the case of multiple sessions sharing a network, achiev-
ing optimal throughput requires in some cases coding across
sessions. However, designing such codes is a complex and
largely open problem. Thus, we limit our consideration to
separate network codes operating within each session, an
approach referred to as superposition coding [31] or intra-
session coding. In this case, the set of feasible flow vectors
is specified by combining constraints (1)-(2) for each session
m ∈ M with the following link capacity constraints:∑

m∈M

fm
i,j ≤ ci,j , ∀ (i, j) ∈ L. (4)

In practice, the network codes can be designed using the
approach of distributed random linear network coding, see,
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e.g., [7], [3], in which network nodes form output packets by
taking random linear combinations of corresponding blocks of
bits in input packets. The linear combination corresponding to
each packet can be specified by a coefficient vector in the
packet header, updated by applying to the coefficient vectors
the same linear transformations as to the data. If (1)-(2) holds,
each sink receives with high probability a set of packets with
linearly independent coefficient vectors, allowing it to decode.
The relative overhead of these coefficient vectors depends on
parameters of the network code that can be chosen to trade-off
overhead against performance, and it decreases with the size
of the packets. See, e.g., [3], [10] for a detailed description
and discussion of overhead and other practical implementation
issues.

B. Multicast with Given Coding Subgraphs

We first consider the network with a given coding subgraph2

Gm for each session m. The subgraph Gm can be viewed
as the union of links of a set Rm of possibly overlapping
multicast trees, each connecting source sm to all destinations
d ∈ Dm. Rate control is carried out by adjusting the flow
rate on each tree. Coding is done on overlapping segments of
different trees of a session that have disjoint sets of down-
stream destinations. Figure 2 shows an example of muticast
trees that are decomposed from the coding subgraph shown in
Figure 1. In this example, coding on the shared link is possible,
allowing both trees to simultaneously transmit information at
their maximum individual rates.
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Fig. 2. Multicast trees for the example shown in Fig.1. Coding is done on
the shared link (w, v), which, as part of the left tree, has one downstream
destination d2, and, as part of the right tree, has one downstream destination
d1. The left tree can support up to two units of information flow and the
right tree can independently support up to one unit of information flow, since
coding on link (w, v) allows the two trees to share capacity.

Analogous to practical routing, such coding subgraphs can
be chosen in a variety of ways based on combinations of
different considerations, such as delay, resource usage or com-
mercial relationships among network providers. For instance,
we can use existing multicast tree construction algorithms,
or use existing techniques for finding multiple paths to each
destination and combine appropriate sets of paths that form
trees.

To simplify notation, we consider the case where overlap-
ping segments of different trees of a session have disjoint sets
of downstream destinations, thus allowing coding to occur on

2In this and the following sections, subgraph refers to “un-capacitated”
subgraph.

all overlapping segments3; the more general case where coding
occurs only on some overlapping segments admits a similar
analysis. Each tree Tm

r , r ∈ Rm contains a set Lr ⊂ L of
links, which defines a |L|× |Rm| multicast matrix Hm whose
(l, r)th entry is given by

Hm
lr =

{
1 if l ∈ Lr

0 otherwise.

Note that over each multicast tree Tm
r the source sends the

same information flow to each destination; we denote its rate
by xm

r . With intra-session network coding, the physical flow
rate ym

l for each multicast session m though link l is ym
l =

maxr{Hm
lr xm

r }. The link capacity constraints (4) become∑
m

ym
l =

∑
m

max
r

{Hm
lr xm

r } ≤ cl ∀ l ∈ L. (5)

By Theorem 1, conditions (5) are satisfied if and only if
there exists a corresponding multicast network code of rate
arbitrarily close to

∑
r xm

r from source sm to destinations
d ∈ Dm.

Following [12], assume each session m attains a utility
Um(xm) when it transmits at a rate xm =

∑
r xm

r packets
per second over the coding subgraph. We assume Um(·) is
continuously differentiable, increasing, and strictly concave for
the flows with elastic rate demand. Our objective is to choose
source rates xm

r so as to solve the following global problem

P1 : maxxm
r ,ym

l

∑
m

Um(xm)

subject to Hm
lr xm

r ≤ ym
l , ∀r ∈ Rm, ∀m ∈ M∑

m

ym
l ≤ cl, ∀l ∈ L.

C. Multicast without Given Coding Subgraphs

Since coding subgraphs are not given, we directly use the
network coding flow constraints (1)-(4) and Theorem 1, given
in subsection III-A, to formulate the following optimization
problem which chooses source rates xm, information rates gmd

i,j

and physical flow rates fm
i,j so as to maximize aggregate utility:

P2 : maxx,g,f

∑
m

Um(xm)

subject to
∑

j:(i,j)∈L

gmd
i,j −

∑
j:(j,i)∈L

gmd
j,i = xm

i , i �= d,∀d,m

gmd
i,j ≤ fm

i,j , ∀d,m∑
m

fm
i,j ≤ ci,j , ∀(i, j) ∈ L,

where xm
i = xm if i = sm and xm

i = 0 otherwise. Here we
do not include flow balance equation at destinations, which
is automatically guaranteed by the flow balance at the source
and intermediate nodes.

Note that in the models P1 and P2, network coding comes
into action through the constraints (5) and (3). With Theo-
rem 1, this gives some form of “separation principle” that

3This is the case, for instance, if each session’s trees have been formed by
first finding multiple link-disjoint paths to each destination and then choosing
combinations of these paths that form trees.
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allows us to separate decisions on resource usage and rate
control from the design of the actual network codes.

The system problems P1 and P2 are convex optimization
problems, and are polynomially solvable if all the utilities and
constraint information is provided, but this is impractical in
real networks. Since they are convex optimization problems
with strong duality, distributed algorithms can be derived by
formulating and solving corresponding Lagrange dual prob-
lems, as we will show in the next two sections.

IV. DISTRIBUTED ALGORITHM FOR NETWORKS WITH

GIVEN CODING SUBGRAPHS

We introduce for each multicast session m traffic split
variables αm

r ≥ 0 for each multicast tree Tm
r of the coding

subgraph, such that
∑

r αm
r = 1 and xm

r = xmαm
r . We see

that αm
r controls the fraction of the traffic of multicast session

m that is sent through the tree Tm
r . Instead of solving the

problem P1 directly, we first consider the version of the rate
control problem with the fixed split vector α.

P1a : max{xm,ym
l }

∑
m

Um(xm)

subject to Hm
lr xmαm

r ≤ ym
l∑

m

ym
l ≤ cl.

The above problem is a strictly convex and has a unique
solution, with respect to source rates xm. Let us denote its
maximum by U(α). The system problem P1 corresponds to
computing

P1b : maxα≥0 U(α)

subject to
∑

r

αm
r = 1.

Note that the above problem is not necessarily convex. But we
will see later that it can still be solved for globally optimality.

A. Two-Timescale Distributed Algorithm

Consider the Lagrangian of the problem P1a with respect
to the constraints due to network coding

L(α, p, x, y) =
∑
m

Um(xm) −
∑
l,m,r

pm
l,r(H

m
lr xmαm

r − ym
l ).

Interpreting pm
l,r as the “congestion price” at link l for multicast

tree Tm
r and maximizing the Lagrangian over x and y for

fixed p, we obtain the following joint rate control and session
scheduling algorithm:

Rate control: At time t, given congestion price p(t), the
source sm adjusts flow rate xm according to the aggregate
congestion price

∑
l Hm

l,rp
m
l,r over the multicast trees Tm

r ,

xm(t) = (U ′
m)−1(

∑
r

αm
r

∑
l

Hm
l,rp

m
l,r(t)). (6)

Similar to TCP congestion control algorithm where the source
adjusts its sending rate according to aggregate congestion
price along its path, this rate control mechanism has the
desired price structure and is an end-to-end congestion control
mechanism.

Session scheduling: Random linear network coding scheme
is used to code packets from the same multicast session [9].
Over link l, send an amount of coded packets for the session4

ml(t) = arg maxm

∑
r pm

l,r(t) at rate cl. Mathematically, this
is because the maximization over {ym

l } is a linear program-
ming and we can always choose an extreme point solution.
This is equivalent to maximizing over y by the following
assignment

ym
l (t) =

{
cl if m = ml(t)
0 if m �= ml(t).

(7)

Defining D(α, p) = maxx,y L(α, p, x, y) with
∑

m ym
l ≤

cl, by duality we have (see, e.g., Chapter 5 in [2])

U(α) = min
p≥0

D(α, p) = min
p≥0

max
x,y

L(α, p, x, y).

The dual problem minp D(α, p) can be solved by using the
subgradient method [24], [2], where the Lagrangian multipliers
are adjusted in the opposite direction to the subgradient
∂pD(α, p).

Congestion price update: Each link l updates its price with
respect to multicast tree Tm

r , according to

pm
l,r(t + 1) = [pm

l,r(t) + γt(Hm
lr αm

r xm(p(t)) − ym
l (p(t)))]+, (8)

where γt is a positive scalar stepsize, and ‘+’ denotes the
projection onto the set �+ of non-negative real numbers. Note
that link l will use capacity ym

l to transfer coded packets
for multicast session m, equation (8) says that if the demand
Hm

lr xm
r for virtual capacity at link l for the information flow

of multicast tree Tm
r exceeds the assigned physical capacity

ym
l , the price pm

lr will rise, and decreases otherwise. Also,
note that equation (8) is distributed and can be implemented
at individual links using only local information.

The above rate control algorithm (6)-(8) works under the
assumption that the traffic split vector α remains constant.
We now discuss how to adjust αm

r to solve the problem P1b,
which we call tree adaptation. We assume that tree adaptation
is much slower so that the minimization of D(α, p) over p
can be seen as instantaneous.

Intuitively, the optimal traffic split vector should strike an
equilibrium that is similar to Wardrop equilibrium, where for
each multicast session the aggregate prices in all multicast
trees actually used are equal and less than those which would
be experienced by a single packets on any unused tree [26].
We gradually update the split vector towards this equilibrium,
as in [6], [22]. At stage n, given split vector α(n), suppose
p(n) ∈ arg minp D(α(n), p) is an optimum solution to the
dual problem of P1a, and let rm(n) = arg minr

∑
l pm

l,r(n).
Tree adaptation: Each source sm updates αm

r according to

αm
r (n + 1) = αm

r (n) + δm
r (n), (9)

with

δm
r (n) =




−min{αm
r (n), κn(

∑
l pm

l,r(n) − ∑
l pm

l,rm(n)(n))},
if r �= rm(n),

−∑
r �=rm(n) δm

r (n),
if r = rm(n),

(10)

4When there exists more one session with maximal aggregate congestion
price, the tie is broken randomly.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings. 
 

1166



where κn is a positive scalar stepsize. It is straightforward to
verify that ∑

r

δm
r (n) = 0, (11)

∑
r

δm
r (n)

∑
l

pm
l,r ≤ 0. (12)

We see that
∑

r δm
r (n)

∑
l pm

l,r = 0 only if δm
r (n) = 0, which

requires

αm
r (n)(

∑
l

pm
l,r(n) −

∑
l

pm
l,rm(n)(n)) = 0. (13)

This is exactly the Wardrop equilibrium. Also, note that
equations (11)-(13) are similar to the condition specified for
the route adaptation in [6], [22].

B. Convergence Analysis

The distributed rate control algorithm presented in last
subsection has embedded loops. In the inner loop (6)-(8),
which operates at a fast timescale, the network searches for
optimal source rates and congestion prices for fixed flow split
vector. In the outer loop (9)-(10), which operates at a slow,
traffic engineering timescale, the sources adapt the flow split
vector based on the stabilized congestion prices in the network.
The tree adaptation algorithm (9)-(10) can be seen as a method
for stable traffic engineering based on congestion prices.

We now provide the convergence analysis of the inner
loop algorithm (6)-(8). Denote P ∗ as the set of optimal
solutions to the dual problem minp D(α, p). Define ρ(p, S) =
minp̄∈S ||p − p̄|| as the Euculidean distance of a point p
to set S. Directly applying the convergence results for the
subgradient method [24], we have the following theorem.

Theorem 2: If the stepsizes γt satisfy the following condi-
tion

lim
t→∞ γt = 0,

∞∑
t=0

γt = ∞, (14)

then the iterative algorithm (8) converges, i.e.,

lim
t→∞ ρ(p(t), P ∗) = 0. (15)

Note that xm is a continuous function of the congestion
price pm

l,r. Let x∗ be the optimal solution of the problem P1a.
By duality, the following result is immediate.

Corollary 3: Under the same condition as in (14), the
iterative algorithm (6)-(8) converges, i.e.,

lim
t→∞ ||x(t) − x∗|| = 0. (16)

In practical implementation, a constant stepsize rather than
the diminishing stepsize as in (14) is desired. For a constant
stepsize, the subgradient method may not converge to an
optimal solution, but can be made to converge within any
given small neighborhood around the optimum, by choose
sufficiently small constant stepsize (see, e.g., [24] for details).
Since the source rates are continuous function of the conges-
tion price, the optimality of the algorithm (6)-(8) is guaranteed
with arbitrary precision by appropriately choosing a constant
stepsize.

Now we study the convergence of the outer loop algorithm.
For simplicity of the presentation, we consider the continuous
time version of the algorithm (9)-(10), which satisfies∑

r

α̇m
r = 0, (17)

∑
r

α̇m
r

∑
l

pm
l,r ≤ 0. (18)

Similarly, we have
∑

r α̇m
r

∑
l pm

l,r = 0 only if α̇m
r = 0, which

happens only if (13) is satisfied. The tree adaptation algorithm
(9)-(10) can be seen as a specific discrete time implementation
of the adaptation algorithm (17)-(18).

Theorem 4: The tree adaptation algorithm (17)-(18) con-
verges to the optimal solution of the system problem P1.

Proof: Note that

U(α) = min
p

D(α, p)

= min
p

{
∑
m

Um(xm(p))

−
∑
m,l,r

pm
l,r(H

m
l,rα

m
r xm(p) − ym

l (p))}, (19)

and D(α, p) as a function of p includes a smooth term plus
a non-smooth piece-wise linear term. So, the differential of
U(α) can be written as

dU(α)=
(

lim
h→0+

∂D(α, p∗ + hdp)
∂p

)
dp +

∂D(α, p∗)
∂α

dα

=
(

lim
h→0+

∂D(α, p∗ + hdp)
∂p

)
dp −

∑
m,l,r

xmHm
l,r(p

∗)m
l,rdαm

r ,

(20)
where p∗ = arg minp D(α, p). Since p∗ minimizes D(α, p)
given α, limh→0+

∂D(α,p∗+hdp)
∂p cannot be a descent direction.

So,
(
limh→0+

∂D(α,p∗+hdp)
∂p

)
dp ≥ 0. Hence,

dU(α) ≥ −
∑
m,l,r

xmHm
l,r(p

∗)m
l,rdαm

r , (21)

i.e.,

U̇(α) ≥ −
∑
m,l,r

xmHm
l,r(p

∗)m
l,rα̇

m
r . (22)

By (17)-(18), we have U̇(α) ≥ 0. So, the tree adaptation algo-
rithm (17)-(18) will converge to an equilibrium α∗ such that
U̇(α∗) = 0. However, this only guarantees the convergence
of the tree adaptation algorithm. Without further elaboration,
we cannot even claim it solves a local optimal of the problem
P1b.

Note that, following equations (6) and (13), we obtain at
(α∗, p(α∗), x(α∗))

U ′
m(xm) =

∂Um

∂xm
r

(xm) =
∑

l

Hm
l,rp

m
l,r, if xm

r > 0, (23)

∑
l

Hm
l,rp

m
l,r > U ′

m(xm), if xm
r = 0, (24)

which means that

x(α∗) = arg max
xm

r

∑
m

Um(
∑

r

xm
r ) −

∑
m,r,l

pm
l,r(α

∗)Hm
l,rx

m
r . (25)
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Also, we have y(α∗) = arg maxy

∑
m,r,l p

m
l,r(α

∗)ym
l . Denote

the Lagrangian of the system problem P1 with respect to the
constraints due to network coding as L̂(p, x, y). We have

(x(α∗), y(α∗)) = arg max
x,y

L̂(p(α∗), x, y). (26)

Furthermore, by duality between the problem P1a and its dual,
we have∑

m,l,r

pm
l,r(α

∗)(Hm
l,rx

m
r (α∗) − ym

l (α∗)) = 0. (27)

Combining (26)-(27), we conclude that∑
m

Um(
∑

r

xm
r (α∗)) = L̂(p(α∗), x(α∗), y(α∗)), (28)

which by duality only happens when p(α∗) and xm
r (α∗) solve

the system problem P1 and its dual. So, the tree adaptation
algorithm (17)-(18) indeed solves the system problem P1.
This also proves that the tree adaptation algorithm solves the
problem P1b.

Equations (20)-(21) can be seen as a generalized Envelope
Theorem for nonsmooth functions. If D(α, p) is a smooth
function of p, we have limh→0+

∂D(α,p∗+hdp)
∂p = ∂D(α,p∗)

∂p = 0
along any direction dp, and thus recover usual Envelope
theorem, see [20]. Also, note that the adaptation algorithm
(9)-(10) and Theorem 4 can be readily extended to routing-
based multicasting and multipath routing.

C. Implementation of Price Feedback

Each link l keeps a separate virtual queue pm
lr for each

multicast tree Tm
r of each session m which acts as the

congestion price. Each packet’s header contains the indexes
of the trees whose information it contains. When a packet is
received at a node from an incoming link l, if the packet header
contains the rth tree index, the queue size pm

lr is increased by
one; otherwise it is unchanged. Similarly, when a packet is
sent by a node on an outgoing link l, if the packet header
contains the rth tree index, the queue size pm

lr is decreased by
one; otherwise it is unchanged. The congestion prices over a
multicast tree are fed back to the source node in the following
way. Each node i in the tree will pass the aggregate price
along the links from the receivers till itself to the upstream
node j (“upstream” is defined as the direction from receivers
to source node over a multicast tree). In this recursive way,
the source node will get the aggregate congestion prices over
that multicast tree, and adjust the sending rate accordingly.

V. DISTRIBUTED ALGORITHM FOR NETWORKS WITHOUT

GIVEN CODING SUBGRAPHS

A. Distributed Algorithm

Now we turn to system problem P2 and consider its
Lagrangian with respect to the flow balance constraints,

L(p, x, g, f) =
∑
m

Um(xm) −
∑

i,m,d∈Dm

pmd
i (xm

i

−
∑

j:(i,j)∈L

gmd
i,j +

∑
j:(j,i)∈L

gmd
j,i ).

Interpreting pmd
i as the “congestion price” at node i for

multicast session m and destination d ∈ Dm and maximizing
the Lagrangian over x, g and f for fixed p, we obtain the
following joint rate control and session scheduling algorithm:

Rate control: At time t, given congestion price p(t), each
source node sm adjusts its sending rate according to local
congestion price that is generated locally at the source node,

xm(t) = U ′
m

−1(
∑

d∈Dm

pmd
sm

(t)). (29)

Note that

max
g,f

∑
i,m,d

pmd
i (

∑
j

gmd
i,j −

∑
j

gmd
j,i ) s.t. gmd

i,j ≤ fm
i,j

= max
g,f

∑
i,j,m,d

gmd
i,j (pmd

i − pmd
j ) s.t. gmd

i,j ≤ fm
i,j

= max
f

∑
i,j,m,d

fm
i,j [p

md
i − pmd

j ].

Each node i collects congestion price information from its
neighbor j, find multicast session mi,j(t) such that

mi,j(t) ∈ arg max
m

∑
d∈Dm

[pmd
i (t) − pmd

j (t)]+,

and calculate differential price wi,j(t) =
∑

d[p
mi,j(t)d
i (t) −

p
mi,j(t)d
j (t)]+.
Session scheduling: Over link (i, j), a random linear com-

bination of data of multicast session mi,j to all destinations
d such that p

mi,jd
i (t)− p

mi,jd
j (t) > 0 is sent at rate cl. Math-

ematically, this is equivalent to solving the primal variable g
by the following assignment

gmd
i,j (t) =

{
ci,j if m = mi,j(t) & pmd

i (t) − pmd
j (t) > 0

0 otherwise.
(30)

Define

D(p) = max
xm,gmd

i,j ,fm
i,j

L(p, x, g, f)

subject to gmd
i,j ≤ fm

i,j ,
∑
m

fm
i,j ≤ cl.

Again the dual problem minp D(p) can be solved by using
the subgradient method.

Congestion price update: Each node i updates its price
with respect to multicast session m and destination d ∈ Dm,
according to

pmd
i (t + 1) = [pmd

i (t) + γt( xmd
i (p(t)) (31)

−
∑

j:(i,j)∈L

gmd
i,j (p(t)) +

∑
j:(j,i)∈L

gmd
j,i (p(t)) )]+,

and passes the price pmd
i to all its neighbors.

With our algorithm, each source node adjusts its sending
rate according to the local congestion price. Thus, there is
no communication overhead for rate control. The majority of
communication overhead is for session scheduling, but that
only requires nodes to communicate with direct neighbors.
Thus, our design has very low communication overhead,
compared with other schemes with similar models [19], [30],
[28], [29]. Note that the above session scheduling component
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uses back-pressure to do optimal scheduling, similarly to [10].
Such dynamic network coding based multicasting offers both
a larger rate region and much lower complexity, as compared
to optimal dynamic routing based multicasting [23].

B. Convergence Analysis

The algorithm (29)-(31) is a subgradient algorithm. Thus,
Theorems 2 and 3 and related discussion apply. Using the same
notation as in subsection IV-B, we have the following result
regarding the convergence property of the joint rate control
and session scheduling algorithm for multicast without given
coding subgraph.

Theorem 5: If the stepsizes γt satisfy the following condi-
tion

lim
t→∞ γt = 0,

∞∑
t=0

γt = ∞,

then the iterative algorithm (29)-(31) converges, i.e.,

lim
t→∞ ρ(p(t), P ∗) = 0,

lim
t→∞ ||x(t) − x∗|| = 0.

C. Implementation of Price Feedback

Since the scheme is destination-based, each packet need to
carry a vector of destination identities in the packet header, in
addition to coding vector. Each nodes i keep a separate virtual
queue pmd

i as congestion price for each multicast session m
and destination d ∈ Dm. The arrival and the departure of
these queues evolve as follows. When a packet is received at
node i, i will check the destination vector in the header of
this packet. If this packet is intended for destination d , the
queue size pmd

i will increase by one; Otherwise, the virtual
queue size will remain the same. When a packet is sent out
at node i, i will check the destination vector of this packet.
If this packet is intended for destination d , the queue size
pmd

i will decrease by one; Otherwise, the virtual queue size
will remain the same. Note that, here we use back-pressure
to do rate control. The source nodes s adjust the sending rate
according to local congestion prices at s, and the congestion
in the network is propagated to the source node through back-
pressure.

VI. NUMERICAL EXAMPLES

In this section, we provide numerical examples to comple-
ment the analysis in previous sections. We consider a simple
network shown in the left graph in Figure 3. The network is
assumed to be undirected and each link has equal capacities in
both directions. Assume that there are two multicast sessions,
session one with source node s and destinations x and y and
session two with source node t and destination u and z, with
the same utility Um(xm) = log(xm). We have chosen such a
small, simple topology to facilitate detailed discussion of the
results.

 s

 t  u

w

 v

 x  y

z

Fig. 3. A simple network with two multicast sessions. The given coding
subgraphs for sessions 1 and 2 are shown in the middle and right graphs
respectively. For each session, the first tree is indicated by solid arrows, the
second by dashed arrows, and the overlapping segments by bold arrows.

A. Muticasting with Given Coding Subgraphs

We assume that the given coding subgraphs for sessions one
and two are those shown in the middle and right graphs of Fig-
ure 3 respectively. The subgraph for each session decomposes
into two multicast trees in the same way as in Figure 2. For
simplicity, we assume the following link capacities: link (s, t)
has 2 units of capacity, links (t, x) and (v, y) have 5 units of
capacity, links (s, u), (u,w) and (y, z) have 1 unit of capacity
and all other links have 3 units of capacity.

Figure 4 shows the evolution of source rates (left panel) ver-
sus the number of iterations of the outer loop tree adaptation
algorithm and the evaluation of traffic split vectors (middle
panel) with stepsize κn = 0.01. It can be seen from the plots
that the source rates are well within 5% of their optimal values
after 10 iterations, and the traffic split vectors are well within
5% of their optimal values after 15 iterations. The simulation
result also shows that for session one, the traffic is 2 over the
first tree and 1 over the second tree, and for session two, the
traffic is 3 over the first tree and 1 over the second tree. In this
simulation, the inner loop congestion control algorithm runs
500 iterations before each run of the tree adaptation algorithm.
Comparable performance is observed even if the number of
inner loop iterations is as low as 100. So, the convergence of
the whole rate control algorithm is very fast.

In practice, the end users can dynamically control the
number of iterations, by monitoring the congestion prices
over different multicast trees. The right panel of Figure 4
shows the evolution of the congestion prices over different
trees versus the number of iterations of the tree adaptation
algorithm. We can, for instance, specify a threshold value and
decide the whole algorithm has converged when the relative
differences in price over different multicast trees are less than
the threshold value. The users can also set the stepsize of
the tree adaptation algorithm dynamically. When the price
differences over different trees are large, the user can choose
a large stepsize, and when the differences are small, he can
choose a small stepsize.

B. Muticasting without Given Coding Subgraphs

We now consider the same network but without given cod-
ing subgraphs. The distributed algorithm developed in section
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Fig. 4. The evolution of source rates (left panel), the evolution of traffic split vectors (middle panel), and the evolution of congestion prices over different
multicast trees (right panel) versus the number of iterations of the tree adaptation algorithm with stepsize κn = 0.01 for the example network with given
coding subgraphs.

V will go through the whole network (the undirected graph on
the left side in Figure 3) to find capacitated coding subgraphs
that maximize the aggregate utility. For this example, we
assume the following link capacities: links (s, t), (t, x) and
(x, v) have 2 units of capacity, links (t, w), (w, v) and (v, y)
have 3 units of capacity and all other links have 1 unit of
capacity.

Figure 5 shows the evolution of the source rates with the
constant stepsize γt = 0.01. We see that the source rates
approach the corresponding stable values 3 and 2 quickly.
The simulation result also shows coding occurs over the same
subgraphs as those in Fig.3: 2 units of traffic of session one
is coded over link (w, v) and 2 units of traffic of session two
is coded over link (v, y). It is not difficult to check that those
are optimal source rates and coding subgraphs. Also, note that
the system converges to within a small neighborhood of the
optimal, since we have chosen a constant stepsize. In order
to study the impact of different choices of the stepsize on the
convergence of the algorithm, we have run simulations with
different stepsizes. We found that the smaller the stepsize, the
slower the convergence and the closer to the optimal, which
is a general characteristic of any gradient based method. So,
there is a tradeoff between convergence speed and optimality.
In practice, the end user can first choose large stepsizes to
ensure fast convergence, and subsequently, the stepsizes can
be reduced once the source rate starts oscillating around some
mean value.
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Fig. 5. The evolution of source rates with step size γt = 0.01 for the
example network without given coding subgraph.

C. Comparison of the Two Algorithms

To compare the performance of the two rate control algo-
rithms, we consider the same network, with 1 unit capacity
for each link. Figure 6 shows the evolution of the source rates
versus the number of iterations of the tree adaptation algorithm
for the case with given coding subgraphs as shown in the right
side graph of Figure 3, and the evolution of the source rates
for the case without given coding subgraphs. We see that the
throughput achieved for the case without given subgraphs is
larger than that for the case with given coding subgraphs. This
is expected, since the capacity region for the case with given
coding subgraph is a subset of the capacity region with the
coding subgraphs unspecified.
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Fig. 6. The evolution of source rates for the case with given coding subgraph
(upper panel) and for the case without given coding subgraph (lower panel).
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VII. SOME FURTHER REMARKS

There may exist several ways to solve the system problems
P1 and P2. The challenge is to find distributed solutions
that respect as much as possible the information constraints
of the Internet and can be implemented at the sources and
routers. This requires to minimize information and respect
signaling mechanism for adaptive control in Internet as much
as possible. So, we choose not to relax all the constraints when
solving for the duals. Besides the equilibrium, dynamics are
also important in our consideration. In section IV, in order
to avoid “tree” oscillation, we achieve rate control through
a combination of fast timescale rate control and slow, traffic
engineering timescale traffic splitting. Also, note that there is
an explicit session scheduling component in our algorithms,
which requires per-session information. This seems to incur
much complexity in implementation. However, with network
coding, network nodes need to keep tracking per-session
information. We just exploit this additional complexity to the
good.

The two algorithms developed in sections IV and V can
coexist: some multicast sessions adopt the algorithm with
given coding subgraphs and other sessions adopt the algorithm
without given coding subgraphs; and they are coupled through
the flow balance equations at nodes and capacity constraints
at links. Also, unicasting can be seen as special case of mul-
ticasting. Mathematically, in the system model P1, network
coding comes into action through constraint Hm

lr xm
r ≤ ym

l ,
and in system model P2, network coding comes into action
through constraint gmd

i,j ≤ fm
i,j . It is straightforward to include

uncoded unicast flows into the system models and carry out
these iterative algorithms in the same way, with only slightly
more complicated notation.

VIII. CONCLUSIONS

We have presented two models for rate control for multicast
with network coding, one for networks with given coding
subgraphs, and one where such subgraphs are found dynam-
ically. We developed two corresponding dual-based adaptive
rate control algorithms. With random network coding, both
algorithms can be implemented in a distributed manner, and
work at transport layer to adjust source rates and at network
layer to do network coding. We prove that the proposed
algorithms converge to the globally optimal solutions for
each model. Numerical examples are provided to complement
our theoretical analysis. We will further study the practical
implementation of our algorithms. Also, how to obtain optimal
coding subgraphs based on general cost criteria is an interest-
ing problem. Solving this problem will further facilitate the
practical deployment of network coding in real networks.
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