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Abstract— We present a game-theoretic approach to con-
tention control. We define a game-theoretic model, called ran-
dom access game, to capture the contention/interaction among
wireless nodes in wireless networks with contention-based
medium access. We characterize Nash equilibria of random
access games, study their dynamics and propose distributed
algorithms (strategy evolutions) to achieve the Nash equilibria.
This provides a general analytical framework that is capable
of modelling a large class of systemwide quality of service
models via the specification of per-node utility functions, in
which systemwide fairness or service differentiation can be
achieved in a distributed manner as long as each node executes
a contention resolution algorithm that is designed to achieve
the Nash equilibrium. We thus design medium access method
according to distributed strategy update mechanism achieving
the Nash equilibrium of random access game. In addition to
guiding medium access control design, the random access game
model also provides an analytical framework to understand
equilibrium and dynamic properties of different medium access
protocols and their interactions.

I. INTRODUCTION

Wireless channel is a shared medium that is interference-

limited. Contention-based medium access control (contention

control) is a distributed strategy to access and share wireless

channel among contending wireless nodes. From a control-

theoretic point of view, it consists of two components:

a contention resolution algorithm that dynamically adjusts

persistence probability or contention window in response

to contention in the network,1 and a feedback mechanism

that updates a contention measure and sends it back to

wireless nodes. Different medium access control methods

differ in terms of how they adjust persistence probability

or contention window in response to contention and what

contention measure they use. For example, the standard IEEE

802.11 DCF uses a backoff mechanism and a binary con-

tention signal – packet collision or successful transmission,

in which each wireless node doubles its contention window

upon a collision (binary exponential backoff) and sets it to

the base value upon a successful transmission [10].

The choice of contention measure and contention resolu-

tion algorithm is key to the performance of medium access

methods. “Inappropriate” choice of these two components

will result in poor performance. For example, in high-load

scenarios, 802.11 DCF results in excessive collisions and
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1Contention resolution is usually achieved through two mechanisms:
persistence and backoff [18]. In the persistence mechanism, each wireless
node maintains a persistence probability and accesses the channel with this
probability when it perceives an idle channel. In the backoff mechanism,
each wireless node maintains a contention window and waits for a random
amount of time bounded by the contention window before a transmission.

hence low throughput, because setting to the base contention

window upon successful transmissions is too drastic and each

new transmission starts with the base contention window

independent of the contention level in the network. It also

has short-term unfairness problem, due to the oscillation in

contention window. The binary exponential backoff directly

causes short-term unfairness. However, this oscillation in

contention window is unavoidable because DCF uses a

binary contention signal. In order to achieve high efficiency

(high throughput and low collision) and better fairness, we

need to stabilize the network into a steady state which sus-

tains an appropriate contention window size (or equivalently,

persistence probability) for each node.

The main motivation of this work is to provide an

analytical model to study the contention/interation among

wireless nodes and design medium access methods that could

stabilize the network around a steady state with a target

fairness (or service differentiation) and high efficiency. To

this end, we define a general game-theoretic model, called

random access game, to capture the contention/interaction

among wireless nodes in wireless networks with contention-

based medium access. Here the game-theoretic model is not

intended to model selfish behaviors of the wireless nodes,

but rather to capture the constraints encountered in real

networks. In real networks, we prefer distributed algorithms

with no or minimal explicit message passing, and each

wireless node does not know how many nodes are present,

is not aware of the actions (such as transmission or channel

access probability) of others a priori, and can only sense

limited information about the channel state (such as packets

encountering collisions, or channel being idle or busy). In

such a situation, the best a node can do is to optimize

some local or private objective and adjust its action based on

limited information about the network state. Noncooperative

game is best to model such a situation, and we design random

access game to guide individual nodes to seek an equilibrium

that achieves some systemwide performance objective.

In random access games, a player (wireless node) strategy

is its persistence probability or equivalently its contention

window size, and its payoff function includes both utility

gain from channel access and cost from packet collision.

Through the specification of per-node utility function, we can

model a large class of systemwide quality of service models,

similar to that in utility framework for network flows, see,

e.g., [14]. We characterize the Nash equilibrium of random

access games, study their dynamics and propose algorithms

(strategy evolutions) to achieve the Nash equilibrium. We

show that systemwide fairness or service differentiation can

be achieved in a distributed manner as long as each node



executes a contention resolution algorithm that is designed

to achieve the Nash equilibrium.

Based on the understanding of the equilibrium and dynam-

ics of random access games, we propose a novel medium

access method derived from CSMA/CA in which each node

estimates its conditional collision probability and adjusts

its persistence probability or equivalently contention win-

dow accordingly. Unlike other medium access methods, our

method adapts to continuous feedback signal (conditional

collision probability) rather than binary contention signal

(packet collision or successful transmission), and each node

tries to keep a fixed persistence probability or equivalently

contention window specified by the Nash equilibrium of

random access game. By specifying appropriate utility func-

tions, the resulting medium access method can achieve target

fairness (or service differentiation), and better contention

control (collision reduction) and hence higher throughput.

In addition to guiding medium access control design, the

random access game model also provides an analytical

framework to understand equilibrium and dynamic properties

of different medium access protocols and their interactions.

II. RANDOM ACCESS GAME

Consider a set N of wireless nodes in a wireless LAN with

contention-based medium access. We will focus on single-

cell wireless LANs where every node can hear every other

node in the network, see [6] for the extension to multicell

wireless LANs. We consider the case of greedy nodes, i.e.,

they always have a frame to transmit. We will mainly present

our theory in terms of “channel access probability.” If a

persistence mechanism is implemented, the channel access

probability is just the persistence probability. If a backoff

mechanism is implemented, channel access probability p is

related to a constant contention window cw according to

p = 2
cw+1 . This relation can be derived under the decoupling

approximation for a set of wireless nodes with constant

contention windows, see, e.g., [3] [15].

Assume that each node i ∈ N attains a utility Ui(pi)
when it accesses the channel with probability pi ∈ [νi, ωi].
We assume that Ui(·) is continuously differentiable, strictly

concave, increasing, and with the curvatures bounded away

from zero in [νi, ωi], i.e., −1/U ′′
i (pi) ≥ 1/λ > 0. Let

qi(p) := 1 −
∏

j 6=i(1 − pj) denote the conditional col-

lision probability of node i. Our objective is to choose

p := (p1, p2, . . . , p|N |) such that each node maximizes its

payoff Ui(pi) − piqi. Since wireless nodes are not aware of

channel access probabilities of others a priori, we model

their interaction as a noncooperative game. Formally, we

define a random access game as follows.

Definition 1: A random access game G is defined as a

triple G := {N, (Si)i∈N , (ui)i∈N}, where N is a set of

players (wireless nodes), player i ∈ N strategy Si :=
{pi|pi ∈ [νi, ωi]} with 0 ≤ νi < ωi ≤ 1, and payoff function

ui(p) := Ui(pi)− piqi(p) with qi(p) := 1−
∏

j 6=i(1− pj).
Note that the throughput of node i is proportional to pi

if there is no collision, and piqi is the collision probability

experienced by node i and can be seen as the “cost” resulting

from collision. Thus, the payoff function ui(·) has a nice

interpretation: the net gain of utility from channel access,

discounted by the cost due to collision.

Random access game G is defined in a rather general

manner. Each node i can choose any utility function Ui(·)
it thinks appropriate. If all nodes have the same utility

functions, the system is said to have homogeneous users. If

the nodes have different utility functions, the system is said

to have heterogeneous users. The motivation for studying

systems of heterogeneous users is to provide differentiated

services to different wireless nodes.

A. Nash Equilibrium

We now analyze the equilibrium of random access

game. The solution concept we use is the Nash equi-

librium [8]. Denote the strategy (channel access prob-

ability) selection for all nodes but i by p−i :=
(p1, p2, . . . , pi−1, pi+1, . . . , p|N |), and write (pi,p−i) for

the strategy profile (p1, p2, . . . , pi−1, pi, pi+1, . . . , p|N |). A

vector of access probability p
∗ is a Nash equilibrium if, for

all nodes i ∈ N , ui(p
∗
i ,p

∗
−i) ≥ ui(pi,p

∗
−i) for all pi ∈ Si.

We see that the Nash equilibrium is a set of strategies for

which no player has an incentive to change unilaterally. The

following result is immediate.

Theorem 2: There exists a Nash equilibrium for any ran-

dom access game G.2

Since utility function Ui(·) is concave, at the Nash equilib-

rium, p⋆
i either takes value at the boundaries of the strategy

space Si or satisfies

U ′
i(p

∗
i ) = qi(p

∗), (1)

where U ′
i(p

∗
i ) =

dUi(p
∗

i
)

dpi

, the marginal utility at p∗i . We call a

Nash equilibrium p
∗ a nontrivial equilibrium if, for all nodes

i, p∗i satisfies equation (1), and trivial equilibrium otherwise.

In the remainder of this section, we will mainly focus on

nontrivial Nash equilibria.

Theorem 3: Random access game G has a nontrivial Nash

equilibrium if the following condition holds:

A1: For each node i ∈ N , inverse function (U ′
i)

−1(qi) maps

any qi ∈ [0, 1] into a point pi ∈ Si.

The assumption A1 gives a sufficient condition for the

existence of nontrivial Nash equilibrium. Since Ui(pi) is

a continuously differentiable concave function, U ′
i(pi) is

a continuous, decreasing function and so is (U ′
i)

−1(qi).
Without loss of generality, with the assumption A1 we

constrain the strategy space Si such that (U ′
i)

−1(0) = ωi

and (U ′
i)

−1(1) = νi in the following discussion.

Define idle probability γ(p) :=
∏

i∈N (1 − pi), and

Γi(pi) := (1 − pi)(1 − U ′
i(pi)). It follows from equation

(1) that, at nontrivial Nash equilibrium,

Γi(p
∗
i ) = γ(p∗). (2)

Note that the right-hand side of the above equation is

independent of i. Thus, Γi(p
∗
i ) = Γj(p

∗
j ) for any i, j ∈ N .

2See [6] for complete proofs for all theorems in this paper.



Theorem 4: Suppose A1 holds. Random access game G
has a unique nontrivial Nash equilibrium if additionally the

following condition holds:

A2: Γi(pi) is a monotone function in Si for all i ∈ N .

In order to study quality of service differentiation among

wireless nodes, we further differentiate among symmetric

and asymmetric equilibria as follows.

Definition 5: A Nash equilibrium p
∗ is said to be a

symmetric equilibrium if p∗i = p∗j for all i, j ∈ N , and an

asymmetric equilibrium otherwise.

For a general system of homogeneous users, both symmet-

ric and asymmetric Nash equilibria are possible. By symme-

try, if a system of homogeneous users has an asymmetric

Nash equilibrium, all its permutations are Nash equilibria.

However, for symmetric nontrivial equilibrium, it must be

unique.

Theorem 6: For a system of homogeneous users, if ran-

dom access game G has symmetric nontrivial Nash equilib-

rium, it must be unique. More generally, for a system with

several classes of homogeneous users, if G has symmetric

nontrivial Nash equilibrium,3 it must be unique.

Since by symmetry there must be multiple asymmetric

Nash equilibria if there exists any, the following result

follows directly from Theorems 4 and 6.

Corollary 7: For a system of homogeneous users, sup-

pose A1 and A2 hold, then random access game G has a

unique nontrivial Nash equilibrium which is a symmetric

equilibrium. More generally, for a system with several classes

of homogeneous users, under the same assumptions, G has

a unique nontrivial Nash equilibrium which is symmetric

among each class of users.

Corollary 7 is a powerful result. It guarantees the unique-

ness of nontrivial Nash equilibrium, and moreover, it guar-

antees fair sharing of wireless channel among the same class

of wireless nodes and provides service differentiation among

different classes of wireless nodes. This will facilitate the

analysis of dynamic property of random access games and

the design of medium access control.

B. Dynamics of Random Access Game

The dynamics of game studies how interacting players

could converge to a Nash equilibrium. It is a difficult problem

in general, as pointed out in [8] that “game theory lacks a

general and convincing argument that a Nash outcome will

occur.” In the setting of random access, players (wireless

nodes) can observe the outcome (packet collision or suc-

cessful transmission) of the actions of others, but do not

have direct knowledge of other player actions and payoffs.

We consider repeated play of random access game, and look

for update mechanism in which players repeatedly adjust

strategies in response to observations of other player actions

so as to achieve the Nash equilibrium.

We consider a strategy update mechanism called gradient

play [7]. In gradient play, every player adjusts a current

3For a system with several classes of users, a Nash equilibrium is
symmetric if at equilibrium the users of the same class choose the same
strategy.

channel access probability gradually in a gradient direction

suggested by observations of other player actions. Mathe-

matically, each node i ∈ N updates its strategy according

to

pi(t + 1) = [pi(t) + fi(pi(t))(U
′
i(pi(t))− qi(p(t)))]Si , (3)

where the stepsize fi(·) > 0 can be a function of the

strategy of player i, and “Si” denotes the projection onto

the player i strategy space. The gradient play admits a

nice economic interpretation, by considering the conditional

collision probability qi as contention price for node i. If the

marginal utility U ′
i(pi) is greater than contention price, we

increase the access probability, and if the marginal utility is

less than contention price, we decrease the access probability.

The following result is immediate.

Lemma 8: By the definition of nontrivial Nash equilib-

rium, nontrivial Nash equilibria of random access game G
are fixed points of the gradient play (3) and vice versa.

Theorem 9: Suppose A1 and A2 hold, the gradient play

(3) converges to the unique nontrivial Nash equilibrium of

random access game G if for any i ∈ N , the stepsize fi(pi) <
1

λ+|N |−1 .

Proof: By Lyapunov method using Lyapunov function

V (p) :=
∑

i∈N (Ui(pi) − pi) −
∏

i∈N (1 − pi). See [6] for

details.

Theorem 9 guarantees the convergence of distributed gra-

dient play to the desired Nash equilibrium. If a backoff

mechanism is implemented, each node i ∈ N updates its

contention window cwi as follows:

cwi(t) =
2 − pi(t)

pi(t)
. (4)

Remark: For a general game model, there may exist mul-

tiple nontrivial Nash equilibria. In this situation, a “naive”

strategy such as best response or gradient play may not

converge to the desired equilibrium, and concepts from

control theory may come in to work, see, e.g., [19].

C. Medium Access Control Design

Corollary 7 and Theorem 9 suggest that random access

games provide a general analytical framework to model a

large class of systemwide quality of service models (mainly

in terms of throughput) via the specification of per-node

utility functions, and systemwide fairness or service differ-

entiation can be achieved in a distributed manner as long as

each node executes a contention resolution algorithm that is

designed to achieve the Nash equilibrium.

Based on this understanding of the equilibrium and dy-

namics of random access games, we propose a novel medium

access method derived from CSMA/CA: instead of executing

exponential backoff upon collisions, each node estimates

its conditional collision probability and adjusts its channel

access probability and contention window according to gra-

dient play (3) and (4), see Table I for a formal description.

Unlike other medium access methods, our method adapts to

continuous feedback signal (conditional collision probability)

rather than binary feedback (packet collision), and stabilizes



the network around a steady state specified by the Nash

equilibrium of random access game. Our access method

is an equation-based control, and its performance (such as

throughput, collision and fairness) is determined by the Nash

equilibrium. Note that U ′
i(pi(t)) − qi(p(t)) specifies how

far the current state is from the equilibrium. The contention

window adjustment is small when the current state is close

to the equilibrium and large otherwise, independent of where

the equilibrium is. This is in sharp contrast to the approach

taken by 802.11 DCF, where window adjustment depends on

just the current window size and is independent of where the

current state is with respect to the target equilibrium. So, our

access method can achieve better contention control (colli-

sion reduction) and better short-term fairness. By specifying

appropriate utility functions, the resulting access method can

achieve better balance/tradeoff between channel access and

collision avoidance, and hence a higher throughput.

TABLE I

MEDIUM ACCESS METHOD VIA GRADIENT PLAY

After each transmission

{
/*wireless node observes n idle

slots before a transmission*/

isum ← isum + n
ntrans ← ntrans + 1
if(ntrans >= maxtrans){
/*compute the estimator*/

n̄ ← isum
ntrans

qi ←
1−(n̄+1)pi

(n̄+1)(1−pi)

/*update access probability*/

pi ←− pi + fi(pi)(U
′

i
(pi) − qi)

/*update contention window*/

cwi ←− 2−pi

pi

/*reset variables*/

isum ← 0
ntrans ← 0

}
}

Furthermore, wireless nodes can estimate conditional col-

lision probabilities by observing idle period of the channel.

Let n denote the number of consecutive idle slots between

two transmissions. Here “a transmission” corresponds to a

busy period in the channel when only a node transmits

(i.e., a successful transmission) or multiple nodes transmit

simultaneously (i.e., a collision). Since n has the geometric

distribution with parameter γ(p), its mean n̄ is given by

n̄ = γ(p)
1−γ(p) . Thus, each node can estimate its conditional

collision probability by observing the average number of

consecutive idle slots, according to

qi = 1 −
γ(p)

1 − pi

=
1 − (n̄ + 1)pi

(n̄ + 1)(1 − pi)
. (5)

So, our access method can decouple contention control from

handling packet losses, and is immune to those problems

incurred in methods that infer channel contention from

packet collisions.

In the next section, we will study a concrete random access

game and the corresponding medium access control design,

as a case study for the proposed design methodology in

game-theoretic framework.

III. A CASE STUDY

Consider the following utility

Ui(pi) :=
1

ai

(
(ai − 1)ωi

ai

ln (aipi − ωi) − pi), (6)

where 0 < ωi < 1, ai > 1 and pi ∈ [2ωi/(1 + ai), ωi].
Define a random access game G1 in the same way as in

Definition 1 with the above player utility functions and

strategy spaces.

A. Equilibrium and Dynamics

We have the following result regarding the Nash equilib-

rium of random access game G1.

Theorem 10: If aiωi < 1, random access game G1 has

unique nontrivial Nash equilibrium. Moreover, for a system

of homogeneous users the unique nontrivial Nash equilib-

rium of G1 is a symmetric equilibrium, and for a system with

several classes of homogeneous users the unique nontrivial

Nash equilibrium of G1 is symmetric among each class of

users.

Assume that each node i ∈ N adjusts its strategy accord-

ing to gradient play

pi(t + 1) = [pi(t) + fi(pi(t))(
ωi − pi(t)

aipi(t) − ωi

− qi(p(t)))]Si ,

(7)

cwi(t) =
2 − pi(t)

pi(t)
, (8)

The following result follows directly from Theorem 9.

Theorem 11: Suppose aiωi < 1, the system described

by equation (7) converges to the unique nontrivial Nash

equilibrium of random access game G1 if fi(pi) < 1
λ+|N |−1 .

The condition aiωi < 1 is a mild assumption and admits a

very large region in parameter space. The Nash equilibrium

can be easily calculated numerically. Note that Γi(pi) =
(1−pi)((1+ai)pi−2ωi)

aipi−ωi

is a decreasing function of ωi and an

increasing function of ai. Since Γi is an increasing function

of pi, larger value of ωi and/or smaller value of ai will results

in larger channel access probability p∗i at equilibrium. Thus,

in order to provide differentiated services, we can choose

larger value of ωi and/or smaller value of ai for the users

of a higher priority class. For example, in wireless access

network, we can assign a large ωi value and/or small ai

value to the access point, because usually downlink traffic is

greater than the traffic of mobile nodes.

B. Medium Access Control Design

We design a medium access method according to chan-

nel access probability and contention window update algo-

rithm (7)–(8), by modifying a Carrier Sense Multiple Ac-

cess/Collision Avoidance (CSMA/CA) access method such

as 802.11 DCF (see reference [10] for for a description of

the channel access mechanism in DCF). As described in

subsection II-C, our medium access method makes two key



modifications to 802.11 DCF. Instead of adjusting contention

window cwi to a binary feedback signal and using exponen-

tial backoff algorithm, each node i estimates its conditional

collision probability qi, which is a continuous feedback, and

adjusts cwi according to algorithm (7)–(8).

There are several parameters in our medium access

method. The parameters ωi and ai determine the equi-

librium properties such as throughput, loss (collision) and

fairness. The parameters fi(·) and maxtrans determine the

dynamical properties such as stability and responsiveness. In

practice, we will choose a constant stepsize for all nodes (for

example, a constant stepsize that accommodates a large range

from several to tens of nodes in a single cell). The number

of transmissions, maxtrans, for each node before updating

its channel access probability and contention window, affects

the convergence speed and the accuracy of the conditional

collision probability estimation. Since by gradient play nodes

update pi and cwi gradually, in order to achieve a good

tradeoff between convergence speed and estimation accuracy

we will choose a relatively small value for maxtrans and

estimate average number of consecutive idle slots between

transmissions using an exponential weighted running average

n̄ ←− βn̄ + (1 − β)
isum

ntrans
,

where β ∈ [0, 1). If β is small we weight history less, and if

β is large we weight history more. By choosing appropriate

β value, exponential weighted running average gives better

estimate than the “naive” estimator isum/ntrans.

C. Performance

To evaluate the performance of our medium access

method, we develop a discrete-event simulator that im-

plements our method and the standard 802.11 DCF basic

access method. The values for the parameters used to obtain

numerical results are as follows. The system values are those

specified in the 802.11b standard with DSSS PHY layer [10].

In all simulations, we use a data rate of 11Mbps and packet

payload of 12000 bits, and set the following values of the

control parameters: maxtrans = 10, fi = 0.01 and β = 0.2.

Also, the physical layer is assumed to be perfect for the

numerical experiments reported in this subsection.

1) Throughput and Collision Overhead: We consider a

system of homogeneous users, and compare the throughput

achieved by our method and DCF. In our design each node i
is limited to choose a contention window size between 2−ω

ω

and 1+a−ω
ω

, corresponding to channel access probability pi ∈
[ 2ω
a+1 , ω]. To compare the performance of our design with that

of DCF on the same ground, we choose values for those

related parameters such that 2−ω
ω

= CWmin and 1+a−ω
ω

=
2mCWmax, corresponding to a maximum backoff stage m.

In our numerical experiments with DCF we also assume that

after a packet’s (m+1)th failed transmission the contention

window resets to CWmin. This is also equivalent to the

packet being discarded after m failed retransmissions.

Figure 1 and Figure 2 show the comparison of aggregate

throughput and collision overhead between our design (ω =
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Fig. 1. Throughput comparison.
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Fig. 2. Conditional collision probability comparison.

0.0606, a = 14.576) and DCF (CWmin = 32, CWmax =
256). We see that our access method achieves better trade-

off between channel access and collision avoidance, and

hence higher throughput that is sustainable over a large

range of numbers of competing nodes. We then compare

the numerical values from simulations with the analytical

values of throughput and conditional collision probability

that are calculated with Nash equilibrium of random access

game G1, and confirm that they match extremely well. This

proves that our medium access method does converge to

the desired Nash equilibrium of the random access game.

We also track the evolution of contention windows, which

approach quickly to and stay around the values specified by

the Nash equilibrium.

2) Fairness: In our access method for a system of ho-

mogeneous users, wireless nodes have the same contention

window size, specified by the symmetric Nash equilibrium of

random access game G1. Thus, it is expected to have a better

short-term fairness. Figure 3 compares short-term fairness of

our access method and DCF using Jain fairness index for the

window sizes that are multiples of the number of wireless

nodes [12]. We can see that our method provide better short-



term fairness than 802.11 DCF.
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Fig. 3. Fairness comparison for 40 competing nodes.

3) Service Differentiation: As discussed before, we can

provide service differentiation by choosing different utility

functions for different classes of users. Regarding the con-

crete medium access method we consider, each node i will

receive different services by choosing different values for

parameters ωi or ai. For the simplicity of presentation, we

consider two classes of users. Assume that class 1 has n1

users with parameters (ω1, a1), corresponding to a higher

priority of service, and class 2 has n2 users with parameters

(ω2, a2), corresponding to a lower priority of service. Let

first study the impact of ωi on the service differentiation

by setting the same ai value. The upper panel in Figure 4

shows the throughput ratio of a class 1 node to a class 2 node

versus the total number of nodes for two different scenarios:

two classes have equal number of users, and class 1 has

fixed number of users. We see that, as the total number of

nodes increase, the throughput ratio approaches 1.5. Indeed,

a simple calculation can show that the throughput ratio

between users of different classes is approximately ω1

ω2

for

a large number of users. We then study the impact of ai

on the service differentiation by setting the same ωi value.

The lower panel in Figure 4 shows the throughput ratio of

a class 1 node to a class 2 node versus the total number of

nodes for the scenario where two classes have equal number

of users and the scenario where class 1 has fixed number of

users. We see that, as the total number of nodes increase,

the throughput ratio seems to converge to some fixed value.

Again, a simple calculation can show that the throughput

ratio will approach 1+a2

1+a1

.

IV. UTILITY FUNCTION AND REVERSE ENGINEERING

As we see from the above discussions, utility functions

determine Nash equilibria of random access games and

thus the equilibrium (steady) operating points of medium

access control protocols. Conversely, utility functions are

determined by the equilibrium (steady) operating points of

medium access control protocols. Since the medium access

control protocol adapts channel access probability pi ac-

cording to current access probability and packet collision,

the equilibrium operating point defines an implicit relation
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Fig. 4. The throughput ratio of a class 1 node to a class 2 node. Upper
panel: (ω1 = 0.06, a1 = 15) and (ω2 = 0.04, a2 = 15); Lower panel:
(ω1 = 0.04, a1 = 10) and (ω2 = 0.04, a2 = 20).

between equilibrium channel access probability pi and con-

ditional collision probability qi,

pi = Fi(pi, qi). (9)

Assume Fi is continuously differentiable and ∂Fi/∂qi 6= 0
in [0, 1]. Then, by implicit function theorem, there exists a

unique continuously differentiable function Fi such that

qi = Fi(pi). (10)

Define the utility function of each node i as

Ui(pi) =

∫
Fi(pi)dpi. (11)

With the above defined utility functions, we can define a

random access game as in section II. Hence, we can reverse

engineer medium access control protocols and study them

in game theory framework: medium access control can be

interpreted as a distributed strategy update algorithm to

achieve the Nash equilibrium of the random access game.

For example, if we are first given the medium access

method presented in subsection III-B, it can be interpreted

as a distributed strategy update algorithm to achieve the

Nash equilibrium of random access game G1 that is defined

with the utility functions determined by the equilibrium of

equation (7). Take another example, 802.11 DCF. It is well

established that for a single-cell wireless LAN at steady state,



channel access probability p relates to conditional collision

probability as follows [3]:

p =
2(1 − 2q)

(1 − 2q)(CWmin + 1) + qCWmin(1 − (2q)m)
,

where CWmin is the base contention window and m is the

maximum backoff stage. Following procedures (10)–(11) to

derive a utility function, we can define a random access game

and interpret DCF as distributed strategy update algorithm

to achieve the corresponding Nash equilibrium. Note that,

however, the dynamics of 802.11 DCF cannot be described

by gradient play.

The random access game model can be used to analyze

equilibrium properties such as throughput, collision and

fairness of different medium access control protocols. When

wireless nodes in a wireless LAN deploy different medium

access protocols with different contention measures, we

can also study the coexistence and interaction of different

protocols in the random access game framework.

V. RELATED WORK

Much effort has been devoted to applying game-theoretic

approach to study random access, see, e.g., [13] [17] [4] [5]

[20]. The work closest to ours is Jin et al. [13] that studies

noncooperative equilibrium of Aloha networks and their local

convergence, and Borkar et al. [4] that studies distributed

scheme for adapting random access. Our motivation, model

and results are different from those work. Čagalj et al. [5]

studies selfish behavior in CSMA/CA networks and propose

a distributed protocol to guide multiple selfish nodes to a

Pareto-optimal Nash equilibrium. In contrast, we use game-

theoretic model to capture the information and implemen-

tation constraints encountered in real networks and design

games to guide distributed users to achieve systemwide

performance objectives. Another major difference of our

work from most other game-theoretic works is that we

take a control-theoretic viewpoint and regard channel access

probabilities as dynamic variables. As such, we define a

general utility for each user directly in terms of its channel

access probability, and specify a special structure for random

access game that respects the distributed and adaptive nature

of contention-based medium access.

There are many papers on various improvements to 802.11

DCF that propose better contention resolution algorithms,

see, e.g., [2] [16]. Our design is different in terms of

both contention measure and contention resolution algorithm.

There also exists extensive work on 802.11 QoS provision-

ing, see, e.g., [1] [11]. Our access method can provide more

flexible service differentiations through the specification of

per-node utility functions, except for manipulating the length

of inter-frame space. Related work also includes [9] that

proposes an idle sense access method, which compares the

mean number of idle slots between transmission attempts

with the optimal value and adopts an additive increase

and multiplicative decrease algorithm to dynamically control

the contention window in order to improve throughput and

short-term fairness. In our access method, the number of

consecutive idle slots between transmissions is only used to

estimate conditional collision probabilities.

VI. CONCLUSIONS

We have presented random access game model to study the

contention/interaction among wireless nodes, and proposed

to design medium access method according to distributed

strategy update mechanism achieving the Nash equilibrium

of random access game. As a case study of medium access

control design in game-theoretic framework, we present a

concrete medium access method and show that it achieves

superior performance over the standard 802.11 DCF, and

can provide flexible service differentiations among wireless

nodes. In addition to guiding medium access control design,

the random access game model also provides an analytical

framework to understand equilibrium and dynamic properties

of different medium access protocols and their interactions.
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