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This paper will review recent progress on developing a
unified theory for complex networks from biological sys-
tems and physics to engineering and technology. Insights
into what the potential universal laws, architecture, and
organizational principles are can be drawn from three
converging research themes: growing attention to com-
plexity and robustness in systems biology, layering and
organization in network technology, and new mathemat-
ical frameworks for the study of complex networks. We
will illustrate how tools in robust control theory and opti-
mization can be integrated towards such unified theory by
focusing on their applications in biology, physics, network
design, and electric grid.
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1. Introduction

Hard limits on measurement, prediction, communica-
tion, computation, decision, and control, as well as the
underlying physical energy and material conversion mech-
anisms necessary to implement these abstract processes
are at the heart of modern mathematical theories of
systems in engineering and science (often associated
with names such as Shannon, Poincaré, Turing, Godel,
Bode, Wiener, Heisenberg, and Carnot). They form the
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foundation for rich and deep subjects that unfortunately
remain largely fragmented and incompatible, even as the
tradeoffs between these limits are of growing importance
in building integrated and sustainable systems. An essen-
tial research direction is an integrated theory based on
optimization that deals systematically with uncertainty,
robustness, and risk in complex systems. For a rela-
tively nontechnical discussion of these issues, see [2] and
references therein.

Tools that are commonly used in optimization as well as
in systems and control theory may provide a good founda-
tion for moving toward such an integrated theory. The new
theory presented herein seeks to build upon and integrate
decades of research in pure and applied mathematics with
engineering, including robust control theory, dynamical
systems, information theory, numerical analysis, operator
theory, real algebraic geometry, computational complex-
ity theory, duality and optimization, and semi-definite
programming, motivating new interactions between these
diverse areas. We illustrate the ways in which these ideas
have been used to provide a fresh perspective on prob-
lems in a number of diverse areas and demonstrate how
this new approach allowed new progress towards long-
standing problems in biology, physics, and engineering.
We focus on their application in a series of well-studied
domain-specific problems such as, glycolytic oscillations
in metabolic networks, turbulence in wall-bounded flows,
network design, and optimization of power flow in electric
grids.

Both engineering and evolution are constrained by
tradeoffs between efficiency and robustness, however
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these tradeoffs are rarely formalized in biology. We
chose glycolysis as a first case study as it not only
has interesting dynamics (oscillations) but also offers a
rich history of experimental and theoretical literature
[55]. Despite extensive experimental and modeling stud-
ies since 1965 [57], the question of whether glycolytic
oscillations are beneficial or simply an evolutionary acci-
dent remained unresolved. We developed a simple model
and used control theoretic analysis to suggest a third
alternative: Oscillations are the inevitable consequence of
tradeoffs between metabolic overhead and robustness to
disturbances, as well as the interplay between feedback
control and necessary autocatalysis of network products
[12]. Our model is now also the simplest (with only
two states) example of a system with a right-half plane
ZEero.

While the components differ and the system processes
are far less integrated, advanced technology’s complex-
ity is now approaching that of biology and there are
striking similarities at the level of organization, architec-
ture, and the role of layering, protocols, and feedback
control in structuring complex multi-scale modularity.
When examining network problems in a robust optimiza-
tion framework, it becomes readily apparent that the
convergence within/between biology/technology is not
accidental, but follows necessarily from their universal
system requirements to be fast, efficient, adaptive, evolv-
able, and robust to perturbations in their environment and
component parts, see for example [2,22,43, 65]. The cell
is highly constrained and massively autocatalytic, yet it
maintains very strict layering with specific signaling and
regulatory proteins and RNAs. The success of communi-
cation networks has largely been a result of adopting this
sort of layered architecture.

The layered hourglass architecture is one of the most
fundamental structural features of networks such as the
internet. Each layer in the protocol stack hides the com-
plexity of the layer below and provides a service to
the layer above. While the general principle of layer-
ing had long been recognized as one of the key reasons
for the enormous success of the Internet, until recently
there was little quantitative and systematic understand-
ing of layered network architectures and protocol stacks.
Major progress in this direction has been enabled by the
application of optimization and control theory explic-
itly addressing network layering and dynamics. The
optimization decomposition framework serves as a top-
down approach to systematically carry out the protocol
layering process and explicitly trade off design objec-
tives. We will illustrate this idea in cross-layer design
of wireless networks. Our current theory integrates three
functions: congestion control; routing and scheduling in
transport; and network and link layers, into a coherent
framework.
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The tools from optimization have also allowed major
progress in the problem of optimal power flow for the
electric grid. The Optimal Power Flow (OPF) problem
has been extensively studied since the work of Carpentier
in 1962 [11], but in general it is not convex and thus not
computationally tractable. Some recent work attempted to
reformulate the problem into more tractable realizations.
For example, references [38,39] considered radial dis-
tribution systems as conic programming problems. The
problem was first formulated as a semi-definite program
by Bai et al. [4] but they did not provide a relationship
between the semi-definite relaxation and the original OPF
problem. Significant progress was made when Lavaei et
al. in [45,47] proved a sufficient condition under which
there exists a semi-definite convex relaxation that is equiv-
alent to the OPF problem. We discuss how these results
and several extensions have not only identified conditions
under which the OPF problem can be solved efficiently
but also provided insight into the underlying structure of
power networks.

Finally, we introduce some results in turbulence, which
is a problem in physics that merges the natural with the
engineering world in many applications. Wall-turbulence
represents a persistent source of inefficiency in many
applications from flight and other transportation appli-
cations to flow in pipelines. It has remained one of the
enduring unsolved problems in physics, but its essen-
tial role in the efficiency of engineered systems makes
it an important topic of continuing research. In canon-
ical flow examples, such as plane Couette flow, the
shapes of the laminar and turbulent velocity profiles are
well known (as depicted in Fig 1). However, the under-
lying mechanisms involved in creating the “S” shaped
(blunted) turbulent profile remain unknown. In our work,
we have rigorously connected commonly observed flow
features to the creation of the turbulent mean veloc-
ity profile. We have shown that the so-called 2D/3C
model along with a robust control framework captures
the blunting of the profile along with other salient fea-
tures of fully developed turbulent plane Couette flow [30].
Our analysis also illuminated an interesting interaction
between energy amplification and the increased veloc-
ity gradient at the wall associated with the turbulent
profile. Essentially, although the input-output amplifi-
cation monotonically decreases with increasing forcing
amplitude, the velocity profiles become increasingly more
blunted. As in the biological system previously discussed,
there is likely a tradeoff between the linear amplifica-
tion mechanisms and non-linear blunting mechanisms that
determine important features of the turbulence-like phe-
nomena modeled by the 2D/3C system. This tradeoff
appears to have important implications for flow con-
trol techniques that target skin friction or the mean
profile.
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Fig. 1. (A) Diagram of the two state glycolysis model. ATP along with constant glucose input produce a pool of intermediate metabolites, which then
produces two ATPs. ATP inhibits both reactions. (B) Control-theoretic diagram of the same system. The system without inhibition/feedback is the

Plant while ATP inhibition acts as the Controller.

2. Hard Tradeoffs and Glycolytic
Oscillations

In [12], we use a simple two-state model of yeast glycol-
ysis, shown in Fig. 1, to explicitly derive hard tradeoffs
between metabolic overhead, network fragility, and oscil-
lations. The goal of this study was not only to explain the
existence of oscillations and formalize tradeoffs, but also
to introduce and interest experts in biology in the potential
applications of control theory.

Glycolysis is the cell’s energy plant, consuming glucose
to generate Adenosine Triphosphate (ATP), the energy
currency used throughout the cell. It is also autocatalytic
as ATP must be consumed to power the early reac-
tions. We propose a minimal system incorporating ATP
autocatalysis:

S O O S 2kx
yioL g Jr4yh L a+l [ 14y%
PFK PK

+[_01 }(1+5) (1)

—_—
Consumption

In the first reaction in (1), the enzyme phosphofruc-
tokinase (PFK) consumes g molecules of y (ATP) with
inhibition by ATP. We lump the intermediate metabolites

into variable x. In the second reaction, pyruvate kinase
(PK) produces g + 1 molecules of y at rate k for a net
(normalized) production of 1 unit, which is consumed by
the rest of the cell. Some studies suggest that ATP also
inhibits PK. We model the feedback strengths on PFK
and PK as % and g, respectively, and the cooperativity of
the autocatalytic reaction is modeled by a. We first take
g = 0 as this regulation is typically not modeled with the
exception of [62].

Linear stability and steady state analysis revealed a
trade-off between minimizing steady state error and main-
taining stability. When the feedback gain % is chosen to
minimize the steady state error, (1) hits a hard stability
limit and the system enters sustained oscillations (super-
critical Hopf bifurcation). Thus, our model suggests that
oscillations have no direct purpose but are side effects of
hard tradeoffs crucial to the functioning of the cell and can
be avoided at some expense.

Next we use the sensitivity function to derive more
fundamental tradeoffs that capture the transient/dynamic
response to disturbances, depend only on very basic prop-
erties of autocatalytic and control feedbacks, and are
independent of neglected details and model simplifica-
tions. The sensitivity function S measures the system’s
response to disturbances and ideally should be small, but
this function has a lower bound. When ¢ > 0, S(s) has
a right half-plane zero at z = k/g. We further show that
when a > 0, the open loop plant has an unstable pole.
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Fig. 2. Log Sensitivity In [S(jw)| (left) without ATP feedback on PK (g = 0) and step response to change in demand § (right). The integral of In |S(jw)|
is constrained by (2) for all 4. Higher £ gives better steady state error (S(0)) with more oscillatory transient. The system goes into sustained oscillations

for large h.

Therefore, when there is autocatalysis (¢ > 0,a > 0), we
can show that:
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with finite z > 0 and p > 0 as defined above (this
is a variant of Bode’s Integral Formula that applies for
degree < 2. One particular interest for control theorists
is that our model happens to be the simplest system we
know of that has a right-half plane zero). Like energy and
materials, robustness can be gratuitously wasted when the
inequality is large, is at best conserved, and must trade
off with metabolic efficiency. As shown in Fig. 2, higher
reduces steady state error (corresponding to S(0)) but with
more transient fluctuations (corresponding to higher peak
[ISGw)|lo)- Eventually, the system oscillates at the fre-
quency where S(jw) — oo. Withno autocatalysis (g = 0),
the tradeoff disappears and the bound in (2)— 0. Zero
steady state error with stability is then possible by taking
h — oo.

The low pass filter |;ﬂ| constrains the waterbed effect
to frequencies below w = z. Since z = k/g, high k and
low g are desirable. Low k should worsen transient perfor-
mance and we confirmed this experimentally. We also pro-
vide evidence that ATP feedback on PK (g) plays an impor-
tant role in stabilization against noise in enzyme levels.
For experimentally observed values of a,¢q, and i, g > 0
is necessary to simultaneously maintain acceptable steady
state error and stability for all £ > 0. This allows the cell

to fine tune the performance by tuning k via transcriptional
or translational control of enzyme levels, at the same time
allowing robustness to noise in gene expression. From an
engineering perspective, this is a remarkably clever con-
trol architecture, and the presence of g > 0 suggests that
at least in this case evolution favors higher complexity in
exchange for this kind of flexibility and robustness.

3. Network Design and Layering as
Optimization

The last decade has witnessed the development of a frame-
work that views the network as solving an appropriately
defined optimization problem, ranging from the classical
network flow problems often formulated as linear pro-
grams [1] to the recent and more general Network Utility
Maximization (NUM) problem [49, 42]. By setting up an
abstract framework of optimizing a global objective func-
tion subject to all the physical and resource constraints
in the network, network layering can be understood as a
decomposition of the problem into decentralized subprob-
lems, and various protocol layers are regarded as carrying
out asynchronous, distributed computation to implicitly
solve this global optimization problem. Different layers
iterate on different subsets of the decision variables using
local information to achieve individual optimality. Taken
together, these local algorithms attempt to achieve a global
objective.

Such a theory facilitates both understanding and design
of network architectures. In reverse engineering a given
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network, identifying an underlying optimization problem
being solved will expose the interconnection between
protocol layers and can be used to rigorously study per-
formance tradeoffs in protocol layering as different ways
to distribute a centralized computation. In the context of
design or forward engineering, this framework formalizes
the common practice of breaking down the desired system
into simpler modules and allows us to systematically carry
out the layering process by providing guidance on how to
structure and modularize different functions, suggesting
interfaces among these functions and the information that
must be exchanged among them, and making transpar-
ent the interactions among different components and their
global behavior.

To illustrate the idea of protocol layering as an optimiza-
tion decomposition, we briefly discuss cross-layer design
in wireless networks [14, 48]. Consider an ad hoc wireless
network with a set N of nodes and a set L of logical links.
We assume some form of power control so that each logical
link / has a fixed capacity ¢; when it is active. The feasible
rate region at the link layer is the convex hull of the cor-
responding rate vectors of independent sets of the conflict
graph. Let IT denote the feasible rate region. Let xl’.‘ be the
flow rate generated at node i for destination k. We assume
there is a queue for each destination k at each link (i, j).
Let fi].‘ be the amount of capacity of link (i,;) allocated to
the flows on that link for final destination k. Consider the
following generalized NUM in variables x; > 0, flj‘ >0:

maximize ) Us(xs)
SubjeCt to xlk S Z](l,])GLf;f_ Zj:(]‘,l‘)Eij"];’ Vi»j’ k (3)
fell

where x; is a shorthand for xl{‘. The first constraint is flow
balance equation: the flow originated from node i for final
destination k plus total capacity allocated for transit flows
through node i for final destination k should be no more
than the total capacity going out of node i for final desti-
nation k. The second constraint is on schedulability. The
dual problem of (3) decomposes into the following two
subproblems:

maxD) (1) = max ;(Us(xs) — Xghs) (4)

maxDy(A) :=max Y A (ff—fHs.ef el (5)
120 G E TR

The first subproblem is congestion control where A is
the congestion price locally at source s = (i,k). The
second subproblem corresponds to a joint problem of
multi-path routing and allocation of link capacities. Thus,
by dual decomposition, the flow optimization problem
decomposes into separate local optimization problems
of transport, network and physical layers which interact
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through congestion prices. This suggests a system archi-
tecture for a wireless ad hoc network that uses hop-by-hop
routing and the back pressure flow control first studied by
Tassiulas and Ephremides [61]. A Wi-Fi implementation
of this architecture has been done in [64] and performs
significantly better than the current system.

4. Convexification of the OPF Problem

For a given grid configuration (interconnection topology),
with supply and demand nodes, the basic OPF problem is
concerned with determining how much power each gen-
erator should supply to minimize a cost function in the
face of system constraints on physical phenomena such
as generator capacities and transmission line losses, see
e.g. [34,53] for a survey of OPF problems and solu-
tion methods. The non-linear coupling between power
and voltage (magnitude) makes the general OPF prob-
lem non-convex and non-deterministic polynomial time
hard [45, 66]. Given the practical importance of the prob-
lem there has been a lot of research into efficient solution
algorithms, and historically the most common solution
techniques have relied on linear programming techniques
[60, 3]. Researchers have also proposed a number of relax-
ations to make the OPF problem more tractable. Jabr
made progress toward convexifying the problem using
a conic quadratic model of radial distribution systems
[38] and meshed networks [40] and demonstrated an effi-
cient solution method to these problems using an interior
point method for convex conic quadratic programming.
However, the meshed network generalization included
some non-convex constraints. The problem has also been
formulated as a semi-definite program (SDP) by Bai et al.
[4,5].

Lavaei et al. made significant progress toward this dif-
ficult problem again using tools from optimization and
systems theory. They showed that the OPF is equiva-
lent to a semi-definite program with a rank-constraint and
provided a sufficient condition that makes a convex rank
relaxation exact [44, 46]. The procedure is as follows: the
voltage and power constraints in the OPF problem, which
are quadratic in nature, are transformed into linear matrix
inequalities (LMIs). This yields the rank constrained refor-
mulation. The solution of the convex SDP is obtained as
the Lagrangian dual to a rank relaxation of this equivalent
reformulation provides a lower bound to the OPF solution.
In general, the lower bound may not be tight (nonzero dual-
ity gap). However, a sufficient condition that guarantees
zero duality gap and optimality of the resulting OPF solu-
tion was derived by [44]. Specifically, this dual is a convex
SDP that can be solved efficiently and the duality gap is
zero if and only if the solution of a certain LMI inequality
in the dual problem has specific properties. The sufficient
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condition guarantees that a globally optimal solution of
OPF is recoverable from the dual problem’s optimal solu-
tion. Further study showed that the sufficient condition
always holds for resistive power networks and provided
strong evidence that the method works for most practi-
cal circuits [46]. Specifically, an exact (globally optimal)
solution was obtained for all of the IEEE benchmark sys-
tems archived at [52]. The formulation is very general and
has been extended to OPF problems with arbitrary convex
cost functions [59].

Methods from systems theory and optimization have
also been used to develop a computationally efficient solu-
tion for the problem through the addition of multiple
controllable phase shifters (additional power electronics
that allow phase adjustments along the power lines). These
devices simplify the verification of the duality gap. In fact,
if the load is allowed to be over-satisfied and a sufficient
number of phase shifters are added to the network, the
duality gap can be eliminated altogether. The implica-
tion of this result is that any power transmission network,
regardless of its topology, can be augmented using phase
shifters to guarantee the polynomial time solvability of
OPF over the space of all possible values of loads, physical
limits and convex cost functions [59].

The formulation can also be extended to integrate
simple charge/discharge dynamics of energy storage dis-
tributed over the network [27]. The inclusion of these
energy storage dynamics leads to a finite-horizon optimal
control problem that enables optimization of (dynamic)
power allocation over time in addition to the static alloca-
tion over the network. This framework allows the analysis
of systems with time-varying energy sources that can be
used to model renewable energy sources such as solar and
wind power. Itis widely accepted that storage technologies
will be an integral part of systems with a high penetration
of renewable resources [7, 63].

5. A Tractable Model for Wall-Bounded
Turbulent Flows

In contrast to many of the problems in natural and engi-
neered systems, it is a lack of robustness that plays a
fundamental role in wall turbulence. This characteristic
is related to the long accepted potential of wall-bounded
shear flows to produce large amplification of disturbances.
Even stable linear operators associated with these systems,
the so-called linearized Navier Stokes equations (LNS),
experience temporal growth which exceeds the size of the
initial disturbance by large factors (e.g., O(R?) where R
is the Reynolds number) [10, 33, 54]. They have an input-
output response that grows as a function of the Reynolds

number e.g., O(R%) or O(R?) depending on the nature of
the input [6, 26].
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The control theoretic interpretation of this behavior is
that transition is not a stability problem but rather a robust-
ness issue. The large growth/amplification is merely a
“high gain”, which is common in systems such as these
because their underlying linear operators are non-normal.
The small gain theorem provides mathematical measure
of the system’s potential growth (in a normed sense) and
the amount of permissible “uncertainty”, such as modeling
errors or external disturbances, before a system is unable to
maintain stability or performance. The bound on the uncer-
tainty is inversely proportional to the maximal response
of the system. Therefore, as the upper bound on the
amplification increases, the amount of uncertainty at the
frequencies corresponding to the maximal response must
be reduced. In a wall-bounded shear flow, an increase in
the Reynolds number decreases the amount of uncertainty
required for the system’s performance to degrade from that
of streamlined laminar flow to tugbulent flow decreases
because of the aforementioned O(R2 ) —O(R?) disturbance
amplification. In these terms, the main driving factor in the
transition to turbulence can be viewed as a robustness issue
in which the stability/performance of the laminar flow
is not robust to disturbances (uncertain parameters). The
observation that transition can be delayed in experiments
with extremely carefully controlled conditions (and equiv-
alently numerical accuracy in simulations) comes directly
from the fact that the magnitude of the system norm (and
the associated transient energy growth and/or input-output
amplification) increases with Reynolds number.

This purely linear analysis can illuminate many issues,
however the one fundamental flow feature that linear
models are unable to capture is the change in the mean
velocity profile as the flow transitions from laminar to
turbulent. A non-linear model is required to capture this
momentum transfer. Unfortunately, the full Navier Stokes
(NS) equations for incompressible flows are known to
be analytically intractable [37]. So, we selected a sim-
ple, mathematically tractable non-linear representation
with modeling assumptions based on experimental obser-
vations and linear analysis, in particular the dominance
of streamwise infinitely elongated modes (as depicted in
Fig. 3). This idea is supported by a growing body of work
that points to characterization of wall-bounded shear flows
in terms of dynamically significant coherent structures,
the most common of which show streamwise and quasi-
streamwise alignment, see for example [32, 35, 51]. Linear
analysis reinforces this notion in that streamwise constant
perturbations to the LNS also produce the largest input-
output response [6,41,21]. Also, streaks of streamwise
velocity naturally arise from the set of initial conditions
that produce the largest energy growth [10,25], namely
streamwise vortices.

Our work uses this streamwise constant projection of
the NS, the so-called 2D/3C model, to rigorously connect
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Fig.4. (a) The laminar and blunted or “S” shaped turbulent velocities profile for plane Couette flow driven by motion (at velocity U,,) of the top plate.
(b) The 2D/3C simulation captures the change in profile from a laminar initial condition to a turbulent mean velocity profile.

the observed flow features to the creation of the turbulent
mean velocity profile. A two-dimensional rendering of
the shapes of the linear laminar profile and turbulent pro-
files are illustrated in Fig. 4(a). We show that the 2D/3C
model along with a robust control framework captures the
blunting of the profile along with other salient features

of fully developed turbulent plane Couette flow [30]. The
robust control framework employs small amplitude Gaus-
sian noise forcing to simulate the 2D/3C model’s response
in the presence of disturbances, uncertainty and modeling
errors. Fig. 4(b) shows the simulation results compared to
experimentally verified direct numerical simulation data
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of a fully turbulent Couette flow. The model captures the
change in mean velocity profile from the nominal laminar
to the characteristic “S” shaped turbulent profile [28,29].
A surface plot of the deviation from the laminar flow is
shown in the left side of Fig. 3, where the direct relation-
ship between the streamwise structures and the momentum
transfer that leads to the “S” shape of the turbulent pro-
file is illustrated through the dashed line on the surface
plot.

The laminar flow solution is globally stable [8], which
indicates that the flow state should always return to the
streamlined laminar flow condition. The fact that the
2D/3C model is able to generate “turbulent-like” behavior
under small-amplitude stochastic noise indicates that tran-
sition to turbulence in this model is likely a consequence of
the laminar flow solution’s lack of robustness (inability to
maintain the maintain this flow condition) that is directly
related to the large amplification discussed above.

A simple cross-stream model of large-scale stream-
wise elongated structures non-linearly coupled through a
steady-state 2D/3C streamwise momentum equation iso-
lates important mechanisms involved in determining the
shape of the turbulent velocity profile. We use cross-
stream components (i.e. those representing a cross-section
of the three-dimensional flow) to create a model of struc-
tures consistent with the experimentally and numerically
observed flow features. This is used as input to develop
a forced 2D/3C streamwise velocity equation, i.e. we
study a model of the velocity component that describes
the shape of the mean profile. This input-output response
from a spanwise/wall-normal (z-y) plane stream function
to the streamwise velocity component illuminates a strong
relationship between 2D/3C nonlinear coupling in the
streamwise velocity evolution equation and the momen-
tum redistribution that produces features consistent with
the mean characteristics of fully developed turbulence
[27]. Isolating these momentum transfer mechanisms rep-
resents an important step in the development of flow
control strategies because delaying the onset of turbu-
lence and turbulence suppression are common goals in
flow control applications.

The input-output analysis in this framework also illu-
minates an interesting interaction between energy ampli-
fication and the increased velocity gradient at the wall
associated with the turbulent profile. Essentially, although
the input-output amplification monotonically decreases
with increasing forcing amplitude, the velocity profiles
become increasingly more blunted. Thus, there is likely a
tradeoff between the linear amplification mechanisms and
non-linear blunting mechanisms that determine important
features of the turbulence-like phenomena modeled by the
2D/3C model. This tradeoff may have important implica-
tions for flow control techniques that target skin friction
or the mean profile.
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6. Summary and Discussion

In this paper, we have summarized our research that has
branched out substantially from mainstream control the-
ory into other areas of engineering, biology and physics,
but still maintains strong thematic contact with controls.
We introduced the formalization of tradeoffs between effi-
ciency and robustness in biology. The steady state tradeoff
reveals that the observed oscillation in glycolysis is nei-
ther directly purposeful nor an evolutionary accident but a
necessary consequence of autocatalysis and hard tradeoffs
between fragility, efficiency, and complexity. We showed
that nature has evolved a feedback structure that effec-
tively manages these tradeoffs with flexibility to adapt to
changes in supply and demand and robustness to noisy
gene expression, at the cost of higher enzyme complex-
ity. Consistent with engineering, complexity in biology
is primarily driven by robustness, not minimal functional-
ity [18].

The integral tradeoff in equation (2) is deeper and cap-
tures system dynamics. However, z and p still depend
on phenomenological assumptions about autocatalysis
(g and a) and enzyme efficiencies (k). This motivates fur-
ther unification of control theory with thermodynamics
and statistical mechanics and recent progress is encour-
aging [56]. It also motivates rethinking how biology
overcomes the causality limit with various mechanisms
that exploit predictable environmental fluctuations (e.g.
circadian rhythms) or provide remote sensing (e.g. vision,
hearing), both of which can greatly mitigate hard limits
such as (2) [50].

Determining what is essential about the network-level
convergence within biology and with technology requires
adeeper understanding of protocols and their architecture.
Our research on optimization decomposition as layering
facilitates provides a promising framework to understand
not just what works but why it works. It has also led
to new theories of the internet and related networking
technologies (e.g. [17]), and to new protocols that have
been tested and deployed. We are expanding this frame-
work to cleaner integration of congestion control, routing,
scheduling, power control, and network coding [13-16,
19-20], and to more explicitly treat dynamics [45].

The discussion above and the extensive list of references
in [17] have overwhelmingly demonstrated the value and
promise of such an optimization based framework. How-
ever, fundamental issues remain to be addressed before
this theory-based approach matures into a full-fledged
framework for network design. One of the main research
topics is developing a common analytical framework and
language that integrates computation, communication,
and control in complex network or networked systems
across all protocol layers from physical layer to appli-
cation layer and to dynamics over the network. The most
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exciting opportunity for use of these methods, however,
is in fundamentally redesigning network architectures to
clean slate architectures, where control and dynamical sys-
tems theory plays an integral role at the outset, rather than
patch a leaky architecture when problems (e.g. congestion
collapse) arise.

Optimization tools have also enabled significant
progress in the optimal power flow (OPF) problem, which
has been studied for about half a century and is notorious
for its high nonconvexity. By formulating the OPF prob-
lem as a semi-definite program, we were able to solve the
problem efficiently (under certain conditions) by solving
the Lagrangian dual to a rank relaxation of an equivalent
formulation for the OPF problem. We provided a suffi-
cient condition for zero-duality gap between OPF and this
convex dual. The sufficient condition might hold widely
in practice based on the fact that physical quantities such
as resistance, capacitance, and inductance, are all positive.
Further work has demonstrated this zero-duality gap for
a variety of test cases and a rich class of network topolo-
gies [9, 66,46]. Our current results focused on cases with
no uncertainties. Integration of uncertainties due to either
intermittency in generation or fluctuations in demand is a
subject of ongoing study [58].

Last but not least, turbulence can be viewed using a
robust control framework. We have described how tools
from robust control theory [23, 24] can be combined with
a streamwise constant model to provide a framework
for understanding some of the salient features of fully
developed turbulence in plane Couette flow. The 2D/3C
nominal model includes non-linear effects that are stressed
by some researchers, while maintaining the mathematical
properties associated with linear disturbance amplifica-
tion. This framework also reveals an important tradeoff
between linear and non-linear phenomena. Linear models
provide important information about energy amplifica-
tion and structural features in turbulent flows whereas
a nonlinear model is required to capture the momen-
tum transfer that produces a turbulent velocity profile.
These types of tradeoffs are very common in engineer-
ing systems and understanding them provides important
information in designing systems that are both safe and
able to meet advanced performance requirements. Fur-
ther understanding of this particular tradeoff may also
provide important insight into the mechanisms associated
with both transition and fully turbulent flow.

The universal hard limits on systems and their com-
ponents have until recently been studied separately in
fragmented domains of physics, chemistry, biology, com-
munications, computation, and control, but a unified
theory is needed and appears feasible. We have illustrated
the power of robustness and optimization as an underlying
mathematical framework to clarify biological and physi-
cal phenomena using classical case studies in turbulence
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and glycolysis. Conversely, these fields can motivate new
theoretical directions [36]. The control theory and opti-
mization framework also allows a coherent framework that
integrates congestion control, routing and scheduling in
network design and also reveals tractability of real-world
problems such as the optimization of power grid.
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