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Abstract— Recent advances in network coding have shown
great potential for efficient information multicasting in com-
munication networks, in terms of both network throughput
and network management. In this paper, we address the prob-
lem of flow control at end-systems for network coding based
multicast flows. We formulate optimization based models for
network resource allocation, based on which we develop two
sets of decentralized controllers at sources and links/nodes for
congestion control in wired networks with given coding subgraphs
and without given coding subgraphs, respectively. With random
network coding, both sets of controllers can be implemented
in a distributed manner, and work at the transport layer to
adjust source rates and at network layer to carry out network
coding. We prove the convergence of the proposed controllers to
the desired equilibrium operating points, and provide numerical
examples to complement our theoretical analysis. The extension
to wireless networks is also briefly discussed.

Index Terms— Congestion control, Network coding, Multicast,
Coding subgraph, Distributed algorithm.

I. INTRODUCTION

Network coding extends the functionality of network nodes
from storing/forwarding packets to performing algebraic op-
erations on received data. Starting with the work of [1],
which shows that employing coding at intermediate nodes is
sometimes needed to maximize multicast throughput, various
potential benefits of network coding have been shown, includ-
ing robustness to link/node failures [15] and packet losses [6],
[19]. Distributed random linear coding schemes, see, e.g., [5],
[9], have made practical implementation of network coding
possible. In this paper, we address the problem of flow control
at end-systems for network coding based multicast flows with
elastic rate demand.

Most existing work on network coding considers coding
among packets of each multicast session, and assumes that the
communication rates for each session and/or the network link
capacities are fixed and known. Given a cost function in terms
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of the flow on each link, a min-cost flow optimization problem
is obtained and solved to find the optimal coding subgraphs,
which specify how much of each session’s data should be sent
on each link, see, e.g., [20], [28], [31]. For this reason, we call
coding subgraphs of this kind capacitated subgraphs.

However, in many practical networks, traffic is bursty and
elastic with varying rates, and since the network is shared by
many users with unknown or changing demands, the available
link capacities are unknown and variable. In such cases, it is
not practical to solve a min-cost flow optimization to obtain
capacitated subgraphs. Instead, congestion control is needed
to make full use of bandwidth while avoiding congestion and
maintaining certain fairness among the competing flows in the
network.

One approach we propose is to use coding subgraphs that
are un-capacitated (i.e., specifying which links are used by
a session but not the amount of the data sent on each link)
and chosen based on general cost criteria that are independent
of flow rates. This is a practical approach; most existing
routing approaches, such as those used in the Internet, specify
analogously un-capacitated routes. Since each session uses
only a limited set of trees, this approach may give lower
rates compared to optimizing over the entire network, but it is
much less complex. We propose decentralized controllers that
combine congestion control at fast timescales and adaptive
traffic splitting at slower timescales based on end-to-end
congestion feedback in the network.

Another approach we consider does not explicitly find
coding subgraphs, but makes dynamic routing and coding
decisions based on queue length gradients. This approach,
termed back-pressure, was first proposed for optimal routing
and scheduling in [26] and extended to various contexts (see,
e.g., [21]) including network coding in [11]. Our contribution
in this part of the paper is to propose an alternative algorithm
for back-pressure based routing and incorporate congestion
control with network coding.

Our consideration of congestion control uses the framework
of utility maximization, which can provide the flexibility of
modeling user application needs or performance objectives and
guide the design of distributed algorithms and decentralized
control. As shown in, e.g., [13], [18], [16], TCP congestion
control algorithms can be interpreted as distributed primal-dual
algorithms over the Internet to maximize aggregate utility. We
extend the basic utility maximization formulation to incorpo-
rate the two network coding approaches described above, and
propose two sets of decentralized controllers for congestion
control to meet the new challenges associated with network
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coding. With random network coding, both sets of controllers
can be implemented in a distributed manner, and work at the
transport layer to adjust source rates and at the network layer
to carry out network coding. We prove the convergence of
the proposed controllers to the globally optimal solutions for
intra-session network coding.

The main contribution of this paper is to present optimiza-
tion models and propose decentralized congestion controllers
for network coding based multicast flows. The proposed
controllers are promising in practical implementation, and can
be extended to handle different environments such as multi-
layer network coding and multirate multicasting. In addition,
in deriving decentralized control, we develop an alternative
distributed algorithm – a partially-primal and dual gradient
algorithm that, though presented for the specific problem
we consider in this paper, is applicable to a certain class
of nonstrict convex optimization problems. This algorithm is
expected to find interesting applications in optimization and
its application to engineering design and control.

The paper is organized as follows. The next section briefly
discusses some related work. Section III presents details of the
system model for multicast with intra-session network coding
in wired networks. Sections IV and V present decentralized
congestion controllers for multicast with and without given
coding subgraphs, respectively. Section VI provides numerical
examples to complement the theoretical analysis. Section VII
briefly discusses the extension to wireless networks, and sec-
tion VIII concludes with some discussions on further research.

II. RELATED WORK

There are several recent works on congestion control of
multicast flows, see, e.g., [12], [7], [24], which consider
traditional routing-based multicasting. In contrast, this paper
studies congestion control for network coding based multicas-
ting.

With network coding, the works most similar to our work
are [20], [31], [29], [30]. We use a similar model but without
network link costs for the networks without given coding
subgraphs, see subsection III-C. What differentiates this part
of our work from others are the following. First, we use a
different decomposition and obtain a dynamic scheme that
uses only local information, see section V. As an important
consequence of such alternative decomposition, our solution
requires less communication overhead. Our solution can also
be readily extended to the case with network cost. Second, our
congestion control scheme is a dual congestion control whose
dual variables admit concrete and meaningful interpretation
as congestion prices. Third, our work also differs from [20],
[31] in that we do not relax the constraint that specifies the
relation between the information flows and physical flows of
a multicast session but exploit it to specify coding.

All existing work on network coding solves for the optimal
coding subgraphs based on a flow model that is similar to
multicommodity flow model for routing [8]. However, as
discussed in the Introduction, it is often impractical to do so.
In analogy to what happens with routing, we consider the case
where subgraphs are chosen based on general cost criteria. We

thus study congestion control for networks with given coding
subgraphs, see sections III-B and IV.

Related work includes [23] that studies congestion control
with adaptive multipath routing using a multi-commodity
model for the routing. Our model for networks without given
coding subgraphs is also a multi-commodity model but with
the additional constraints from network coding, and more-
over, we propose a different solution approach. For the case
with given coding subgraphs, we use a technique similar
to that from [8], [23] for adaptive control of traffic splits
among different multicast trees. Related work also includes
[22], [3] that studies flow control with backpressure based
routing/scheduling. Our solution for networks without given
coding subgraphs can be seen as an extension of those in [22],
[3] to network coding.

III. MODELS AND PROBLEM FORMULATIONS

A. Network and Coding Model

Consider a network, denoted by a graph G = (N,L), with
a set N of nodes and a set L of directed links. We denote a
link either by a single index l or by the directed pair (i, j)
of nodes it connects. Each link l has a fixed finite capacity cl
packets per second.

Let M denote the set of multicast sessions, indexed by m.
Each session m has one source sm ∈ N 1 and a set Dm ⊂
N of destinations. Network coding allows flows for different
destinations of a multicast session to share network capacity
by being coded together: for a single multicast session m of
rate xm, information must flow at rate xm to each destination;
with coding the actual physical flow on each link need only be
the maximum of the individual destination’s flows [1]. These
constraints can be expressed as

∑
j:(i,j)∈L

gmdi,j −
∑

j:(j,i)∈L

gmdj,i =

 xm if i = sm
−xm if i = d ,
0 otherwise

(1)

∀ d ∈ Dm,

max
d∈Dm

{gmdi,j } ≤ fmi,j , ∀ (i, j) ∈ L, (2)

where for each link (i, j), gmdi,j gives the information flow
for destination d of session m, and fmi,j gives the amount
of link capacity that is allocated to session m. Note that the
information flow balance equation (1) is formally similar to
the physical flow balance equation for routing of data flows in
the network. The inequality (2) simply says that the physical
flow gmi,j := maxd∈Dm

{gmdi,j } for each session m should not
exceed its allocated link capacity.

Figure 1 gives an example, adapted from [1], of a lin-
ear network code, and the corresponding flow variables
(gi,j , g

d1
i,j , g

d2
i,j). For packet networks, the result is stated for-

mally in Theorem 1 of [20], which we reproduce here, slightly
adapted:

Theorem 1: The rate vector g satisfies the constraints (1)
if and only if there exists a network code that sets up a
multicast connection at rate arbitrarily close to xm from source

1Our analysis can extend to handle multi-source multicasting in a straight-
forward way.
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sm to destinations in set Dm and that injects packets at rate
arbitrarily close to gmi,j on each link (i, j).
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Fig. 1. An example network coding subgraph with one source s and two
destinations d1 and d2 (left graph), where links (s, u), (u,w) and (u, d2)
are assumed to have one unit of capacity, and all other links have two units
of capacity; and the corresponding flow variables (right graph), where each
link (i, j) is marked by the triple (gi,j , g

d1
i,j , g

d2
i,j).

For the case of multiple sessions sharing a network, achiev-
ing optimal throughput requires in some cases coding across
sessions. However, designing such codes is a complex and
largely open problem. Thus, we limit our consideration to
separate network codes operating within each session, an
approach referred to as superposition coding [32] or intra-
session coding. In this case, the set of feasible flow vectors
is specified by combining constraints (1)-(2) for each session
m ∈M with the following link capacity constraints:∑

m∈M
fmi,j = ci,j , ∀ (i, j) ∈ L. (3)

In practice, the network codes can be designed using the
approach of distributed random linear network coding, see,
e.g., [9], [5], in which network nodes form output packets by
taking random linear combinations of corresponding blocks of
bits in input packets. The linear combination corresponding to
each packet can be specified by a coefficient vector in the
packet header, updated by applying to the coefficient vectors
the same linear transformations as to the data. If (1)-(2) holds,
each sink receives with high probability a set of packets with
linearly independent coefficient vectors, allowing it to decode.
The relative overhead of these coefficient vectors depends on
parameters of the network code that can be chosen to trade-off
overhead against performance, and it decreases with the size
of the packets. See, e.g., [5], [11] for a detailed description
and discussion of overhead and other practical implementation
issues.

B. Multicast with Given Coding Subgraphs

We first consider the network with a given coding subgraph2

Gm for each session m. The subgraph Gm can be viewed
as the union of links of a set Rm of possibly overlapping
multicast trees, each connecting source sm to all destinations
d ∈ Dm. Congestion control is carried out by adjusting
the flow rate on each tree. Coding is done on overlapping

2In this and the following sections, subgraph refers to “un-capacitated”
subgraph.

segments of different trees of a session that have disjoint sets
of downstream destinations. Figure 2 shows an example of
muticast trees that are decomposed from the coding subgraph
shown in Figure 1. In this example, coding on the shared
link is possible, allowing both trees to simultaneously transmit
information at their maximum individual rates.
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Fig. 2. Multicast trees for the example shown in Fig.1. Coding is done on
the shared link (w, v), which, as part of the left tree, has one downstream
destination d2, and, as part of the right tree, has one downstream destination
d1. The left tree can support up to two units of information flow and the
right tree can independently support up to one unit of information flow, since
coding on link (w, v) allows the two trees to share capacity.

Analogous to practical routing, such coding subgraphs can
be chosen in a variety of ways based on combinations of
different considerations, such as delay, resource usage or com-
mercial relationships among network providers. For instance,
we can use existing multicast tree construction algorithms,
or use existing techniques for finding multiple paths to each
destination and combine appropriate sets of paths that form
trees.

To simplify notation, we consider the case where overlap-
ping segments of different trees of a session have disjoint sets
of downstream destinations, thus allowing coding to occur on
all overlapping segments3; the more general case where coding
occurs only on some overlapping segments admits a similar
analysis. Each tree Tmr , r ∈ Rm contains a set Lr ⊂ L of
links, which defines a |L|× |Rm| multicast matrix Hm whose
(l, r)th entry is given by

Hm
lr =

{
1 if l ∈ Lr
0 otherwise.

Note that over each multicast tree Tmr the source sends
the same information flow to each destination; we denote its
rate by xmr . With intra-session network coding, the physical
flow rate for each multicast session m though link l is
maxr{Hm

lr x
m
r }. For each link l, denote by yml the amount of

link capacity that is allocated to session m. The link capacity
constraints (2)-(3) become

max
r
{Hm

lr x
m
r } ≤ yml , (4)∑

m

yml = cl ∀ l ∈ L. (5)

By Theorem 1, conditions (4)-(5) are satisfied if and only if
there exists a corresponding multicast network code of rate

3This is the case, for instance, if each session’s trees have been formed by
first finding multiple link-disjoint paths to each destination and then choosing
combinations of these paths that form trees.
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arbitrarily close to
∑
r x

m
r from source sm to destinations d ∈

Dm.
Following [13], assume each session m attains a utility

Um(xm) when it transmits at a rate xm =
∑
r x

m
r packets

per second over the coding subgraph. We assume Um(·) is
continuously differentiable, increasing, and strictly concave for
the flows with elastic rate demand. Our objective is to design
decentralized controllers at sources and links/nodes to achieve
the optimum of the following network resource allocation
problem:

P1 : maxxm
r ,y

m
l

∑
m

Um(xm)

subject to Hm
lr x

m
r ≤ yml , ∀r ∈ Rm, ∀m ∈M∑

m

yml = cl, ∀l ∈ L.

C. Multicast without Given Coding Subgraphs

Since coding subgraphs are not given, we directly use the
network coding flow constraints (1)-(3) and Theorem 1, given
in subsection III-A, to formulate the following optimization
problem which chooses source rates xm, information rates gmdi,j
and link capacity allocation fmi,j so as to maximize aggregate
utility:

P2 : maxx,g,f
∑
m

Um(xm)

subject to
∑

j:(i,j)∈L

gmdi,j −
∑

j:(j,i)∈L

gmdj,i = xmi , i 6= d,∀d,m

gmdi,j ≤ fmi,j , ∀d,m∑
m

fmi,j = ci,j , ∀(i, j) ∈ L,

where xmi = xm if i = sm and xmi = 0 otherwise. Here we
do not include flow balance equation at destinations, which
is automatically guaranteed by the flow balance at the source
and intermediate nodes.

Note that in the models P1 and P2, network coding
comes into action through the constraints (4) and (2). With
Theorem 1, this gives some form of “separation principle”
that allows us to separate decisions on resource usage and
congestion control from the design of the actual network
codes.

The system problems P1 and P2 are convex optimization
problems, and are polynomially solvable if all the utilities and
constraint information is provided, but this is impractical in
real networks. Since they are convex optimization problems
with strong duality, distributed algorithms and decentralized
control can be derived by considering corresponding Lagrange
dual problems, as we will show in the next two sections.

IV. DECENTRALIZED CONGESTION CONTROL FOR
NETWORKS WITH GIVEN CODING SUBGRAPHS

We introduce for each multicast session m traffic split
variables αmr ≥ 0 for each multicast tree Tmr of the coding
subgraph, such that

∑
r α

m
r = 1 and xmr = xmαmr . We see

that αmr controls the fraction of the traffic of multicast session
m that is sent through the tree Tmr . Instead of solving the

problem P1 directly, we first consider the version of the rate
control problem with the fixed split vector α.

P1a : max{xm,yml }
∑
m

Um(xm)

subject to Hm
lr x

mαmr ≤ yml∑
m

yml = cl.

The above problem is a strictly convex and has a unique
solution, with respect to source rates xm. Let us denote its
maximum by U(α). The system problem P1 corresponds to
computing

P1b : maxα≥0 U(α)

subject to
∑
r

αmr = 1.

Note that the above problem is not necessarily convex. But we
will see later that it can still be solved for global optimality.

A. Two-Timescale Flow Control

Consider the Lagrangian of the problem P1a with respect
to the constraints due to network coding

L(α, p, x, y) =
∑
m

Um(xm)−
∑
l,m,r

pml,r(H
m
lr x

mαmr − yml ).

Interpreting pml,r as the “congestion price” at link l for multicast
tree Tmr , and motivated by maximizing the Lagrangian over
x and y for fixed p, we obtain the following joint congestion
control and session allocation algorithm:

Congestion control: Given congestion price p, the source
sm adjusts flow rate xm according to the aggregate congestion
price

∑
lH

m
l,rp

m
l,r over the multicast trees Tmr ,

xm = (U ′m)−1(
∑
r

αmr
∑
l

Hm
l,rp

m
l,r). (6)

Similar to TCP congestion control algorithm where the source
adjusts its sending rate according to aggregate congestion price
along its path, this congestion control mechanism has the
desired price structure and is an end-to-end congestion control
mechanism.

Session allocation: Intuitively, the multicast session with
higher link price should be allocated more link capacity. Let
pml =

∑
r p

m
l,r and denote by ηl[p(t)] the minimal of those

p̄l(t) at time t such that p̄l(t) = 1
|M ′l (t)|

∑
m∈M ′l (t)

pml (t) with
M ′l (t) := {m|yml (t) > 0 or pml (t) ≥ p̄l(t),m ∈M}.4 At each
link l, the amount of capacity yml that is allocated to session
m follows

ẏml = εl[p
m
l − ηl[p]]+yml , (7)

4p̄l and M ′l can be determined in a recursive way as follows. In the
beginning, let M ′l = M and calculate p̄l = 1

|M′
l
|
∑

m∈M′
l
pml (t), and then

exclude from M ′l those sessions m such that yml = 0 and pml < p̄l. Repeat
the same procedure with the new sets M ′l , and when it stops we get ηl[p].
ηm[p] and ηi,j [w] that appear later can be determined in similar way.
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where εl is a positive stepsize, and [h]+z = h if z > 0 and
[h]+z = max{0, h} if z = 0. It is easy to verify that∑

m

ẏml = 0,∑
m

ẏml p
m
l ≥ 0.

We see that
∑
m ẏ

m
l p

m
l = 0 only if ẏml = 0, which requires

pml = p̄l, or, yml = 0 and pml < p̄l.
The session allocation algorithm (7) actually follows the

gradient direction of
∑
m p

m
l y

m
l subject to

∑
m y

m
l = cl. Any

algorithms that follow the gradient directions would work, and
(7) just picks a specific gradient direction that enables the
convergence analysis.

Defining D(α, p) = maxx,y L(α, p, x, y) with
∑
m y

m
l =

cl, by duality we have (see, e.g., Chapter 5 in [2])

U(α) = min
p≥0

D(α, p) = min
p≥0

max
x,y

L(α, p, x, y).

The dual problem minpD(α, p) can be solved by using
the gradient method [2], where Lagrangian multipliers are
adjusted in the opposite direction to the gradient ∂pD(α, p).
This motivates the following dual congestion price update
mechanism.

Congestion price update: Link l price with respect to
multicast tree Tmr follows

ṗml,r = γl[H
m
lr α

m
r x

m(p)− yml (p)]+pml,r
, (8)

where γl is a positive stepsize. Note that link l will use
capacity yml to transfer coded packets for multicast session
m, equation (8) says that if the demand Hm

lr x
m
r for virtual

capacity at link l for the information flow of multicast tree
Tmr exceeds the assigned physical capacity yml , the price pmlr
will rise, and decreases otherwise. Equation (8) is distributed
and can be implemented at individual links using only local
information.

Note that the usual way to solve the problem like P1a
distributedly is to also relax the equality constraints like∑
m y

m
l = cl. We want to avoid this, since it will introduce

auxiliary control variables that are unnecessary and do not ad-
mit physical interpretation. We also do not maximize the linear
term

∑
m p

m
l y

m
l in the Lagrangian directly, since this will lead

to oscillations and nonsmoothness. The distributed algorithm
(6)-(8) is a partially-primal and dual gradient algorithm. Its
convergence analysis is subtle, due to the equality constraints.
To our knowledge, the specific gradient direction we choose
in equation (7) is the only gradient direction for which the
global convergence has been analytically established, see the
following convergence analysis. Though developed for the
specific problem P1a, this algorithm and its convergence
analysis are applicable to a class of optimization problems
with similar structure.

The above congestion control algorithm (6)-(8) works under
the assumption that the traffic split vector α remains constant.
We now discuss how to control αmr to solve the problem P1b,
which we call tree adaptation. We assume that tree adaptation
is much slower so that the minimization of D(α, p) over p
can be seen as instantaneous.

Intuitively, the optimal traffic split vector should strike an
equilibrium that is similar to Wardrop equilibrium, where for
each multicast session the aggregate prices in all multicast
trees actually used are equal and less than those which
would be experienced by a single packets on any unused
tree [27]. We gradually update the split vector towards this
equilibrium, as in [8]. Let pmr =

∑
lH

m
lr p

m
l,r and denote

by ηm[p(t)] the maximal of those p̄m(t) at time t such that
p̄m(t) = 1

|R′m(t)|
∑
r∈R′m(t) p

m
r (t) with R′m(t) := {r|αmr (t) >

0 or pmr (t) ≤ p̄m(t), r ∈ Rm}.
Tree adaptation: Each source sm controls the traffic split

variable αmr following

α̇mr = κm[ηm[p]− pmr ]+αm
r
, (9)

where κm is a positive stepsize. It is straightforward to verify
that ∑

r

α̇mr = 0, (10)∑
r

α̇mr p
m
r ≤ 0. (11)

We see that
∑
r α̇

m
r (n)pmr = 0 only if α̇mr (n) = 0, which

requires

pmr ≥ p̄m, (12)
αmr (pmr − p̄m) = 0. (13)

B. Convergence Analysis

The decentralized controllers for flow control presented in
last subsection have embedded loops. In the inner loop (6)-(8),
which operates at a fast timescale, the network searches for
optimal source rates, session allocation and congestion prices
for fixed flow split vector. In the outer loop (9), which operates
at a slow, traffic engineering timescale, the sources adapt the
flow split vector based on the stabilized congestion prices in
the network. The tree adaptation algorithm (9) can be seen as
a method for stable traffic engineering based on congestion
prices.

We now provide the convergence analysis of the inner loop
controllers (6)-(8). Denote by p∗ an optimal solution to the
dual problem minpD(α, p), and x∗ and y∗ the optimal source
rate and session allocation of problem P1a. By the optimality
conditions for convex program, we have

(x∗)m = (U ′m)−1(
∑
r

αmr
∑
l

Hm
l,r(p

∗)ml,r), (14)

(y∗)ml = arg max∑
m yml =cl

∑
m,l

(p∗)ml y
m
l , (15)

(p∗)ml,r(H
m
lr α

m
r (x∗)m − (y∗)ml ) = 0, (p∗)ml,r ≥ 0, (16)

Hm
lr α

m
r (x∗)m ≤ (y∗)ml ,

∑
m

(y∗)ml = cl. (17)

Theorem 2: Under congestion control and session alloca-
tion (6)-(8), the system converges to the optimum of the
problem P1a.
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Proof: Consider the Lyapunov function V (p, y) =∑
m,l,r

(pml,r−(p
∗)ml,r)

2

2γl
+
∑
m,l

(yml −(y
∗)ml )2

2εl
. We have

V̇ (p, y) =
∑
m,l,r

(pml,r − (p∗)ml,r)[H
m
lr α

m
r x

m − yml ]+pml,r

+
∑
m,l

(yml − (y∗)ml )[pml − ηl[p]]+yml

≤
∑
m,l,r

(pml,r − (p∗)ml,r)(H
m
lr α

m
r x

m − yml )

+
∑
m,l

(yml − (y∗)ml )(pml − ηl[p])

=
∑
m,l,r

(pml,r − (p∗)ml,r)(H
m
lr α

m
r x

m − yml )

+
∑
m,l

(yml − (y∗)ml )pml

=
∑
m,l,r

(pml,r − (p∗)ml,r)(H
m
lr α

m
r x

m −Hm
lr α

m
r (x∗)m)

+
∑
m,l,r

(pml,r − (p∗)ml,r)(H
m
lr α

m
r (x∗)m − (y∗)ml )

+
∑
m,l,r

(pml,r − (p∗)ml,r)((y
∗)ml − yml )

+
∑
m,l

(yml − (y∗)ml )pml

=
∑
m,l,r

(pml,r − (p∗)ml,r)(H
m
lr α

m
r x

m −Hm
lr α

m
r (x∗)m)

+
∑
m,l,r

(pml,r − (p∗)ml,r)(H
m
lr α

m
r (x∗)m − (y∗)ml )

+
∑
m,l

(yml − (y∗)ml )(p∗)ml .

Since the marginal utility U ′m(·) is a decreasing function and
so is its inverse, we have∑
m,l,r

(pml,r − (p∗)ml,r)(H
m
lr α

m
r x

m −Hm
lr α

m
r (x∗)m) ≤ 0.

By the optimality conditions (16)-(17), we have∑
m,l,r

(pml,r − (p∗)ml,r)(H
m
lr α

m
r (x∗)m − (y∗)ml ) ≤ 0,

and by equation (15),∑
m,l

(yml − (y∗)ml )(p∗)ml ≤ 0.

Thus, V̇ (p, y) ≤ 0. This implies that the system converges to
an invariant set specified by V̇ (p, y) = 0 [14]. Furthermore,
V̇ (p, y) = 0 only if p, y and x satisfy the optimality conditions
(14)-(17).

Now we study the convergence of the outer loop algorithm.
Theorem 3: The tree adaptation algorithm (9) converges to

the optimum of the system problem P1.

Proof: Note that

U(α) = min
p
D(α, p)

= min
p
{
∑
m

Um(xm(p))

−
∑
m,l,r

pml,r(H
m
l,rα

m
r x

m(p)− yml (p))}. (18)

So, the differential of U(α) can be written as

dU(α) =
∂D(α, p)

∂p
dp+

∂D(α, p)

∂α
dα

=
∂D(α, p∗)

∂p
dp−

∑
m,l,r

xmHm
l,r(p

∗)ml,rdα
m
r ,

where p∗ = arg minp′ D(α, p′). Since p∗ minimizes D(α, p)

given α, ∂D(α,p∗)
∂p cannot be a descent direction. So,

∂D(α,p∗)
∂p dp ≥ 0. Hence,

dU(α) ≥ −
∑
m,l,r

xmHm
l,r(p

∗)ml,rdα
m
r , (19)

i.e.,

U̇(α) ≥ −
∑
m,l,r

xmHm
l,r(p

∗)ml,rα̇
m
r . (20)

By (11), we have U̇(α) ≥ 0. So, the tree adaptation algorithm
(9) will converge to an equilibrium α∗ such that U̇(α∗) =
0. However, this only guarantees the convergence of the tree
adaptation algorithm. Without further elaboration, we cannot
even claim it solves for a local optimal of the problem P1b.

Note that, following equations (6) and (13), we obtain at
(α∗, p(α∗), x(α∗))

U ′m(xm) =
∂Um
∂xmr

(xm) =
∑
l

Hm
l,rp

m
l,r, if xmr > 0, (21)∑

l

Hm
l,rp

m
l,r ≥ U ′m(xm), if xmr = 0, (22)

which means that

x(α∗) = arg max
xm
r

∑
m

Um(
∑
r

xmr )−
∑
m,r,l

pml,r(α
∗)Hm

l,rx
m
r . (23)

Also, we have y(α∗) = arg maxy
∑
m,r,l p

m
l,r(α

∗)yml . Denote
the Lagrangian of the system problem P1 with respect to the
constraints due to network coding as L̂(p, x, y). We have

(x(α∗), y(α∗)) = arg max
x,y

L̂(p(α∗), x, y). (24)

Furthermore, by duality between the problem P1a and its dual,
we have∑

m,l,r

pml,r(α
∗)(Hm

l,rx
m
r (α∗)− yml (α∗)) = 0. (25)

Combining (24)-(25), we conclude that∑
m

Um(
∑
r

xmr (α∗)) = L̂(p(α∗), x(α∗), y(α∗)), (26)

which by duality only happens when p(α∗) and xmr (α∗) solve
the system problem P1 and its dual. So, the tree adaptation
algorithm (9) indeed solves the system problem P1. This also
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proves that the tree adaptation algorithm solves the problem
P1b.

To establish the convergence of the tree adaptation algo-
rithm, we have only used the property (10)-(11). The algorithm
(9) is only one specific implementation of (10)-(11), and any
algorithms that satisfy (10)-(11) would work. Also, note that
the adaptation algorithm (9) and Theorem 3 can be readily
extended to routing-based multicasting and multipath routing.

Remarks: We have proposed a two-timescale flow control
for network coding based multicast flows with given coding
subgraphs. The separation of timescales is a reasonable as-
sumption, since in real networks it is not a sensible practice
to do routing to avoid congestion at the timescale of congestion
control. However, mathematically it would be nice if the above
algorithm converges without the assumption of the separation
of timescales. Similar to the proof of Theorem 2, we can
establish the local stability of flow control (6)-(9) without the
separation of timescales, by considering Lyapunov function
V (p, y, α) =

∑
m,l,r

(pml,r−(p
∗)ml,r)

2

2γl
+
∑
m,l

(yml −(y
∗)ml )2

2εl
+∑

m,r
(x∗)m(αm

r −(α
∗)mr )2

2κm
.

C. Implementation of Price Feedback

Each link l keeps a separate virtual queue pmlr for each
multicast tree Tmr of each session m which acts as the
congestion price. Each packet’s header contains the indexes
of the trees whose information it contains. When a packet is
received at a node from an incoming link l, if the packet header
contains the rth tree index, the queue size pmlr is increased by
one; otherwise it is unchanged. Similarly, when a packet is
sent by a node on an outgoing link l, if the packet header
contains the rth tree index, the queue size pmlr is decreased by
one; otherwise it is unchanged. The congestion prices over a
multicast tree are fed back to the source node in the following
way. Each node i in the tree will pass the aggregate price
along the links from the receivers till itself to the upstream
node j (“upstream” is defined as the direction from receivers
to source node over a multicast tree). In this recursive way,
the source node will get the aggregate congestion prices over
that multicast tree, and adjust the sending rate accordingly.

V. DECENTRALIZED CONGESTION CONTROL FOR
NETWORKS WITHOUT GIVEN CODING SUBGRAPHS

A. Distributed Algorithm

Now we turn to system problem P2 and consider its
Lagrangian with respect to the flow balance constraints,

L(p, x, g, f) =
∑
m

Um(xm)−
∑

i,m,d∈Dm

pmdi (xmi

−
∑

j:(i,j)∈L

gmdi,j +
∑

j:(j,i)∈L

gmdj,i ).

Interpreting pmdi as the “congestion price” at node i for
multicast session m and destination d ∈ Dm, and motivated
by maximizing the Lagrangian over x, g and f for fixed p,
we obtain the following joint congestion control and session
allocation algorithm:

Congestion control: Given congestion price p, each source
node sm adjusts its sending rate according to local congestion
price that is generated locally at the source node,

xm = U ′m
−1

(
∑
d∈Dm

pmdsm ). (27)

Note that

max
g,f

∑
i,m,d

pmdi (
∑
j

gmdi,j −
∑
j

gmdj,i ) s.t. gmdi,j ≤ fmi,j

= max
g,f

∑
i,j,m,d

gmdi,j (pmdi − pmdj ) s.t. gmdi,j ≤ fmi,j

= max
f

∑
i,j,m,d

fmi,j [p
md
i − pmdj ]+,

where ‘+ denotes the projection onto the set R+ of non-
negative real numbers. Similarly to that in section IV, the
session allocation algorithm should follow the gradient di-
rection of

∑
i,j,m,d f

m
i,j [p

md
i − pmdj ]+. Each node i collects

congestion price information from its neighbor j, and cal-
culates differential price wmi,j(t) =

∑
d[p

md
i (t) − pmdj (t)]+.

Denote by ηi,j [w(t)] the minimal of those w̄i,j(t) at time t
such that w̄i,j(t) = 1

|M ′l (t)|
∑
m∈M ′l (t)

wmi,j(t) with M ′l (t) :=

{m|fmi,j(t) > 0 or wmi,j(t) ≥ w̄i,j(t),m ∈M}.
Session allocation: At each link (i, j), the amount of ca-

pacity fmi,j that is allocated to session m follows

ḟmi,j = εi,j [w
m
i,j − ηi,j [w]]+fm

i,j
, (28)

where εi,j is a positive stepsize. Similarly, it is easy to verify
that ∑

m

ḟmi,j = 0,∑
m

ḟmi,jw
m
i,j ≥ 0.

We see that
∑
m ḟ

m
i,jw

m
i,j = 0 only if ḟmi,j = 0, which requires

wmi,j = w̄i,j , or, fmi,j = 0 and wmi,j < w̄i,j .
Over link (i, j), a random linear combination of data of

multicast session m to all destinations d such that pmdi −pmdj >
0 is sent at rate fmi,j . Mathematically, this is equivalent to
solving the primal variable g by the following assignment

gmdi,j =

{
fmi,j if pmdi − pmdj > 0,
0 otherwise.

(29)

Define

D(p) = max
xm,gmd

i,j ,f
m
i,j

L(p, x, g, f)

subject to gmdi,j ≤ fmi,j ,
∑
m

fmi,j = cl.

Again the dual problem minpD(p) can be solved by using the
gradient method. This motivates the following dual congestion
price update mechanism.

Congestion price update: Node i price with respect to
multicast session m and destination d ∈ Dm follows

ṗmd
i = γi[x

md
i (p)−

∑
j:(i,j)∈L

gmd
i,j (p) +

∑
j:(j,i)∈L

gmd
j,i (p)]

+

pmd
i
, (30)

where γi is a positive stepsize.
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With the above controllers, each source node adjusts its
sending rate according to the local congestion price. Thus,
there is no communication overhead for congestion control.
The majority of communication overhead is for session al-
location, but that only requires nodes to communicate with
direct neighbors. Thus, our design has very low communi-
cation overhead, compared with other schemes with similar
models [20], [31], [29], [30]. Note that the above session
allocation component uses back-pressure to do optimal routing
and specify coding, similarly to [11]. Such dynamic network
coding based multicasting offers both a larger rate region
and much lower complexity, as compared to optimal dynamic
routing based multicasting [24].

B. Convergence Analysis

The decentralized controllers (27)-(30) are also a partially-
primal and dual gradient algorithm. Denote by x∗, g∗, f∗ and
p∗ the optimal primal and dual variables for the problem P2.
Similarly, we have the following convergence result.

Theorem 4: Under congestion control and session
allocation(27)-(30), the system converges to the optimum of
the problem P2.

Proof: Consider Lyapunov function V (p, f) =∑
m,d,i

(pmd
i −(p

∗)md
i )2

2γl
+
∑
m,(i,j)

(fm
i,j−(f

∗)mi,j)
2

2εi,j
. We have

V̇ (p, f)

=
∑
m,d,i

(pmd
i − (p∗)md

i )[xmd
i (p)

−
∑

j:(i,j)∈L

gmd
i,j (p) +

∑
j:(j,i)∈L

gmd
j,i (p)]

+

pmd
i

+
∑

m,(i,j)∈L

(fm
i,j − (f∗)mi,j)[w

m
i,j − ηi,j [p]]

+
fm
i,j

≤
∑
m,d,i

(pmd
i − (p∗)md

i )(xmd
i (p)

−
∑

j:(i,j)∈L

gmd
i,j (p) +

∑
j:(j,i)∈L

gmd
j,i (p))

+
∑

m,(i,j)∈L

(fm
i,j − (f∗)mi,j)(w

m
i,j − ηi,j [p])

=
∑
m,d,i

(pmd
i − (p∗)md

i )(xmd
i (p)−

∑
j:(i,j)∈L

gmd
i,j (p)

+
∑

j:(j,i)∈L

gmd
j,i (p)) +

∑
m,(i,j)∈L

(fm
i,j − (f∗)mi,j)w

m
i,j

=
∑
m,d,i

(pmd
i − (p∗)md

i )(xmd
i (p)− (x∗)md

i )

+
∑
m,d,i

(pmd
i − (p∗)md

i )(
∑

j:(i,j)∈L

(g∗)md
i,j (p)

−
∑

j:(j,i)∈L

(g∗)md
j,i (p)−

∑
j:(i,j)∈L

gmd
i,j (p)

+
∑

j:(j,i)∈L

gmd
j,i (p)) +

∑
m,d,i

(pmd
i − (p∗)md

i )((x∗)md
i (p)

−
∑

j:(i,j)∈L

(g∗)md
i,j (p) +

∑
j:(j,i)∈L

(g∗)md
j,i (p))

+
∑

m,(i,j)∈L

(fm
i,j − (f∗)mi,j)w

m
i,j

≤
∑
m,d,i

(pmd
i − (p∗)md

i )(
∑

j:(i,j)∈L

(g∗)md
i,j (p)

−
∑

j:(j,i)∈L

(g∗)md
j,i (p)−

∑
j:(i,j)∈L

gmd
i,j (p)

+
∑

j:(j,i)∈L

gmd
j,i (p)) +

∑
m,(i,j)∈L

(fm
i,j − (f∗)mi,j)w

m
i,j

= −
∑

m,d,i,j

((p∗)md
i − (p∗)md

j )((g∗)md
i,j (p)− gmd

i,j (p))

+
∑

m,d,i,j

(pmd
i − pmd

j )((g∗)md
i,j (p)− gmd

i,j (p))

+
∑

m,(i,j)

(fm
i,j − (f∗)mi,j)w

m
i,j ,

where the second inequality comes from the marginal utility
U ′m(·) being a decreasing function and the optimality condi-
tions. Note that by relation (29), (pmdi −pmdj )(g∗)mdi,j ≤ [pmdi −
pmdj ]+(g∗)mdi,j ≤ [pmdi −pmdj ]+(f∗)mi,j and (pmdi −pmdj )gmdi,j =
[pmdi − pmdj ]+fmi,j . Thus,

V̇ (p, f) ≤ −
∑

m,d,i,j

((p∗)md
i − (p∗)md

j )((g∗)md
i,j (p)− gmd

i,j (p))

+
∑
m,i,j

(
∑
d

[pmd
i − pmd

j ]+ − wm
i,j)(f

∗)mi,j

+(wm
i,j −

∑
d

[pmd
i − pmd

j ]+)fm
i,j

= −
∑

m,d,i,j

((p∗)md
i − (p∗)md

j )((g∗)md
i,j (p)− gmd

i,j (p)).

Since g∗ maximizes
∑
m,d,i,j((p

∗)mdi − (p∗)mdj )(g∗)mdi,j ,
V̇ (p, f) ≤ 0. This implies that the system converges to an
invariant set specified by V̇ (p, f) = 0. Furthermore, from the
above proof, V̇ (p, f) = 0 only if p, f , g and x satisfy the
optimality conditions for convex problem P2.

C. Implementation of Price Feedback

Since the scheme is destination-based, each packet need to
carry a vector of destination identities in the packet header, in
addition to coding vector. Each node i keeps a separate virtual
queue pmdi as congestion price for each multicast session m
and destination d ∈ Dm. The arrival and the departure of
these queues evolve as follows. When a packet is received at
node i, i will check the destination vector in the header of
this packet. If this packet is intended for destination d , the
queue size pmdi will increase by one; Otherwise, the virtual
queue size will remain the same. When a packet is sent out
at node i, i will check the destination vector of this packet.
If this packet is intended for destination d , the queue size
pmdi will decrease by one; Otherwise, the virtual queue size
will remain the same. Note that, here we use back-pressure
to do rate control. The source nodes s adjust the sending rate
according to local congestion prices at s, and the congestion
in the network is propagated to the source node through back-
pressure.

Remarks: There may exist several ways to solve the system
problems P1 and P2. The challenge is to find distributed
solutions that respect as much as possible the information
constraints of the Internet and can be implemented at the
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sources and routers. This requires to minimize information and
respect signaling mechanism for adaptive control in Internet as
much as possible. So, we choose not to relax all the constraints
when solving for the duals. Besides the equilibrium, dynamics
are also important in our consideration. In section IV, in order
to avoid “tree” oscillation, we achieve flow control through
a combination of fast timescale congestion control and slow,
traffic engineering timescale traffic splitting.

The two sets of decentralized controllers developed in
sections IV and V can coexist: some multicast sessions adopt
the algorithm with given coding subgraphs and other sessions
adopt the algorithm without given coding subgraphs; and
they are coupled through the flow balance equations at nodes
and capacity constraints at links. Also, unicasting can be
seen as special case of multicasting. Mathematically, in the
system model P1, network coding comes into action through
constraint Hm

lr x
m
r ≤ yml , and in system model P2, network

coding comes into action through constraint gmdi,j ≤ fmi,j . It
is straightforward to include uncoded unicast flows into the
system models and carry out these algorithms in the same
way, with only slightly more complicated notation.

VI. NUMERICAL EXAMPLES

In this section, we provide numerical examples to comple-
ment the analysis in previous sections. We consider a simple
network shown in the left graph in Figure 3. The network is
assumed to be undirected and each link has equal capacities in
both directions. Assume that there are two multicast sessions,
session one with source node s and destinations x and y and
session two with source node t and destination u and z, with
the same utility Um(xm) = log(xm). We have chosen such a
small, simple topology to facilitate detailed discussion of the
results.

 s

 t  u

w

 v

 x  y

z

Fig. 3. A simple network with two multicast sessions. The given coding
subgraphs for sessions 1 and 2 are shown in the middle and right graphs
respectively. For each session, the first tree is indicated by solid arrows, the
second by dashed arrows, and the overlapping segments by bold arrows.

A. Muticasting with Given Coding Subgraphs

We assume that the given coding subgraphs for sessions one
and two are those shown in the middle and right graphs of Fig-
ure 3 respectively. The subgraph for each session decomposes
into two multicast trees in the same way as in Figure 2. For
simplicity, we assume the following link capacities: link (s, t)
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First Tree for Session 1

Second Tree for Session 1

First Tree for Session 2

Second Tree for Session 2

Fig. 4. The evolution of source rates (upper panel), the evolution of traffic
split vectors (middle panel), and the evolution of congestion prices over
different multicast trees (lower panel) versus the number of iterations of the
tree adaptation algorithm with stepsize δtκm = 0.01 for the example network
with given coding subgraphs.

has 2 units of capacity, links (t, x) and (v, y) have 5 units of
capacity, links (s, u), (u,w) and (y, z) have 1 unit of capacity
and all other links have 3 units of capacity.

We consider the following discrete-time implementation of
flow control (6)-(9). Periodically with period δt, the source
rate, session allocation and congestion price are updated
according to5

xm ←− (U ′m)−1(
∑
r

αmr
∑
l

Hm
l,rp

m
l,r), (31)

yml ←− yml + δtεl[p
m
l − ηl[p]]+yml , (32)

pml,r ←− [pml,r + δtγl(H
m
lr α

m
r x

m(p)− yml (p))]+0 , (33)

and periodically with period ∆t� δt, the traffic split variable

5Care should be taken in the implementation of equations (32), (34) and
(36) to guarantee the corresponding equality constraints.
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is adjusted according to

αmr ←− αmr + ∆tκm[Em[p]− pmr ]+αm
r
. (34)

Figure 4 shows the evolution of source rates (upper panel)
versus the number of iterations of the outer loop tree adapta-
tion algorithm and the evaluation of traffic split vectors (middle
panel) with stepsize ∆tκm = 0.01. It can be seen from the
plots that the source rates are well within 5% of their optimal
values after 5 iterations, and the traffic split vectors are well
within 5% of their optimal values after 10 iterations. In this
simulation, the inner loop congestion control algorithm runs
500 iterations before each run of the tree adaptation algorithm.
Comparable performance is observed even if the number of
inner loop iterations is as low as 100. So, the convergence of
the whole rate control algorithm is very fast.

In practice, the end users can dynamically control the
number of iterations, by monitoring the congestion prices
over different multicast trees. The lower panel of Figure 4
shows the evolution of the congestion prices over different
trees versus the number of iterations of the tree adaptation
algorithm. We can, for instance, specify a threshold value and
decide the whole algorithm has converged when the relative
differences in price over different multicast trees are less than
the threshold value. The users can also set the stepsize of
the tree adaptation algorithm dynamically. When the price
differences over different trees are large, the user can choose
a large stepsize, and when the differences are small, he can
choose a small stepsize.

B. Muticasting without Given Coding Subgraphs

We now consider the same network but without given cod-
ing subgraphs. The distributed algorithm developed in section
V will go through the whole network (the undirected graph on
the left side in Figure 3) to find capacitated coding subgraphs
that maximize the aggregate utility. For this example, we
assume the following link capacities: links (s, t), (t, x) and
(x, v) have 2 units of capacity, links (t, w), (w, v) and (v, y)
have 3 units of capacity and all other links have 1 unit of
capacity.

We consider the following discrete-time implementation of
congestion control and session allocation (27)-(30). Periodi-
cally with period δt, the source rate, session allocation and
congestion price are updated according to

xm ←− U ′m
−1

(
∑
d∈Dm

pmdsm ). (35)

fmi,j ←− fmi,j + δtεi,j [w
m
i,j − ηi,j [w]]+fm

i,j
, (36)

pmdi ←− [pmdi + δtγi(x
md
i (p)

−
∑

j:(i,j)∈L

gmdi,j (p) +
∑

j:(j,i)∈L

gmdj,i (p))]+0 .(37)

Figure 5 shows the evolution of the source rates with
stepsize δtεi,j = δtγi = 0.01. We see that the source rates
approach the corresponding optimal quickly. The simulation
result also shows coding occurs over the same subgraphs as
those in Fig.3: 2 units of traffic of session one is coded
over link (w, v) and 2 units of traffic of session two is

coded over link (v, y). It is not difficult to check that those
are optimal source rates and coding subgraphs. In order to
study the impact of different choices of the stepsize on the
convergence of the algorithm, we have run simulations with
different stepsizes. We found that the smaller the stepsize, the
slower the convergence and the closer to the optimal, which
is a general characteristic of any gradient based method. So,
there is a tradeoff between convergence speed and optimality.
In practice, the end user can first choose large stepsizes to
ensure fast convergence, and subsequently, the stepsizes can
be reduced once the source rate starts oscillating around some
mean value.
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Fig. 5. The evolution of source rates with step size δtεi,j = δtγi = 0.01
for the example network without given coding subgraph.

C. Comparison of the Two Algorithms

To compare the performance of the two rate control algo-
rithms, we consider the same network, with 1 unit capacity
for each link. Figure 6 shows the evolution of the source rates
versus the number of iterations of the tree adaptation algorithm
for the case with given coding subgraphs as shown in the right
side graph of Figure 3, and the evolution of the source rates
for the case without given coding subgraphs. We see that the
throughput achieved for the case without given subgraphs is
larger than that for the case with given coding subgraphs. This
is expected, since the capacity region for the case with given
coding subgraph is a subset of the capacity region with the
coding subgraphs unspecified.

VII. EXTENSION TO WIRELESS NETWORKS

In the previous sections, we have considered congestion
control for multicast with network coding in wired networks.
Here, we briefly discuss its extension to wireless networks.

The wireless case is much more complicated. On the one
hand, wireless channel is a shared medium and interference
limited. We need to avoid simultaneous interfering transmis-
sions. On the other hand, we want to exploit wireless multicast
advantage – a single node’s transmission can be received
by multiple neighboring nodes, in order to achieve efficient
channel utilization. We represent wireless transmissions by
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Fig. 6. The evolution of source rates for the case with given coding subgraph
(upper panel) and for the case without given coding subgraph (lower panel).

hyperarcs,6 denoted by (i,Ni), where i is the transmitting node
and Ni = {j|(i, j) ∈ L, j ∈ N} is the set of i’s receiving
neighbors. We assume a static topology and each hyperarc
(i,Ni) has a finite fixed broadcast capacity ci,Ni

packets per
second when active. Denote by Π the capacity region at the
link layer. By the standard time sharing argument, Π is a
convex hull of these capacity vectors of all interference-free
schedules of hyperarcs. Given a hyperarc flow vector h, the
schedulability constraint says that h should satisfy h ∈ Π.

Network coding allows flows for different destinations of a
multicast session within a hyperarc to share capacity by being
coded together, and the physical flows of different multicast
sessions within a hyperarc should share the hyperarc capacity.
These constraints can be expressed as∑

j∈Ni

gmdi,j ≤ fmi,Ni
, ∀d ∈ Dm, (38)

{
∑
m

fmi,Ni
} ∈ Π, (39)

where again gmdi,j is the information flow for destination d of
multicast session m we defined in section III, fmi,Ni

gives the
the amount of broadcast capacity of hyperarc (i,Ni) that is
allocated to session m, and the schedulability constraint (39)
simply says that the aggregate capacity within the hyperarchs
should be in the feasible capacity region.

6Hyperarc is a rather general construction, see, e.g., [11]. It can correspond
to a single transmission from node i to any subset of its neighboring nodes.
Here, for simplicity of presentation, we assume that each transmitting node
is associated with only one hyperarc (i, Ni). The extension to the situation
with general hyperarcs is straightforward.

We will focus on congestion control for multicast in wireless
networks without given coding subgraphs. The case with given
coding subgraphs can be handled in a similar way. With the
above constraints, we formulate network resource allocation
as the following utility maximization problem

PW : maxx,g,f
∑
m

Um(xm)

subject to
∑

j:(i,j)∈L

gmdi,j −
∑

j:(j,i)∈L

gmdj,i = xmi , i 6= d,∀d,m

∑
j∈Ni

gmdi,j ≤ fmi,Ni
, ∀d,m

{
∑
m

fmi,Ni
} ∈ Π,

where again xmi = xm if i = sm and xmi = 0 otherwise.
Problem PW has similar structure to problem P2, so we

can solve it similarly. However, in order to integrate with
wireless scheduling, we will propose a different congestion
controller, with the session allocation component replaced by
a scheduling component, and present them in discrete-time.

Consider the Lagrangian of the system problem PW with
respect to the flow balance constraints,

L(p, x, g, f) =
∑
m

Um(xm)−
∑

i,m,d∈Dm

pmdi (xmi

−
∑

j:(i,j)∈L

gmdi,j +
∑

j:(j,i)∈L

gmdj,i ).

Following similar procedures as in section V, we can obtain
the following discrete-time congestion control and scheduling
algorithm.

Congestion control: At time t, each source node sm adjusts
its sending rate according to local congestion price at the
source node,

xm(t) = U ′m
−1

(
∑
d∈Dm

pmdsm (t)). (40)

Note that

max
g,f

∑
i,m,d

pmdi (
∑
j

gmdi,j −
∑
j

gmdj,i ) s.t.
∑
j∈Ni

gmdi,j ≤ fmi,Ni

= max
g,f

∑
i,j,m,d

gmdi,j (pmdi − pmdj ) s.t.
∑
j∈Ni

gmdi,j ≤ fmi,Ni

= max
f

∑
i,m,d

fmi,Ni
max
j

[pmdi − pmdj ]+,

and further,

max
f

∑
i,m,d

fmi,Ni
max
j

[pmdi − pmdj ]+ s.t. {
∑
m

fmi,Ni
} ∈ Π

= max
f

∑
i,m

fmi,Ni

∑
d

max
j

[pmdi − pmdj ]+ s.t. {
∑
m

fmi,Ni
} ∈ Π

= max
f

∑
i

fi,Ni
max
m

∑
d

max
j

[pmdi − pmdj ]+ s.t. {fi,Ni
} ∈ Π.

Each node i collects congestion price information from its
neighbor j, find multicast session mi,Ni(t) such that

mi,Ni(t) = arg max
m

∑
d∈Dm

max
j∈Ni

[pmdi (t)− pmdj (t)]+, (41)
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and calculates the differential price

wi,Ni
(t) =

∑
d

max
j∈Ni

[p
mi,Ni

(t)d

i (t)− pmi,Ni
(t)d

j (t)]+.

Scheduling: Over hyperarc (i,Ni), a random linear combi-
nation of data of multicast session mi,Ni

to all destinations
d such that maxj∈Ni

p
mi,Ni

d

i (t) − pmi,Ni
d

j (t) > 0 is sent at
rate f̃i,Ni , where {f̃i,Ni} is an extreme point maximizer to the
following hyperarc scheduling problem:

max
f

∑
i

fi,Niwi,Ni(t) s.t. {fi,Ni} ∈ Π. (42)

Mathematically, this is equivalent to solving the primal vari-
able g by the following assignment

gmdi,j (t) =


f̃i,Ni if m = mi,Ni(t)

& j = arg maxk∈Ni [p
md
i (t)− pmdk (t)]+

& [pmdi (t)− pmdj (t)]+ > 0
0 otherwise.

(43)
Congestion price update: Each node i updates its price

with respect to multicast session m and destination d ∈ Dm,
according to

pmdi (t+ 1) = [pmdi (t) + γt( x
md
i (p(t)) (44)

−
∑

j:(i,j)∈L

gmdi,j (p(t)) +
∑

j:(j,i)∈L

gmdj,i (p(t)) )]+,

and passes the price pmdi to all its neighbors.
We see that the above congestion control, network coding

and scheduling algorithm is similar to the distributed algorithm
(35)-(37). While for wired networks we do not consider the
details of session scheduling at a link, for wireless networks
we explicitly study session scheduling. In addition to session
scheduling (41) within a hyperarch, there is also a hyperarc
scheduling component (42). The hyperarc scheduling (42) is
centralized, and is NP-complete in general. We are studying
distributed approximation algorithms to solve (42), which will
be reported elsewhere.

The algorithm (40)-(44) is a subgradient algorithm. We can
straightforwardly apply either the standard convergence results
for the subgradient method [25] or the convergence analysis
in, e.g,, [22], [3] to establish its convergence. We will not
elaborate on this.

VIII. CONCLUSIONS

We have presented two models for congestion control for
multicast flows with network coding, one for networks with
given coding subgraphs, and one where such subgraphs are
found dynamically. Correspondingly, we developed two sets of
decentralized controllers for congestion control. With random
network coding, both sets of controllers can be implemented
in a distributed manner, and work at transport layer to adjust
source rates and at network layer to carry out network coding.
We prove that the proposed controllers converge to the global
optimum for each model. Numerical examples are provided
to complement our theoretical analysis. We will further study
the practical implementation of our congestion controllers. We
are also studying their stability under propagation delay. Also,

how to obtain optimal coding subgraphs based on general cost
criteria is an interesting problem. Solving this problem will
further facilitate the practical deployment of network coding
in real networks.
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