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Abstract— We reverse-engineer the frequency dynamics with
general primary frequency control and show that it is a dis-
tributed algorithm to solve a well-defined optimization problem.
We further investigate the role of deadband in control, and show
that if the aggregated uncontrolled load deviation is nonzero
the frequencies will be synchronized, and if however it is zero
the frequencies may oscillate but within the deadband. The
optimization based model does not only provide a way to
characterize the equilibrium and establish the convergence of
the frequency dynamics, but also suggests a principled way
to engineer frequency control. By leveraging the optimization
problem and insights from reverse engineering, we design a dis-
tributed realtime frequency control scheme that does not only
maintain the frequency to the nominal value, but also achieve
economic efficiency. This is drastically different from the
current hierarchical control approach that addresses frequency
regulation and economic efficiency at different timescales and
with centralized control, and is what is needed for future
power system to cope with rapid and large fluctuations in
supply/demand and manage a huge number of control points.
This work presents a step towards developing a new foundation
— network dynamics as optimization algorithm — for distributed
realtime control and optimization of future power networks.

I. INTRODUCTION

The goal of frequency control is to balance power supply
and demand to synchronize the frequency and maintain it
to the nominal value. Traditionally, frequency control has a
hierarchical structure that spans multiple timescales: primary
control at subseconds to seconds, secondary control at sec-
onds to minutes, and economic dispatch at minutes to hours;
see, e.g., [22], [20]. Control at slow timescales (economic
dispatch) is centralized and calculates set-points for the
fast timescale control to track. Here economic efficiency
is key, and the control is based on optimization models
such as the optimal power flow (OPF) problem. On the
other hand, control at fast timescales (primary and secondary
control) is local and automatic, usually oblivious of the
global perspective such as economic efficiency. Here stability
is key, and the design is based on dynamical models such as
the swing equation. Such a control paradigm works well for
today’s system with relatively low uncertainty (large but slow
and predictable variations, fast and unpredictable but small
variations) and relatively small number of control points.

However, the current control paradigm may be inadequate
for future power system. The future system expects to have
rapid and large fluctuations in power supply/demand because
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of high penetration of renewable generation from solar and
wind and active participation of end users. This implies that
economic efficiency can not be ignored any more at fast
timescales, and the fast timescale control needs to be bridged
with systemwide properties such as economic efficiency.
Moreover, the future system may consist of a huge number
of control points, which implies that the control must be
distributed and based on local information. It is however
challenging to achieve systemwide properties through local
controls/decisions for a large interconnected system such as
the power network.

We aim to find a principled way to guide systematic
design of local controls with global perspective for frequency
control. The approach we take is reverse and forward en-
gineering. We first develop models to understand the sys-
temwide properties arising from the interaction among local
controls, in particular, whether the power system dynamics
with the existing controls can be interpreted as distributed
algorithm for solving certain optimization problem, i.e., net-
work dynamics as optimization algorithm. We then leverage
the insights obtained from reverse engineering and engineer
the optimization based model to incorporate the desired
objectives and proper constraints, and design distributed
control scheme according to distributed algorithm for solving
the resulting optimization problem.

Specifically, we first reverse-engineer the frequency dy-
namics with primary frequency control with general control
functions, by showing that it is a partial primal-dual gradient
algorithm to solve a well-defined optimization problem. We
further investigate the role of deadband in control, and show
that if the aggregated uncontrolled load deviation is nonzero
the frequencies will be synchronized, and if however it is
zero the frequencies may oscillate but within the deadband.
The optimization based model does not only provide a way
to characterize the equilibrium and establish the convergence
of the frequency dynamics, but also suggests a principled
way to engineer frequency control. Based on the insights
from reverse engineering, we then impose additionally a
set of constraints to the optimization problem to design
a distributed realtime frequency control scheme that does
not only maintain the frequency to the nominal value, but
also achieve economic efficiency. This is drastically different
from the current hierarchical control approach that addresses
frequency regulation and economic efficiency at different
timescales and with centralized control, and is what is
needed for future power system to cope with rapid and large
fluctuations in supply/demand and manage a huge number
of control points.



The similar idea of reverse and forward engineering was
first proposed to understand the dynamic behaviors of ex-
isting network protocols and guide systematic design of
better or new ones in communication network; see, e.g.,
[15], [19], [18], [10], [9]. This line of work has led to
the development of a promising mathematical theory for
communication network architecture and protocol design
— layering as optimization decomposition; see, e.g., [13],
[10], [8], [6]. The layering as optimization decomposition
framework views various protocol layers as carrying out
asynchronous distributed computation over the network to
optimize a global objective function. Different layers iterate
on different subsets of the decision variables using local
information to achieve individual optimality. Taken together,
these local algorithms attempt to achieve a global objective.
We aim to develop a similar framework — network dynamics
as optimization algorithm — for distributed realtime control
and optimization of power network. There are, however,
fundamental differences between power and communication
networks, in particular, the control and operation of power
network cannot be decoupled from the physics of electric-
ity while the control and management of communication
network can be decoupled from the underlying physics of
information. This requires designing distributed optimization
algorithms that exploit or can be implemented as power
system dynamics.

There is an extensive literature on frequency control. We
only review those few that are most relevant. In particu-
lar, this paper was originally motivated by [25], [24] that
designs load side primary frequency control based on a
partial primal-dual gradient algorithm for a cost minimization
problem. Another related work is [17] that reverse-engineers
automatic generation control and proposes a modified control
scheme to achieve economic efficiency. The main differences
from [25], [24], [17] are that we lay out a general framework
for reverse-engineering frequency dynamics with general
primary frequency control, characterize the role of deadband
in control, and leverage primary frequency control to design
a distributed realtime control scheme that maintains the fre-
quency to nominal value while achieves economic efficiency.
Other work that takes a similar approach or in a similar flavor
includes [23] that uses a primal-dual decomposition approach
to design a dynamic feedback controller for power network,
and [12] that proposes a distributed control architecture for
frequency regulation and economic efficiency for microgrids.

II. SYSTEM MODEL

Consider a power network modeled by a connected graph
(N, E), with a set N of buses or control areas and a set
& of power lines connecting the buses. We assume that the
power network is initially at a steady state (or equilibrium)
at the nominal frequency w" and with bus i € N voltage
magnitude v; and nominal phase angle 6. All the variables
introduced in the following will be deviations or revisions
with respect to this steady state.

For each bus ¢ € NV, let w; denote the frequency deviation,
P! the uncontrolled load deviation, and P the frequency-

sensitive load deviation. P can be modeled by

P = Gi(w;), (1)

?

where the frequency response function G; is Lipschitz con-
tinuous, strictly increasing, and with G;(0) = 0. A linear
approximation G;(w;) = D;w;, D; > 0 is usually used in
literature, but we do not make such an assurnption.1

We denote by N'M and N'M the subsets of buses at which
there is a synchronous mechanical generator and renewable
generation respectively, and A/l the subset of buses that only
have loads. For simplicity of presentation, we assume that
NM N NE = (), but the results in this paper hold even
when A™™ and N'® overlap. We will first consider primary
frequency control. For each bus i € N, let P denote
the mechanical power revision that is controlled by certain
primary frequency control scheme with a deadband of §; > 0

PiM = Fi(wi), (2

where the control function F; is Lipschitz continuous,
strictly decreasing in (—oo, —6;/2) U (4;/2, 00), and zero in
[—d:/2,0;/2], and can be more general than the usual droop
control

Fl(wi) = 0, 2
—Siwi+ %), wi<-%

with S; > 0. For each bus i € NZ%, let PF denote
the renewable power deviation that is controlled by certain
primary frequency control scheme with a deadband of §; > 0

Pl = Hi(wi)7 3)

K2

where the control function H; is Lipschitz continuous,
strictly decreasing in (—oo, —d;/2) U (d;/2,00), and zero
in [—0;/2,6;/2]. Such frequency regulation services by the
renewable generation have been recommended or mandated
in certain countries, see, e.g., [1], [2], and are an active
research area, see, e.g., [21], [11], [7], [5]

For each link (7, j) € &, let P;; denote the real power flow
from bus 7 to bus j. Under the DC power flow approximation
[3], the dynamics of branch flow can be written as

- wj), “4)

where B;; = %4 cos(6) — 69) with x;; the reactance of
]
power line (4, j). The frequency dynamics is given by

Py = Bijlwi

Mid}i = Fi(wi) — Gi(wi) — Pil — Z Pij, 1€ NM, (5)

{j:(i.4)€€}
Hi(wi) = Gi(wi) + Pl + > Py, i€ N&, (6)
{j:(i.g)€€}
0= Gi(w)+ P+ Py, ieN, 7

{j:(i.d)€€}

'We may impose upper/lower bounds to PZ.S as well as to PiM and PZ.R
introduced later. But this will not change the results of this paper.



where M; is the generator inertia. Equation (5) is the swing
equation for a synchronous generator and equations (6)-(7)
are algebra equations from power balance.

In the next section, we will take a new perspective to
understand the frequency dynamics (4)-(7) by showing that
it can be seen as a distributed algorithm for solving a
well-defined DC OPF problem (reverse engineering). In the
section next, we will show how to leverage the optimization
model and insights from reverse engineering to design new
frequency control scheme (forward engineering).

III. REVERSE ENGINEERING

A. Frequency dynamics as primal-dual gradient algorithm

Equations (1)-(3) define a relation between the load or
generation deviation and the frequency deviation. Define a
disutility or cost function for the frequency-sensitive load

ps
CHPF)= |  GIU (PP, i€ N, ®)
0
a cost function for mechanical power control
pM
cM(PM) = — FY(P)dP;, i e NM, 9)
0
and a cost function for renewable power control
pF
CE(Pf) = - H7Y(P)dp;, i€ NE. (10)

0

Functions C?(-), CM (), and CF(-) are all continuous and
strictly convex, but CM () and CF(-) may not be differ-
entiable at the origin in the presence of the deadband.’
These functions depend only on the control functions and
are independent of how the feedback signal w; is updated.
They characterize certain “inherent” characteristics of load
response or generation control, such as the economic cost
incurred or the willingness/activeness in control. A main
motivation for defining the cost functon, take C}(-) as an
example, is to establish the equivalence between the control
algorithm (2) and the distributed decision:

pM _

K2

arg Ir}pin CM(P;) + Pwi (11)

for given frequency deviation w;.?
With the above cost functions, we can define a cost
minimization problem for frequency control subject to the

’In reverse engineering, we define cost functions for given control
functions. In forward engineering (Section IV), we can derive control
functions for given cost functions, by “inverting” equations (8)-(10).

3The equivalence holds even if w; falls inside the deadband, i.e., |w;| <
d;/2. Under this situation, the set of subgradients of CiM(Pi) + Pw;
at P, = 0: [—6;/2 4+ wy, d;/2 + w;] contains 0, which is exactly the
optimality condition at P; = 0, and hence PZ.M =0.

power balance:

. S pS M pM R(pR
i ST N St
€N ieENM ieENE
(12)
subject to P + Pl + Z Py =PM ic NM (13)
{4:(4,5)€€}
Pis—i—PZ-I-i-Z PijZPZ'RaiGNR (14)
{4:(4,5)€€}
PS+Pl+Y Pyj=0,ieN", (15)
{4:(4,5)€€}

where P = {P%i € N}, PM = {PM;i ¢ NM},
P2 = {PFi € NB}, and P = {P;y;(i,j) € E}. The
above convex optimization problem is actually a DC optimal
power flow problem. Obviously, Slater’s condition holds [4],
i.e., there exists a feasible point for problem (12)-(15).

Introduce Lagrangian multiplier \; for each constraint of
(13)-(15), and consider the Lagrangian

L(PS, PM PE P;))
= Y CPA)+) MM +> PR

= iENM iENE

- Z Xi(P7 + Pl + Z Py —PM)
iENM {5:(i.9)€€}

- Z )‘i(‘IDiS+PiI+ Z Pij_Pz‘R)
iENR {5:(i.5)eg}

=Y NP7+ P+ Py, (16)
iENL {5:(i.5)€€}

where A = {);;7 € N'}. As Slater’s condition holds, there
exists a saddle point of L. Notice that a saddle point of L is
a primal-dual optimum of problem (12)-(15) and its dual.

Define a reduced Lagrangian:
min _ L(P,PM P P; ), (17)
PS,PM PR
where AM = {\;i € MM, AR = (N0 € M), and
A = {\i;i € N}, ie., the dual variables corresponding
the constraints (13), (14), and (15) respectively. We will
study the saddle point dynamics for the reduced Lagrangian
L, which gives a partial primal-dual gradient algorithm for
problem (12)-(15) and its dual.

Theorem 1: The frequency dynamics (4)-(7) is a partial
primal-dual gradient algorithm to solve problem (12)-(15)
and its dual. Moreover, the set of saddle points of the
Lagrangian L is the set of equilibira of dynamical system
®H-().

Proof: For the inner minimization in (17), we have the
first order optimality condition

0psC? = N, i€N,
(9P_MCZ-M = =\, iENM,
Z»R — i, iENR,

()
)
)
Q
|



which, by the definition (8)-(10) of the cost functions, gives
PS = Gi()\i),ie./\/,

?

PM = FE(\),ie NM,
PR = Hi(\),ieNE

Let L(P;A\) = min L(PS PM PR P;\), which is
PS PM PR

concave by definition and continuously differentiable with
respect to A due to strict convexity of the cost function; see
Proposition 6.1.1 in [4]. Thus, for the outer maximization in
(17), we have first oder optimality condition

OL(P;X) =0,ie NEUNT,

which gives

Gi(\)+PI+ > Py—Hi(\)=0ieN?  (18)
{J:(i.4)€€)
Gi\)+ Pl +> Py=0ieNt (19
{:(i.1) €€}

Apply the saddle point dynamics to the reduced La-
grangian L(P; AM), we have

P = —e,j@ eij(Ni —Aj), (i,7) €&, (20)
- oL .
Ai = kige = Ri(Fi(A) = Gi(A) — Py — > Py),
' {5:(i.g) €€}
ie NM_ (@21

where €;; > 0 and x; > 0. Again, L is differentiable with
respect to \;, i € N'M due to the strict convexity of the cost
function. Equations (18)-(21) are the dynamical equations
(4)-(7) if identifying \; = w; and setting ¢;; = B;; and
K; = JVLIL The second half of the theorem follows from the
KKT condition for the saddle point [4]. |

Theorem 1 only says that the frequency dynamics (4)-(7)
is a partial primal-dual gradient algorithm for problem (12)-
(15) and its dual, but does not guarantee the convergence to

a saddle point, which we discuss next.

B. Saddle points and convergence of frequency dynamics

We first characterize the saddle point of the Lagrangian
L, i.e, the equilibrium of the frequency dynamics (4)-(7).

Proposition 2: Let S be the set of saddle points of the
Lagrangian L. If (P¥,PM PR P:\) € S, then

Ni=w, i €N, (22)
Fi(\) = Gi(\) + Pl + > Py, i e NV, (23)
(-9 €€}
Hi(\) =Gi(\) + P+ ) Py ie N7, (24)
(-1 €€}
0=Gi(\)+ P/ + > PyieNV, (25)
(-9 €€}

where w is a certain constant.

Proof: The result follows from the KKT condition for
the saddle point. In particular, \; = A;, V(i,5) € &, which
leads to (22). |

If the frequency dynamics converges to a saddle point,
then the frequencies are synchronized and the supply and
demand are balanced. But, in general we cannot guarantee
the convergence, rather the dynamics converges to a compact
subset of an invariant set Z; see Appendix. The set Z is not
necessarily contained in the set S of saddle points, nor is a
singleton set which gives stability immediately. If however
the synchronized frequency w is uniquely determined, then
7 is contained in S and the frequency dynamics converges.

Theorem 3: Suppose that w in equation (22) is uniquely
determined. Then the frequency dynamics (4)-(7) converges
to a saddle point of Lagrangian L.

Proof: The result follows from Proposition 13. [ ]

A typical way to verify the uniqueness of w is to check the
strict concavity of the reduced Lagrangian E(P; A) in terms
of A, which may not hold or may be difficult to check. An
easy way is to exploit the power balance.

Theorem 4: The frequency dynamics (4)-(7) converges to
a saddle point of Lagrangian L.

Proof: From the saddle point equations (22)-(25), we
have the aggregate power balance:

ZPZ'I = _ZGi(w)‘f' Z Fi(w) + Z H;(w).

iEN iEN ieENM iENE

By the assumptions on functions G;, F;, H;, the right hand
side of the above equation is strictly decreasing. So, it has a
unique solution. The result follows from Theorem 3. [ ]

Notice that we have assumed that there is frequency
sensitive load at each bus. But this is not necessary for fre-
quency synchronization. Indeed, from the proof of Theorem
4, frequency sensitive load at only one bus is enough for
synchronization.

C. The impact of deadband

From the above discussion, it seems that the deadband
in control does not bring any complication to frequency
synchronization. This is because of the existence of fre-
quency sensitive load, which ensures the uniqueness of w,
i.e., the synchronized frequency if the system converges. In
order to study the impact of deadband, in this subsection we
assume that there is no frequency sensitive load and there is
a deadband in control, i.e., §; > 0, for all i € NM U NE,

Corollary 5: If the aggregate uncontrolled load deviation
is nonzero, i.e., ), \r P! # 0. Then the frequency dynamics
(4)-(7) converges to a saddle point of Lagrangian L in the
presence of deadband in control.

Proof: Let 6,, = min §;. Notice that
IENMUNE

Yienm Fi(w) + > cnr Hi(w) is zero in [=0,,/2, 6, /2]
and strictly decreasing in (—o0, —0,,/2] U [§,,/2,00). If
>ien PP # 0, the aggregate power balance ;. P =
Y ienm Fi(w)+2 2, carr Hi(w) has a unique solution for w.
The result follows from Theorem 3. ]

However, if the aggregate uncontrolled load deviation is
zero, the convergence is not guaranteed because any w €
[—0m /2, 0,m /2] satisfies the power balance. The system may
oscillate, but this oscillation is confined within the deadband.
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Fig. 1: The system with frequency sensitive loads (left panel), without frequency sensitive loads but with nonzero aggregate
load deviation (middle panel) and with zero aggregate load deviation (right panel).

Theorem 6: Suppose that the aggregate uncontrolled load
deviation is zero, i.e., Zie N Pil = 0. Then the frequencies
will be confined within the deadband at each bus.

Proof: From the saddle point equations, there exists
a saddle point (P*,A*) of L such that \* = 0, P/ +
Y iugee Py = 0, i € N. Notice that L(P*,X") =
0. As discussed in Appendix, the saddle point dynamics
eventually converges to an invariant set Z, and moreover,
for any (P,\) € Z, we have L(P*,A\*) = L(P*,\) and
L(P,X*) = L(P*,A\*). From the former equality, we can
conclude that \;F;()\;) = 0,5 € N'™ and \;H;(\;) = 0,i €
NE. This implies \; € [~6;/2,9;/2] for all 7. Therefore, at
7, all the frequencies are confined within the deadband. W

D. Numerical example

We now use a numerical example to illustrate the ana-
Iytical results established in the above. Consider a 4-area
interconnected system as in Fig. 2, and assume that areas
1-3 have mechanical generators and area 4 has renewable
generation. We use the linear approximation described after
equation (1) for load frequency response function, and em-
ploy droop control of the same form as the example given
after equation (2) for generators. The parameters used in
simulations are shown in Table I and II.

Fig. 2: A system with 4 control areas.

Areaj | M; | D; V5] S; | 4
1 3 1 1.045 1 0.2
2 2.5 1.5 0.98 1 0.2
3 4 1.2 1.033 1 0.2
4 N/A | 0.1 0.997 1 0.2

TABLE I: Generator Parameters

Uine | 1-2 | 2-3 | 34 | 41
By | T | 1T [ 1 [1

TABLE II: Line Parameters

We consider three different scenarios. The first scenario
corresponds to the case with frequency sensitive loads, and
the second and third ones correspond to the cases without
frequency sensitive loads and are used to illustrate the impact
of the deadband. For the first two scenarios, we assume that
the uncontrolled load deviates by 1pu at ¢ = 1s in the area 3,
—0.5pu at ¢ = 5s in the area 2, and —1pu at £ = 10s in the
area 1, thus the aggregate load deviation is nonzero after t =
10s. For the third scenario, we change the uncontrolled load
deviation in area 1 from —1pu to —0.5pu so the aggregate
load deviation is 0. Fig. 1 shows the frequency evolution. As
expected, the frequencies are synchronized in the first two
scenarios (Theorem 4 and Corollary 5), but oscillate within
the deadband [—0.1,0.1] in the third one (Theorem 6).

Remark 1: We have reverse-engineered the frequency dy-
namics with general primary frequency control, by showing
that it is a partial primal-dual gradient algorithm for solving
a well-defined optimization problem. The optimization based
model does not only provide a way to characterize the
equilibrium and establish the convergence of the frequency
dynamics, but also suggests a principled way to engineer
frequency control. New control scheme can be designed in a
principled way by engineering the optimization problem and
leveraging the insights obtained from reverse engineering, as
will be seen in the next section.

IV. FORWARD ENGINEERING

In this section, we show how to leverage the optimization
based model and insights obtained from reverse engineering
to design a frequency control scheme that does not only
maintain the frequency to the nominal value but also achieve
economic efficiency in a distributed real-time manner. The
new control scheme is drastically different from the current
hierarchical control approach that addresses frequency reg-
ulation and economic efficiency at different timescales and
with centralized control.

Three key points from last section are: 1) network dynam-
ics with frequency control is distributed algorithm solving
an optimization problem; 2) the uniqueness of the dual
optimum (i.e., the synchronized frequency) is the key to
convergence; and 3) the synchronized frequency relates to
the aggregate uncontrolled load deviation that frequency
sensitive load and generation control need to balance. The
first point suggests that we can design different control



schemes to achieve different objectives, by decomposing the
optimization problems that capture these objectives. The last
two points suggest that the desired equilibrium, i.e., w = 0,
can be ensured if ), \-Gi(w) = 0 at equilibrium. This
leads to a constraint Y.\ P/ =3, s PM+>". o P
at equilibrium. However, to impose this constraint directly
will change the decoupling structure that enables distributed
algorithm that is key to reverse engineering. We will instead
impose it indirectly by imposing the following (decoupling)
constrains:

PM = P+ Qy, ieNM, (26)
{j:(i.j)€€}

Pl = P+ Qi ieNF, (27)
{j:(i.j)€€}

0 = P+ Qi icN" (28)
{j:(i.))€€}

with Q;; = — Q.
Consider the following optimization problem, which is
problem (12)-(15) with additionally constraints (26)-(28):

pep B L Z Co(P2)+Y _CM(PM)+> "l (PR

ieN'M ieENE
(29)
subject to  (13) — (15) & (26) — (28) (30)
where Q = {Q;;; (¢,7) € £}. As in Section III, introduce

Lagrangian multipliers A = {\;;4 € N} for constraints (13)-
(15) and p = {p;;i € N} for (26)-(28), we can define
a Lagrangian L(P°,PM PE P,Q;\, u) and a reduced
Lagrangian

L(P, QA" )
_ : S M R .
- )\Hl'}yai([l PS,IIEJI‘?,PRL(P 7P 7P aPaQaAHU’)'

Consider the saddle point dynamics for L:

X =ri(Fy(\i + i) — Gi(\) — Pl — Z Py), i e N,
{5:(3,5)€€}
(1)
0=Gi(\)+ P/ + > Py — Hi(\i + i), i € N7, (32)
{: (m)EE}
0=Gi(\)+ P+ > Py, ie N, 33)
{45:(3,5)€€}
P'jzeij()"_)‘j)v (4, ')65 (34)
=& (Fi(Ni + i) — Z Qij), i€ N, (35)
{J (i,5)€€}
fi=&(Hi(Ni+ i) = Pl = D7 Qug), i e N, (36)
{J (.)€}
ﬂi:—fi(PiI+Z Qij), i €N, (7
{4:(4,5)€€}
Q _EU(/J’ MJ) (i,7) € €, (38)

where x; > 0, €; > 0, & > 0, and €;; > 0. This saddle
point dynamics gives the frequency dynamics under a new

frequency control scheme, if identifying A\; = w; and setting
¢i;j = Bjj and k; = . With this understanding, we will
also refer it as the frequency dynamics and use \; and w;
interchangeably. The following result is immediate.
Proposition 7: Let S be the set of saddle points of the
Lagrangian L. If (P°,PM PR P,Q;\, u) € S, then

wi=w, =7, i €N,
Fi() =P+ Py, ieNY,
{3:(i.4)€€}
Hi(y) =P +Y P, ieN", (39)
(3:(i.5)€€}
0=P+) Py, ieNV,
{3:(i.4)€€}

where w = 0 and 7 is a certain constant.

Proof: The result follows from the KKT condition for
the saddle point. In particular, w; = w; and p; = p; for all
(i,4) € &€, which leads to the first equation of (39). Also,

Fi(w+7) =Gi(w)+ PL+ Y Py, i € NM, (40)
{j:(i-5)€€)
Hi(w+7) =Gi(w) + P/ + > Py, i€ N7, (41)
(:(i.d)€€)
0=Gi(w)+ P/ +> Py, ic NV, (42)
{j:(ij)€€}
Filw+) =P+ Qy, icNY, 43
{j:(i.d)€€)
Hiw+7) =P+ > Qi icN®, @4
{j:(i.d)€€}
0=P/+> Qij, ic NV (45)

{5:(i,g)€E}

From the above equations, we get » . \- Gi(w) = 0, which
implies w = 0 since G; is strictly monotone with G;(0) = 0.
Plugging w = 0 into (40)-(42), we conclude the proof. M
The above proposition says that at a saddle point, i.e.,
an equilibrium of the frequency dynamics (31)-(38), the
frequencies are synchronized to the nominal value. Notice
that the strict monotonicity of G; can only ensure the
uniqueness in w but not in -, so it is inadequate to guarantee
the convergence of frequency dynamics as in Section III-B.
Here the situation becomes similar to that in Section III-C.
Theorem 8: 1If the aggregate uncontrolled load deviation is
NONZEro, i.e., ) ;s P! = 0. Then the frequency dynamics
(31)-(38) converges to a saddle point of Lagrangian L in the

presence of deadband in control.
Proof: Let 6,, = min 6;. that

IENMUNTE

Sienst Fi) + Ysenn Hi(3) T zer0 in (<802, 5,0/2]
and strictly decreasing in (—o00, —0,,/2] U [6,,/2,00). If
Sien PP # 0, the aggregate power balance >, P =
Y ienm Fi(v) + 22 carr Hi(y) has a unique solution for +.
The convergence follows from Proposition 13. |
The proof of Theorem 8 also suggests that if J,, =
i.e., there exists at least one bus without deadband, then the

Notice



frequency dynamics will converge regardless of the load de-
viation. If however the aggregate uncontrolled load deviation
is zero, the system may oscillate but will be confined within
the deadband.

Theorem 9: Suppose that the aggregate uncontrolled load
deviation is zero, i.e., Zie N Pil = 0. Then the frequencies
will be confined within the deadband at each bus.

Proof: The proof is similar to that of Theorem 6. ®

Lastly, at an equilibrium, the system achieves economic
efficiency, the goal of tertiary frequency control.

Theorem 10: If it converges, the frequency dynamics (31)-
(38) solves the following economic dispatch problem:

Jamin Y CMPM) +) CR(PT) (46)
T ieENM ieENE
subject to P! + Z Pyj=PM icNM @47
{5:i.5)€€}
Pl+Y P;=PF ieNt @)
{5:i.5)€€}
Pl+> Pj=0,ieN" (49)
{5:i.5)€€}

Proof: Notice that the saddle point condition (39) is
the KKT condition for problem (46)-(49) and its dual, with
;s the dual optimum. [ ]

From the above discussions, the partial primal-dual algo-
rithm (31)-(38) suggests a realtime frequency control that
synchronizes the frequency to nominal value and achieves
economic efficiency at the same time. Moreover, as will
be discussed next, the control is also distributed. Such
a distributed realtime control is drastically different from
the current hierarchical control approach that addresses
frequency regulation and economic efficiency at different
timescales, and is what is needed for the future power system
to cope with rapid and large fluctuations in supply/demand
and manage a huge number of control points.

A. Implementation

Notice that the frequency control scheme in (31)-(38)
cannot be implemented directly, as P/, which is usually un-
known and time-varying, is needed for updating p;. However,
if we choose & = 1/M;, i € N™ and let v; = w; — pu;, i €
NM | we can replace equation (35) by

I)i 1\2 wl +Z

{: (171)65}

—Qi)), i€ NM, (50)

obtained by substracting (35) from (31). Moreover, we can
solve for P!, i € NEUNY from power balance equations
(32)-(33), and implement equations (36)-(37) as

wl—&-z

{7: (w)EE}

—Qij)), i € NEUNE.(51)

Line 1-2 2-3 3-4 4-1
B;; | 26.5311 | 34.4333 | 17.2802 | 21.9803

TABLE III: Line Parameters

To summarize, our proposed power control scheme for
frequency control is as follows:

PM = F;(2w; — 1), i € N'M,
PR = H;(w; + i), i € NE,
(50) — (5D),
Q = cij(pi — py), (4,5) €€,
where in the last equation, p; = w; — v; if i € NM.

Notice that frequencies w; and branch flows P;; can be
measured locally, the frequency response G; can be learned
locally,* and variables v;, j;, ();; can be calculated with local
information at the buses. So, the above frequency control is
distributed.

B. Numerical example

We test the above new frequency control scheme with the
system shown in Fig. 2. We assume the same uncontrolled
load deviations as those in the first two scenarios and the
same generator parameters as in Table I in Section III-D.
We consider two different sets of line parameters: those in
Table II and more realistic parameters in Table III. Fig. 3
shows the frequency evolution. We see that the new control
scheme quickly recovers the nominal frequency. Also notice
that the fast synchronization shown in right panel is a result
from large coupling coefficients B;; between different areas.
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Fig. 3: Frequency dynamics with the new control scheme

with the line parameters in Table II (left panel) and in Table
III (right panel).

V. CONCLUSION

We have reverse-engineered the frequency dynamics with
general primary frequency control, by showing that it is a
distributed algorithm to solve a well-defined optimization
problem. We have also investigated the role of deadband in
control, and showed that if the aggregated uncontrolled load

4We will discuss how to learn G; directly or indirectly in a following
paper. But also notice that in many application scenarios such as frequency-
based load management or in mircogrids, the load frequency response is
by design and is thus known. Moreover, in equations (50)-(51), the exact
information on G; is not essential. This can be seen intuitively from
Theorem 10 which is oblivious of Pis . We will elaborate on this in the
following paper.



deviation is nonzero the frequencies will be synchronized,
and if however it is zero the frequencies may oscillate but
within the deadband. By leveraging the optimization problem
and insights from reverse engineering, we have designed
a distributed realtime frequency control scheme that does
not only maintain the frequency to the nominal value, but
also achieve economic efficiency. This is drastically different
from the current hierarchical control approach that addresses
frequency regulation and economic efficiency at different
timescales and with centralized control, and is what is
needed for future power system to cope with rapid and large
fluctuations in supply/demand and manage a huge number of
control points. Together with [25], [24], [17], [23], [12], this
work presents a step towards developing a new foundation —
network dynamics as optimization algorithm — for distributed
real-time control and optimization of future power networks.
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APPENDIX: SADDLE POINT DYNAMICS

Consider a Lagrangian L(x,y), corresponding to a (con-
vex) constrained minimization problem P over x [4]. So, L
is convex in primal variable x and concave in dual variable y.
Assume that L is differentiable and VL is locally Lipschitz,
and furthermore, L has a saddle point (z*,y*), i.e

L(z*,y) < L(z",y") < L(z,y").
A saddle point gives a primal-dual optimum of problem P
and its dual [4]. We denote by S the set of saddle points of
L. We will study the saddle point dynamics F:

oL
= _Fx77
o or
. oL
Yy y By s

where I'; and I'y are positive definite matrices. The saddle
point dynamics corresponds to the primal-dual gradient algo-
rithm for solving P and its dual. The case with L € C? has
been studied in [14], but here we want to generalize to the
case where L is differentiable and VL is locally Lipschitz
but not necessarily differentiable. References [24], [17] also
study a similar dynamics, corresponding to the case where
L is strictly concave in y and the generation cost function is
differentiable. Neither of these two properties is necessarily
true in our case. These subtle differences have an outcome
on convergence and require a refinement of the results in
[14], [24], [17], although the details are in the same spirit.
Define a Lyapunov function
Ulz,y; ", y")
1

= S(@=2")To @ =2+ (y—y) Ty~ y")

and consider its Lie-derivative LxU (x,y;x*,y*) along the
flow generated by the differential equation F:

LrU(z,y;2%,y")
T
= |3 DE] - 0y-y)]
oL” .oL”T .
= "oz ($—$)+a*y (y—v")
< —L(z,y) + L(z*,y) + L(x,y) — L(z,y")
= L(x",y) — L(z,y")
= L(z*,y) — L(z",y") + L(z",y") — L(zx,y")
< 0,

where the first inequality comes from the fact that L is
convex in x and concave in y, and the last inequality
from (z*,y*) being a saddle point of L. Notice that if
LrU(z,y;2*,y*) = 0, then all the inequalities become
equality, and L(z*,y) = L(z*y*) and L(z*,y*) =
L(z,y*). From LaSalle’s invariance principle [16], the tra-
jectory of F will be eventually contained in a compact subset
of the invariant set

T ={(z,y) : LU (z,y; 2", y*) = 0}.

The invariance set Z may not be a subset of the set S
of all saddle points of L, which means that the trajectory
is bounded but may not converge. For example, suppose
L(z,y) = 2Ty. Then S = {(0,0)} and the dynamics is given
by: & = —y, y = x. The system oscillates around (0,0)
unless it is initially at (0,0), and the trajectory is bounded
but Z is not contained in S.

In order to ensure that the invariance set Z is contained in
the saddle point set S, we can impose further constraint.

Proposition 11: Suppose L(z*,-) has a unique maximizer

y* or L(-,y*) has a unique minimizer z*. If (z,y) € Z, then
(z,y) € S.

Proof: If (x,y) € Z, then L(x*,y) = L(z*,y*) and
L(z*,y*) = L(x,y*). By the assumption on L, either z =

x* or y = y*. Suppose © = z*. Since L(z,y) = L(z*,y) =
L(z*,y*), y is a maximizer of L(x,-). Moreover, since x =
xr* Wthh is a constant, © = 0. This means that Fz% =0,

i.e., = satisfies a first order optimality condition for L(-,y).

Therefore x is also a minimizer of L(-,y), and hence (z,y)

is a saddle point of L. Similarly, if y = y*, we can also

show that (z,y) is a saddle point of L. [ |

The following result is immediate.

Proposition 12: Suppose L(x*,-) has a unique maximizer
y* or L(-,y*) has a unique minimizer z*. Then, the saddle
point dynamics F asymptotically converges to a compact
subset of S.

However, the above result does not give a pointwise con-
vergence, which will be ensured in the following proposition.

Proposition 13: Suppose L(x*,-) has a unique maximizer
y* or L(-,y*) has a unique minimizer z*. Then, the saddle
point dynamics J asymptotically converges to a saddle point
(x*,y*) € T.

Proof: Since (z(t), y(t)) converges to a compact subset
of Z, there exists a subsequence {(xj,yr)} where xp =



x(tx) and yr = y(¢x) that converges to a point (2>, y>).
This implies that up = U (g, yg; 2°°,y°°) converges to 0
asymptotically. Since (x(t),y(¢t)) will eventually be con-
tained in S, we have

Jim U ((t), y(t); 2°,y>) = lim u(t) = o,

t—o0

where u, 1s a certain constant. However, as uy is a subse-
quence of u(t) and converges to 0, 4y should be 0. This
concludes the proof. [ ]
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