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Connecting Automatic Generation Control and
Economic Dispatch from an Optimization View

Na Li, Changhong Zhao and Lijun Chen

Abstract—Automatic generation control (AGC) regulates me-
chanical power generation in response to load changes through
local measurements. Its main objective is to maintain system
frequency and keep energy balanced within each control area so
as to maintain the scheduled net interchanges between control
areas. The scheduled interchanges as well as some other factors
of AGC are determined at a slower time scale by considering
a centralized economic dispatch (ED) problem among different
generators. However, how to make AGC more economically
efficient is less studied. In this paper, we study the connections
between AGC and ED by reverse engineering AGC from an
optimization view, and then we propose a distributed approach
to slightly modify the conventional AGC to improve its economic
efficiency by incorporating ED into the AGC automatically and
dynamically.

I. INTRODUCTION

An interconnected electricity system can be described as a
collection of subsystems, each of which is called a control
area. Within each control area the mechanical power input to
the synchronous generators is automatically regulated by au-
tomatic generation control (AGC). AGC uses the local control
signals, deviations in frequency and net power interchanges
between the neighboring areas, to invoke appropriate valve
actions of generators in response to load changes. The main
objectives of the conventional AGC is to (i) maintain system
nominal frequency, and (ii) let each area absorbs its own
load changes so as to maintain the scheduled net interchanges
between control areas [2], [3]. The scheduled interchanges
between control areas, as well as the participation factors of
each generator unit within each control area, are determined
at a much slower time scale than the AGC by generating
companies considering a centralized economic dispatch (ED)
problem among different generators.

Since the traditional loads (which are mainly passive)
change slowly and are predictable with high accuracy, the
conventional AGC does not incur much efficiency loss by fol-
lowing the schedule made by the slower time scale ED after the
load changes. However due to the proliferation of renewable
energy resources as well as demand response in the future
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power grid, the aggregate net loads, e.g., traditional passive
loads plus electric vehicle loads minus renewable generations,
can fluctuate fast and by a large amount. Therefore the conven-
tional AGC can become much less economically efficient. We
thus propose a novel modification of the conventional AGC
to automatically (i) maintain nominal frequency and (ii) reach
optimal power dispatch between generator units among all the
control areas while balancing supply and demand within the
whole interconnected electricity system to achieve economic
efficiency. We call this modified AGC the economic AGC.
We further develop a hybrid of the conventional AGC and the
economic AGC where the power interchanges among certain
control areas are maintained at the nominal value but the power
is dispatched optimally to different generator units within each
control area. The purpose of this hybrid AGC is to prevent
disturbance propagating between control areas which might
lead to a system-wide blackout. Note that in the hybrid AGC
we allow flexibility of choosing where the power interchanges
should be maintained.

In order to keep the modification minimal and also to keep
the decentralized structure of AGC, we take a reverse and
forward engineering approach to develop the economic AGC.1

We first reverse-engineer the conventional AGC by showing
that the power system dynamics with the conventional AGC
can be interpreted as a partial primal-dual gradient algorithm
to solve a certain optimization problem. We then engineer
the optimization problem to include general generation costs
and general power flow balance (which will guarantee supply-
demand balance within the whole interconnected electricity
system), and propose a distributed generation control scheme
that is integrated into the AGC. The engineered optimization
problem shares the same optima as the ED problem, and thus
the resulting distributed control scheme incorporates ED into
AGC automatically. Combined with [4] on distributed load
control, this work lends the promise to develop a modeling
framework and solution approach for systematic design of
distributed, low-complexity generation and load control to
achieve system-wide efficiency and robustness.

A. Literature Review

There has been a large amount of work on AGC in the
last few decades, including, e.g., stability and optimum pa-
rameter setting [5], optimal or adaptive controller design [6]–
[8], decentralized control [9], [10], and multilevel or multi
timescale control [11], [12]; see also [3] and the references

1A similar approach has been used to design a decentralized optimal load
control in our previous work [4].
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therein for a thorough and up-to-date review on AGC. Most
of these work focuses on improving the control performance
of AGC, such as stability and transient dynamics, but not
on improving the economic efficiency. References [13], [14]
introduce approaches for AGC that also support an ED feature
which operates at a slower time scale and interacts with AGC
frequency stabilization function. For instance, reference [14]
brings in the notion of minimal regulation which reschedules
the entire system generation and minimizes generation cost
with respect to system-wide performance. Our work aims to
improve the economic efficiency of AGC in response to the
load changes as well; the difference is that instead of using
different hierarchical control to improve AGC, we incorporate
ED automatically and dynamically into AGC. Moreover, our
controller is a decentralized and closed-loop one, where each
control area updates its generation based only on measure-
ments of local physical variables that are easy to measure
and information of local auxiliary variables that are easy to
compute and communicate with neighboring areas. This means
that the controller does not need any information of the system
disturbance which is the change of the net loads in this paper.

Recently, there is a increasing interest to study frequency
control from the same perspective of this work, i.e., to bridge
the gap between different layers of hierarchical control, es-
pecially the dynamical control and optimal dispatch. An in-
complete list includes [15]–[23]. One main difference between
our work and the others is that we focus on AGC and model
the built-in control mechanisms explicitly, i.e., the turbine-
governor control and ACE-based control. Our objective is not
only to design distributed algorithms to improve the economic
efficiency of AGC, but also to keep the modification as minor
as possible in order to facilitate the implementation of the
new control algorithms. The reverse and forward engineering
approach adopted in this paper allows us to maximally take
into account the existing system dynamics and built-in control
mechanisms. As a result, the economic (or hybrid) AGC
only requires minor modifications that are implementable via
introducing new local auxiliary variables which are easy to
compute.

The paper is organized as follows. Section II introduces a
dynamic power network model with AGC, the ED problem,
and the objective of the economic AGC. Section III reverse-
engineers the conventional AGC, Section IV provides an
economic AGC scheme based on the insight obtained by the
reverse engineering, and Section V provide a hybrid of the
conventional AGC and economic AGC. Lastly, Section VI
simulates and compares the convention AGC, the economic
AGC, and the hybrid AGC.

II. SYSTEM MODEL

A. Dynamic network model with AGC

Consider a power transmission network, denoted by a graph
(N , E), with a set N = {1, · · · , n} of buses and a set E ⊂
N ×N of transmission lines connecting the buses. Here each
bus may denote an aggregated bus or a control area. We make
the following assumptions:

• The lines (i, j) ∈ E are lossless and characterized by their
reactance xij ;

• The voltage magnitudes |Vi| of buses i ∈ N are con-
stants;

• Reactive power injections at the buses and reactive power
flows on the lines are ignored.

We assume that (N , E) is connected and directed, with an
arbitrary orientation such that if (i, j) ∈ E , then (j, i) /∈ E .
We use i : i → j and k : j → k respectively to denote the
set of buses i such that (i, j) ∈ E and the set of buses j
such that (j, k) ∈ E . We study generation control when there
is a step change in net loads from their nominal (operating)
points, which may result from a change in demand or in
non-dispatchable renewable generation. To simplify notation,
all the variables in this paper represent deviations from their
nominal (operating) values. Note that in practice those nominal
values are usually determined by the last ED problem, which
will be introduced later.

Frequency Dynamics: For each bus j, let ωj denote the
frequency, PMj the mechanical power input, and PLj the total
load. For a link (i, j), let Pij denote the transmitted power
form bus i to bus j. The frequency dynamics at bus j is given
by the swing equation:

ω̇j = − 1

Mj

Djωj − PMj + PLj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij

 ,

(1)
where Mj is the generator inertia and Dj is the damping
constant at bus j.

Branch Flow Dynamics: Assume that the frequency deviation
ωj is small for each bus j ∈ N . Then the deviations Pij from
the nominal branch flows follow the dynamics:

Ṗij = Bij(ωi − ωj), (2)

where

Bij :=
|Vi||Vj |
xij

cos(θ0i − θ0j )

is a constant determined by the nominal bus voltages and the
line reactance. Here θ0i is the nominal voltage phase angle of
bus i ∈ N . The detailed derivation is given in [4].

Turbine-Governor Control: For each generator, we consider
a governor-turbine control model, where a speed governor
senses a speed deviation and/or a power change command
and converts it into appropriate valve action, and then a
turbine converts the change in the valve position into the
change in mechanical power output. The governor-turbine
control is usually modeled as a two-state dynamic system.
One state corresponds to the speed governor and the other
state corresponds to the turbine. Since the time constant of the
governor is much smaller than the turbine for most systems, we
simplify the governor-turbine control model from two states
to a single state PMj :

ṖMj = − 1

Tj

(
PMj − PCj +

1

Rj
ωj

)
, (3)
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where PCj is the power change command and Tj and Rj
are costant parameters. See [2] for a detailed introduction of
governor-turbine control.

ACE-based control: In the conventional AGC, power change
command PCj is adjusted automatically by the tie-line bias
control which drives the area control errors (ACEs) to zero.
For a bus j, the ACE is defined as:

ACEj = Bjωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij .

The adjustment of power change command is given as follows:

ṖCj = −Kj

Bjωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij

 , (4)

where both Bj and Kj are positive constant parameters. In
this paper, we also call this AGC the ACE-based AGC.

In summary, the dynamic model with power control over
a transmission network is given by equations (1)-(4). If the
system is stable given certain load changes, then by simple
analysis we can show that the ACE-based AGC drives the
system to a new steady state where the load change in each
control area is absorbed within each area, i.e., PMj = PLj for
all j ∈ N , and the frequency is returned to the nominal value,
i.e., ωj = 0 for all j ∈ N ; as shown in Proposition 1 in Sec-
tion III. Notice that the ACE-based AGC has a decentralized
structure, namely that it only uses local control signals, i.e.,
deviations in frequency and the net power interchanges with
the neighboring buses.

B. Economic dispatch (ED)

Due to the proliferation of renewable energy resources such
as solar and wind in the future power grid, the aggregate net
loads will fluctuate much faster and by large amounts. The
ACE-based AGC that requires each control area to absorb its
own load changes may be economically inefficient. Therefore,
we proposed to modify the ACE-based AGC to (i) maintain the
nominal frequency and (ii) drive the mechanical power output
PMj , j ∈ N to the optimum of the following ED problem:

min
∑
j∈N

Cj(P
M
j ) (5a)

s.t.
∑
j∈N

PMj =
∑
j∈N

PLj (5b)

over PMj , j ∈ N

where each generator at j incurs certain cost Cj(PMj ) when
its power generation is PMj .2 Equation (5b) imposes power
balanced within the global system. The cost function Cj(·) is
assumed to be continuous, differentiable and convex. In the
rest of this paper, we call this modified AGC as the economic

2Because all the variables denote the deviations in this paper, it may be
not straightforward to interpret this ED problem, e.g., its connection with
the slower timescale ED problem which is defined on the absolute value of
each variable instead of the deviated value. In the appendix, we provide two
interpretations of the ED problem in (5).

AGC and we will show how to reverse and forward engineer
the ACE-based AGC to design an economic AGC scheme.

Remark In the conventional ACE-based AGC, if a control
area j has multiple generator units, the generation change
PCj in (4) is allocated by a central regulator (e.g., the ISO)
to individual generator units via participation factors. The
participation factors are inversely proportional to the units’
incremental cost of production which are determined by the
last ED performed. See [24] for detailed description. Thus if
the net loads fluctuate fast and dramatically due to the large
penetration of renewable energy, this centralized allocation
plan by using constant participation factors also becomes
economically inefficient. The results developed in this paper
can also be applied to improve the economic efficiency of
the generation control for each unit within one area and the
allocation is done in a distributed way as shown in Section V
of the hybrid AGC. In fact, a system operator can apply our
results to the generation control at different levels of the power
system, e.g., different control areas, different generators within
one area, etc, according to the practical requirements of the
system. For the simplicity of illustration, at the beginning we
do not specify the level of the generation control that we study.
We will focus on the abstract model in (1)-(4) and treat each
bus j as a generator bus.

III. REVERSE ENGINEERING OF ACE-BASED AGC

In this section, we reverse-engineer the dynamic model with
the ACE-based AGC (1)-(4). We show that the equilibrium
points of (1)-(4) are the optima of a properly defined opti-
mization problem and furthermore the dynamics (1)-(4) can be
interpreted as a partial primal-dual gradient algorithm to solve
this optimization problem. The reverse-engineering suggests a
way to modify the ACE-based AGC to incorporate ED into
the AGC scheme.

We first characterize the equilibrium points of the power
system dynamics with AGC (1)-(4). Let ω = {ωj , j ∈ N},
PM = {PMj , j ∈ N}, PC = {PCj , j ∈ N}, and P =
{Pi,j , (i, j) ∈ E}.

Proposition 1. (ω, PM , PC , P ) is an equilibrium point of the
system (1)-(4) if and only if ωj = 0, PCj = PMj = PLj , and∑
i:i→j Pij =

∑
k:j→k Pjk for all j ∈ N .

Proof. At a fixed point,

Ṗij = Bij(ωi − ωj) = 0.

Therefore ωi = ωj for all i, j ∈ N , given that the transmission
network is connected. Moreover,

ACEj = Bjωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij = 0.

Thus
∑
j∈N ACEj =

∑
j∈N Bjωj = ωi

∑
j∈N Bj = 0, so

ωi = 0 for all i ∈ N . The rest of the proof is straightforward.
We omit it due to space limit.

Consider the following optimization problem:

OGC-1
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min
∑
j∈N

Cj(P
M
j ) +

∑
j∈N

Dj

2
|ωj |2 (6a)

s.t. PMj = PLj +Djωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij (6b)

PMj = PLj (6c)

over ωj , P
M
j , Pij , j ∈ N , (i, j) ∈ E ,

where equation (6c) requires that each control area absorbs its
own load changes. The following result is straightforward.

Lemma 2. (ω∗, PM
∗
, P ∗) is an optimum of OGC-1 if and

only if ω∗j = 0, PMj
∗

= PLj , and
∑
k:j→k P

∗
jk =

∑
i:i→j P

∗
ij

for all j ∈ N .

Proof. First, the constraints (6b,6c) imply that Djωj +∑
k:j→k Pj,k −

∑
i:i→j Pi,j = 0 for all j ∈ N . Then we can

use contradiction to prove that ω∗i = ω∗j for all (i, j) ∈ E . By
following similar arguments in Proposition 1, we can prove
the statement in the lemma.

Note that problem OGC-1 appears simple, as we can easily
identify its optima if we know all the information on the
objective function and the constraints. However, in practice
these information is unknown. Moreover, even if we know an
optimum, we cannot just set the system to the optimum. As
the power network is a physical system, we have to find a way
that respects the power system dynamics to steer the system
to the optimum. Though the cost function Cj(PMj ) does not
play any role in determining the optimum of OGC-1, it will
become clear later that the choice of the cost function does
have important implication to the algorithm design and the
system dynamics.

We now show that the dynamic system (1)-(4) is actually a
partial primal-dual gradient algorithm for solving OGC-1 with
Cj(P

M
j ) =

βj
2 (PMj )2 where βj > 0:

Introducing Lagrangian multipliers λj and µj for the con-
straints in OGC-1, we obtain the following Lagrangian func-
tion:

L =
∑
j∈N

βj
2

(PMj )2 +
∑
j∈N

Dj

2
|ωj |2

+
∑
j∈N

λj

PMj − PLj −Djωj −
∑
k:j→k

Pjk +
∑
i:i→j

Pij


+
∑
j∈N

µj
(
PMj − PLj

)
. (7)

Based on the above Lagrangian function, we can write
down a partial primal-dual subgradient algorithm of OGC-1
as follows:

ωj = λj (8a)

Ṗij = εPij (λi − λj) (8b)

ṖMj = −εPj (βjPMj + λj + µj) (8c)

λ̇j = ελj

PMj − PLj −Djωj −
∑
k:j→k

Pjk +
∑
i:i→j

Pij


(8d)

µ̇j = εµj
(
PMj − PLj

)
, (8e)

where εPij , εPj , ελj and εµj are positive stepsizes. Note
that equation (8a) solves maxωj

Dj
2 ω

2
j − λjDjωj rather than

follows the primal gradient algorithm with respect to wj ;
hence the algorithm (8) is called the “partial” primal-dual
gradient algorithm. See the Appendix for a description of the
general form of partial primal-dual gradient algorithm and its
convergence.

Let ελj = 1
Mj

for all j ∈ N . By applying linear transfor-
mation from (λj , µj) to (ωj , P

C
j ):

ωj = λj

PCj = KjMj

(
λj −

1

εµjMj
µj

)
,

the partial primal-dual gradient algorithm (8) becomes:

ω̇j =− 1

Mj

Djωj − PMj + PLj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij


(9a)

Ṗij = εPij (ωi − ωj) (9b)

ṖMj =−εPjβj
(
PMj −

εµj
Kjβj

PCj +
1 + εµjMj

βj
ωj

)
(9c)

ṖCj =−Kj

Djωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij

 . (9d)

If we set εPij = Bij , εµj =
RjKj

1−RjKjMj
, βj =

Rj
1−RjKjMj

,
and εPj = 1

βjTj
, then the partial primal-dual algorithm (9)

is exactly the power system dynamics with AGC (1)-(4) if
Bj = Dj , j ∈ N . Note that the assumption of Bj = Dj looks
restrictive. But since Bj is a design parameter, we can set it to
Dj . However, in reality Dj is uncertain and/or hard to measure
because it does not only account for damping of the generator
but also contains a component due to the frequency dependent
loads. In Section VI, the simulation results demonstrate that
even if Bj 6= Dj , the algorithm still converges to the same
equilibrium point. It remains as one of our future work to
characterize the range of Bj which guarantees the convergence
of the algorithm. Nonetheless, the algorithm in (9) provides
a tractable and easy way to choose parameters for the ACE-
based AGC in order to guarantee its convergence.

Theorem 3. If 1 > RjKjMj for all j ∈ N , with the above
chosen ελj , εµj , εPij and εPj , the partial primal-dual gradient
algorithm (9) (i.e., the system dynamics (1)-(4)) converges to
a fixed point (ω∗, P ∗, PM

∗
, PC

∗
) where (ω∗, P ∗, PM

∗
) is an

optimum of problem OGC-1 and PC∗ = PM
∗.

Proof. The proof is deferred in the Appendix.

Remark We have made an equivalence transformation in the
above: from algorithm (8) to algorithm (9). The reason for
doing this transformation is to derive an algorithm that admits
physical interpretation and can thus be implemented as the
system dynamics. In particular, PLj is unknown and hence µj
can not be directly observed or estimated, while PCj can be
estimated/calculated based on the observable variables ωj and
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Pij . As the control should be based on observable or estimable
variables, the power system implements algorithm (9) instead
of (8) for the ACE-based AGC.

The above reverse-engineering, i.e., the power system dy-
namics with AGC as the partial primal-dual gradient algo-
rithm solving an optimization problem, provides a modeling
framework and systematic approach to design new AGC
mechanisms that achieve different (and potentially improved)
objectives by engineering the associated optimization problem.
The new AGC mechanisms would also have different dy-
namic properties (such as responsiveness) and incur different
implementation complexity by choosing different optimizing
algorithms to solve the optimization problem. In the next
section, we will engineer problem OGC-1 to design an AGC
scheme that achieves economic efficiency.

IV. ECONOMIC AGC BY FORWARD ENGINEERING

We have seen that the power system dynamics with the
ACE-based AGC (1)-(4) is a partial primal-dual gradient
algorithm solving a cost minimization problem OGC-1 with
a “restrictive” constraint PMj = PLj that requires supply-
demand balance within each control area. As mentioned
before, this constraint may render the system economically
inefficient. Based on the insight obtained from the reverse-
engineering of the conventional AGC, we relax this constraint
and propose an AGC scheme that (i) keeps the frequency
deviation to 0, i.e., ωj = 0 for all j ∈ N , and (ii) achieves
economic efficiency, i.e., the mechanical power generation
solves the ED problem (5).

Consider the following optimization problem:

OGC-2

min
∑
j∈N

Cj(P
M
j ) +

∑
j∈N

Dj

2
|ωj |2 (10a)

s.t. PMj = PLj +Djωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij(10b)

PMj = PLj +
∑
k:j→k

γjk −
∑
i:i→j

γij (10c)

over ωj , P
M
j , Pij , γij , j ∈ N , (i, j) ∈ E ,

where γij are auxiliary variables introduced to relax the
restrictive constraint PMj = PLj , which allows different control
areas to change their power flow interchanges so as to promote
the global system economic efficiency. Though OGC-2 looks
much more complicated than the simple ED problem (5), as
shown in Lemma 4 the optimal solution PM

∗

j of OGC-2 is
equal to the optimal solution of ED (5) for which we call
the AGC derived in this section as economic AGC. As shown
later, the reason to focus on OGC-2 is to keep ωj = 0 for
all j ∈ N and to derive an implementable control algorithm
which requires minor modifications on the ACE-based AGC,
equations (3)-(4).

Lemma 4. Let (ω∗, PM
∗
, P ∗, γ∗) be an optimum of OGC-2,

then ω∗j = 0 for all j ∈ N and PM ∗ is the optimal solution
of the ED problem (5).

Proof. First, note that at the optimum, ω∗i = ω∗j for all (i, j) ∈
N . Second, combining (10b) and (10c) gives

Djωj +
∑
k:j→k

(Pjk − γjk)−
∑
i:i→j

(Pij − γij) = 0

for all j ∈ N . Following similar arguments as in Proposition 1,
we have ω∗i = 0 for all i ∈ N . Therefore the constraint (10c)
is redundant and can be removed. So, problem OGC-2 reduces
to the ED problem (5).

Following the same procedure as in Section III, we derive
the following partial prime-dual algorithm to solve OGC-2:

ωj = λj (11a)

Ṗi,j = εPij (λi − λj) (11b)

ṖMj = −εPj (C ′j(PMj ) + λj + µj) (11c)
γ̇ij = εγij (µi − µj) (11d)

λ̇j = ελj

PMj − PLj −Djωj −
∑
k:j→k

Pjk +
∑
i:i→j

Pij


(11e)

µ̇j = εµj

PMj − PLj − ∑
k:j→k

γjk +
∑
i:i→j

γij

 , (11f)

Let ελj = 1
Mj

, εPij = Bij , εµj =
RjKj

1−RjKjMj
and εPj =

1−RjKjMj

TjRj
as in Section III. By using linear transformation

ωj = λj and PCj = KjMj

(
λj − 1

εµjMj
µj

)
, the partial

primal-dual gradient algorithm (11) becomes:

ω̇j =− 1

Mj

Djωj − PMj + PLj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij


(12a)

Ṗij =Bij(ωi − ωj) (12b)

ṖMj =− 1

Tj

(
1−RjKjMj

Rj
C ′j(P

M
j )− PCj +

1

Rj
ωj

)
(12c)

ṖCj =−Kj

Djωj +
∑
k:j→k

(Pjk − γjk)

−
∑
i:i→j

(Pij − γij)

 (12d)

γ̇ij = εγij

((
Miωi −

PCi
Ki

)
εµi −

(
Mjωj −

PCj
Kj

)
εµj

)
.

(12e)

Compared with algorithm (9) (i.e., the power system dy-
namics with the ACE-based AGC), the difference in algorithm
(12) is the new variables γij and the marginal cost C ′j(·) in
the generation control (12c). Note that γij can be calculated
based on the observable/measurable variables. So, the above
algorithm is implementable. However, it might be not practical
to add additional variable γij for each branch (i, j) ∈ E . To
further facilitate the implementation, we can remove γi,j by
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introducing γj for each bus j and replace (12d, 12e) by the
following dynamics:

ṖCj = −Kj

Djωj +
∑
k:j→k

(Pjk − γj + γk)

−
∑
i:i→j

(Pij − γi + γj)

 (13a)

γ̇i = εγ

((
Miωi −

PCi
Ki

)
εµi

)
. (13b)

which tells us that the power change command PCj can
be controlled using local measurements ωj , Pjk, γj , and
local communications on γi, γk with the neighbors i, k where
(i, j), (j, k) ∈ E . Here γj is a local auxiliary variable which
is updated using local information at each bus j ∈ N .

Similarly, we have the following result.

Theorem 5. The algorithm (12a–12c, 13a–13b) converges to a
fixed point (ω∗, P ∗, PM

∗
, PC

∗
, γ∗) where (ω∗, P ∗, PM

∗
, γ∗)

is an optimum of problem OGC-2, which is also optimal to
the ED problem in (5), and PCj

∗
=

1−RjKjMj

Rj
C ′j(P

M
j
∗
).

Proof. Please see the Appendix for the convergence of the
partial primal-dual gradient algorithm.

With Lemma 4 and Theorem 5, we can implement algorithm
(12a–12c, 13a–13b) as an economic AGC for the power
system. By comparing with the ACE-based AGC in (1)-(4)
and the economic AGC in (12a–12c, 13a–13b), we note that
economic AGC has only a slight modification to the ACE-
based AGC and keeps the decentralized structure of AGC.
In other words, adding a local communication about the new
local auxiliary variable γj based on (13a–13b) can improve
the economic efficiency of AGC.

Remark We can actually derive a simpler and yet imple-
mentable algorithm without introducing variable γij , (i, j) ∈ E
(or γi, i ∈ N ). However, we choose to derive the algorithm
(12) and (13) in order to have minimal modification to the
existing conventional AGC and also keep the resulting control
decentralized, where each control area update its generation
based on measurements of local physical variables that are
easy to measure and information of local auxiliary variables
that are easy to compute and communicate with neighboring
areas.

V. A HYBRID OF ACE-BASED AGC AND ECONOMIC AGC

In the ACE-based AGC, each control area absorbs its
own energy fluctuation in order to prevent the disturbance
propagation which might lead to a system-wide blackout. In
the economic AGC, all the control areas share the energy
fluctuations in order to improve the economic efficiency. The
side effect is that this sharing could propagate the disturbance
and might lead to a blackout due to the potential outage of
some transmission lines. Therefore, in this section, we propose
a hybrid of ACE-based AGC and economic AGC which takes
account of both the safety and efficiency. We call this AGC
as hybrid AGC.

Given an interconnected power network N which is di-
vided(/partitioned) into different areas, denoted by A =
{A1, A2, . . . , Am}.3 Here each Al ⊆ N is a control area.
The objective of the hybrid AGC is to 1) maintain the nominal
frequency; 2) each area Ai absorbs its own energy disturbance
in an economically efficient way such that {PMj }j∈Al is the
optimum to the following optimization problem: for each
Al ∈ A,

min
PMj ,j∈Al

∑
j∈Al

Cj(P
M
j ) (14a)

s.t.
∑
j∈Al

PMj =
∑
j∈Al

PLj . (14b)

Let Ein be the subset of links that connect buses within a
same area. Now consider the following optimization problem:

OGC-3

min
∑
j∈N

Cj(P
M
j ) +

∑
j∈N

Dj

2
|ωj |2 (15a)

s.t. PMj = PLj +Djωj +
∑

(j,k)∈E

Pjk −
∑

(i,j)∈E

Pij(15b)

PMj = PLj +
∑

(j,k)∈Ein

γjk −
∑

(i,j)∈Ein

γij (15c)

over ωj , P
M
j , Pij , γij , j ∈ N , (i, j) ∈ E ,

We have the following Lemma regarding the optimal solu-
tion of OGC-3.

Lemma 6. Let (ω∗, PM
∗
, P ∗, γ∗) be an optimum of OGC-

3, then i) ω∗j = 0 for all j ∈ N and ii) for each area Al,{
PMj

}
j∈Al

is the optimal solution to problem (14).

Proof. Note that A = {A1, A2, . . . , Am} forms a partition
N and the network (N , E) is connected. By using similar
argument in the proof of Lemma 4, we can obtain the
statement in this Lemma. We omit the details here.

Following the same procedure as in Section IV, we can
derive the following partial prime-dual algorithm to solve
OGC-2, which is the hybrid AGC we need to obtain:

ω̇j =− 1

Mj

Djωj − PMj + PLj +
∑

(j,k)∈E

Pjk −
∑

(i,j)∈E

Pij


(16a)

Ṗij =Bij(ωi − ωj) (16b)

ṖMj =− 1

Tj

(
1−RjKjMj

Rj
C ′j(P

M
j )− PCj +

1

Rj
ωj

)
(16c)

ṖCj =−Kj

Djωj +
∑

(j,k)∈E

Pjk −
∑

(i,j)∈E

Pij

−
∑

(j,k)∈Ein

(γj − γk) +
∑

(i,j)∈Ein

(γi − γj)

 (16d)

3We assume that A forms a partition of N , i.e., Al1 ∩ Al2 = ∅ for any
l1 6= l2 and ∪l=1,...,mAl = N .
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γ̇i = εγ

((
Miωi −

PCi
Ki

)
εµi

)
. (16e)

Similarly, we can guarantee the stability of the hybrid AGC.

Theorem 7. The algorithm (16) converges to a fixed point
(ω∗, P ∗, PM

∗
, PC

∗
, γ∗) where (ω∗, P ∗, PM

∗
, γ∗) is an opti-

mum of problem OGC-3, which is given in Lemma 6.

Proof. Please see the Appendix for the convergence of the
partial primal-dual gradient algorithm.

Compared with the economic AGC in (12a–12c, 13a–13b),
the only difference of the hybrid AGC is that if bus i and j are
connected but not belonging to the same area, then they do not
communicate the auxiliary variable γi and γj with each other.
As a result, the hybrid AGC possesses all the nice properties
of the economic AGC. It requires only local measurement,
local computation and local communication. Moreover, the
modification to the conventional ACE-based AGC is moderate.

VI. CASE STUDY

For illustrative purpose, we consider a simple interconnected
system with 4 buses, as shown in Figure 1. The values of
the generator and transmission line parameters are shown in
Table I and II. Notice that though our theoretical results require
that Bj = Dj for each j, here we choose Bj differently
from Dj since Dj is usually uncertain in reality. To make it
easy to compare the simulation results, we choose a same cost
function for each area, where Ci(PMi

) = aP 2
Mi

. Therefore we
know that the optimal dispatch is to equally share the load.

Fig. 1: A 4-area interconnected system

TABLE I: Generator Parameters

Area, j Mj Dj |Vj | Tj Rj Kj Bj

1 3 1 1.045 4 0.05 2 2
2 2.5 1.5 0.98 4 0.05 2 3
3 4 1.2 1.033 4 0.05 2 2
4 3.5 1.4 0.997 4 0.05 2 3

TABLE II: Line Parameters

line 1-2 2-3 3-4 4-1
r 0.004 0.005 0.006 0.0028
x 0.0386 0.0294 0.0596 0.0474

In the model used for simulation, we relax some of the
assumptions made in the previous analysis. For each trans-
mission line we consider non-zero line resistance and do
not assume small differences between phase angle deviations,
which means that the power flow model is in the form of

Pij =
|Vi||Vj |
x2ij + r2ij

(
xij(sin θij − sin θ0ij)− rij(cos θij − cos θ0ij)

)
.

Simulations results show that our proposed AGC scheme
works well even in these non-ideal, practical systems.
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Fig. 2: The ACE-based AGC
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Fig. 3: The economic AGC
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Fig. 4: The hybrid AGC

At time t = 10s, a step change of load occurs at bus 4
where PL4 = 1 pu. In the simulation, to be consistent with
the real practice in the conventional AGC, the signal for the
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Fig. 5: The generation cost

AGC is only reset at every 15 seconds. Figure 2 shows the
dynamics of the frequencies and mechanical power outputs
for the 4 buses using ACE-based AGC (1)–(4), which tells
that bus 4 absorbs all the disturbance eventually. Figure 3
shows the dynamics of the frequencies and mechanical power
outputs for the 4 buses using the economic AGC (12a–12c,
13a–13b), which tells that all the buses share the disturbance
equally and thus optimally. Figure 4 shows the dynamics of
the frequencies and mechanical power outputs for the 4 buses
using the hybrid AGC where bus 1 and 4 form one control
area and bus 2 and 3 forms another control area. Gradually
bus 1 and 4 share the disturbance equally and bus 2 and 3 are
not effected by the disturbance. Figure 5 compares the total
generation costs using the ACE-based AGC, the economic
AGC, and the hybrid AGC with the minimal generation cost
of the ED problem (5). We see that the economic AGC track
the optimal value of the ED problem and the hybrid AGC
dispatches the power generation optimally within each area.
An interesting observation is that the frequency dynamics are
very similar. One possible explanation is the fast frequency
synchronization. Because the AGC control signal is reset
every 15 seconds, before the AGC takes action, the frequency
has been synchronized within the first 15 seconds, when the
frequency has the most dramatic transient dynamics.

VII. CONCLUSION

We reverse-engineer the conventional AGC, and based on
the insight obtained from the reverse engineering, we design
a decentralized generation control scheme that integrates the
ED into the AGC and achieves economic efficiency. Combined
with the previous work [4] on distributed load control, this
work lends the promise to develop a modeling framework and
solution approach for systematic design of distributed, low-
complexity generation and load control to achieve system-wide
efficiency and robustness.
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APPENDIX

A. Interpretation of the ED in (5)

Here we provide two ways of constructing(/interpreting) the
cost functions in (5). Now let PMj denote the nominal value
of the mechanical power generation and ∆PMj denote the
deviation from the nominal value. One type of cost Cj(∆PMj )
is the cost on the deviation, e.g., |∆PMj |2. This means that
as long as there is a deviation from the nominal value PMj ,
there is a cost incurred. The second one is more directly
related to the generation cost which is used at the slow time-
scale ED problem. At the slow time-scale ED problem, PMj
is determined by minimizing the generation cost

∑
j cj(P

M
j )

such that
∑
j P

M
j =

∑
j P

d
j . When there is a deviation ∆PMj ,

the new generation cost is cj(P
M
j + ∆PMj ). This gives a

natural way to construct the cost function of Cj(∆PMj ), which
is that Cj(∆PMj ) := cj(P

M
j + ∆PMj ).

B. Proof of Convergence

Primal-dual gradient flow (also called as saddle point
flow) method for optimization problem have been studied
and applied in different literature, e.g., [25]–[29]. The proof
techniques used in these literature can be applied to our
problem with a minor modification via using the properties of
the optimization problems. Instead of only proving Theorem
3, 5 and 7, we provide a partial primal-dual gradient algorithm
for a general convex optimization problem and show that
the algorithm converges to the optimal primal-dual point if
the optimization problem satisfies certain conditions. Then
we will prove Theorem 3, 5 and 7. Focusing on the general
optimization problem first allows us to illustrate the main ideas
behind the detailed algorithms used in the paper and the results
have more general application than the AGC itself.

1) A partial primal-dual gradient algorithm: Consider the
following optimization problem:

min
x,y

f(x) + g(y) (17)

s.t. Ax+By = C,

where f(x) is a strict convex and twice differentiable function
of x, g(y) is a convex and differentiable function of y. Notice
that g(y) can be a constant function.

The Lagrangian function of this optimization problem is
given by:

L(x, y, α) = f(x) + g(y) + αT (Ax+By − C).

Assume that the constraint is feasible and an optimal solution
exists, then the strong duality holds. Moreover, the primal-dual
optimal solution (x∗, y∗, α∗) is a saddle point of L(x, y, α)
and vice versa.

The partial primal-dual gradient algorithm is given by,

Algorithm-1:

x(t) = arg min
x
{L(x, y, α)} = arg min

x

{
f(x) + αTAx

}
ẏ = −Ξy(

∂L(x, y, α)

∂y
= −Ξy(

∂g(y)

∂y
+BTα)

α̇ = Ξα(
∂L(x, y, α)

∂α
= Ξα(Ax+By − C)

where Ξy = diag(εyi) and Ξα = diag(εαj ). In the following
we will study the convergence of this algorithm.

Define

q(α) , min
x

{
f(x) + αTAx

}
L̂(y, α) , q(α) + g(y) + αT (By − C).

The following proposition demonstrate some properties of
q(α) and L̂(y, α).

Proposition 8. q(α) is a concave function and its gradient
is given as ∂q(α)

∂α = Ax. If ker(AT ) = 0, then q(α) is a
strictly concave function. As a consequence, L̂(y, α) is strictly
concave on α.

Proof. Because f(x) is a strictly convex function of x, we can
directly apply Proposition 6.1.1 in [30] to conclude that q(α)
is a concave function of α and ∂q

∂α = Ax. Let H := ∇2f(x),
which is a positive definite matrix. From equation (6.9) in [30],
we have ∇2q(α) = −AH−1AT . Therefore, we know that if
ker(AT ) = 0, ∇2q is a negative definite matrix, implying that
q(α) is a strictly concave function. The rest of the proposition
follows directly.

Moreover, we have the following connections between
L(x, y, α) and L̂(y, α).

Proposition 9. If (x∗, y∗, α∗) is a saddle point of L,
then (y∗, α∗) is a saddle point of L̂ and x∗ =
argminx

{
f(x) + (α∗)TAx

}
. Moreover, if (y∗, α∗) is a saddle

point of L̂, then (x∗, y∗, α∗) is a saddle point of L where
x∗ = argminx

{
f(x) + (α∗)TAx

}
.

Proof. The proof is straightforward by comparing the first
order conditions of saddles points for both L and L̂. Note
that convexity of f, g, and concavity of q implies that those
first order conditions are necessary and sufficient conditions
for saddle points.

We also have the following properties of the saddle points
of L̂,

Proposition 10. Assume ker(AT ) = 0. Given any two saddle
points (y∗1 , α

∗
1), (y∗2 , α

∗
2) of L̂, we have α∗1 = α∗2, and

L̂(y∗1 , α
∗
1) = L̂(y∗2 , α

∗
2) = L̂(y∗1 , α

∗
2) = L̂(y∗2 , α

∗
1).

Proof. If (y∗1 , α
∗
1), (y∗2 , α

∗
2) are two saddle points,

L̂(y∗1 , α) ≤ L̂(y∗1 , α
∗
1) ≤ L̂(y, α∗1),

L̂(y∗2 , α) ≤ L̂(y∗2 , α
∗
2) ≤ L̂(y, α∗2),

for any (y, α). Thus, we have, L̂(y∗1 , α
∗
2) ≤ L̂(y∗1 , α

∗
1) ≤

L̂(y∗2 , α
∗
1) ≤ L̂(y∗2 , α

∗
2) ≤ L̂(y∗1 , α

∗
2), which implies that

L̂(y1∗, α∗2) = L̂(y∗1 , α
∗
1) = L̂(y∗2 , α

∗
1) = L̂(y∗2 , α

∗
2) =

L̂(y∗1 , α
∗
2). Because L̂ is strictly concave in α, we have

α∗1 = α∗2.

Using the new Lagrangian function L̂, Algorithm-1 can be
written as follows:

ẏ = −Ξy

(
∂L̂(y, α)

∂y

)
(18)
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α̇ = Ξα

(
∂L̂(y, α)

∂α

)
(19)

Let (y∗, α∗) be a saddle point of L̂(y, α). Adopting the
Lyapunov function,

U(y, α) =

n∑
i=1

1

2εyi
(yi − y∗i )2 +

m∑
i=1

1

2εαi
(αi − α∗i )2 (20)

following the methods in [25]–[29], and using the properties of
L̂ introduced in Proposition 8 and 10, we know that algorithm
(18,19) converges to the saddle point of L̂ if ker(AT ) = 0.
Consequently, we know that Algorithm-1 converges to the
saddle point of L, which is an optimal point of (17).

2) Proof of Theorem 3, Theorem 5 and Theorem 7: Though
the previous analysis for general optimization problem could
not be directly applied to prove Theorem 3, 5 and 7,4 the ideas
used in the proof is easily extended to prove those theorems.
Since the proofs of the three theorems are very similar, here
we only provide the detailed proof for Theorem 3.

Denote the Lagrangian function in equation (7) as
L(PM , ω, P, λ, µ) where PM := {PMj }j∈N , ω := {ωj}j∈N ,
P := {Pij}(i,j)∈E , λ := {λMj }j∈N , µ := {µj}j∈N . Algo-
rithm in equation (8) can be written as:

ω(t) = arg min
ω

{
L(PM , ω, P, λ, µ)

}
= λ

Ṗ = −ΞP
∂L(PM , ω, P, λ, µ)

∂P

ṖM = −ΞPM
∂L(PM , ω, P, λ, µ)

∂PM

λ̇ = Ξλ
∂L(PM , ω, P, λ, µ)

∂λ

µ̇ = Ξµ
∂L(PM , ω, P, λ, µ)

∂µ

where ΞP , ΞPM , Ξλ, Ξµ are diagonal matrices standing for the
stepsizes. Let L̂(PM , P, λ, µ) := L(PM , ω = λ, λ, µ). Given
the structure of OGC-1, we can get the following proposition
about L̂.

Proposition 11. L̂ is strictly convex on PM , strictly concave
on λ, linear on P and µ.

Moreover, we have the following Lemma about the saddle
points of L̂.

Proposition 12. Let (PM∗, ω∗) be the unique optimal point
of OGC-1. Then (PM , P, λ, µ) is a saddle point of L̂ if and
only if PM = PM∗, λ = ω∗, µj = −βjPM∗j − ω∗j , and∑
k:j→k Pjk −

∑
i:i→j Pij = PM∗j − PLj −Djω

∗
j .

Proof. Because OGC-1 is strong convex on (PM , ω), the
optimal solution is unique. Then by using the strong duality
of OGC-1, it is straightforward to show the statement of the
lemma. We omit the details here.

4This is because the corresponding As in optimization problems OGC-1
(6), OGC-2 (10) and OGC-3 (15) do not satisfy ker(AT ) = 0.

Now we are ready to proof Theorem 3. First, note that
algorithm in (8) is equivalent to the following algorithm:

Ṗ = −ΞP
∂L̂
∂P ; ṖM = −ΞPM

∂L̂
∂PM

λ̇ = Ξλ
∂L̂
∂λ ; µ̇ = Ξµ

∂L̂
∂µ

(21)

Let (PM∗, P ∗, λ∗, µ∗) be a saddle point of L̂. Define a
nonnegative function as

UPM∗ ,P∗,λ∗,µ∗(P
M , P, λ, µ)

=
1

2
(PM − PM∗)TΞ−1

PM
(PM − PM∗)

+
1

2
(P − P ∗)TΞ−1P (P − P ∗)

+
1

2
(λ− λ∗)Ξ−1λ (λ− λ∗)

+
1

2
(µ− µ∗)Ξ−1µ (µ− µ∗) (22)

Taking the derivative along the dynamics (21), we can show

∂U

∂t
≤ L̂(PM∗, P ∗, λ, µ)− L̂(PM∗, P ∗, λ∗, µ∗)

+L̂(PM∗, P ∗, λ∗, µ∗)− L̂(PM , P, λ∗, µ∗)

≤ 0. (23)

For simplicity, we will denote (PM , P, λ, µ) as z.

Lemma 13. ∂U(z)
∂t ≤ 0 for all z, and{

ẑ : ∂U(ẑ)
∂t = 0

}
⊆ Z ,

{
ẑ : P̂M = PM∗, λ̂ = λ∗,

L̂(PM∗, P, α∗, µ∗)

= L̂(PM∗, P, α∗, µ)

= L̂(PM∗, P ∗, α∗, µ∗)
}
.

Proof. (23) has shown that ∂U(z)
∂t ≤ 0. To ensure ∂U(ẑ)

∂t =

0, we need that L̂(PM∗, P ∗, λ, µ) = L̂(PM∗, P ∗, λ∗, µ∗)
and L̂(PM∗, P ∗, λ∗, µ∗)− L̂(PM , P, λ∗, µ∗). Because of the
strictly convexity of L̂ on PM , strictly concavity of L̂ on
λ, and the separable structure of L̂ on (PM , P ), and (λ, µ)
respectively, P̂M = PM∗, λ̂ = λ∗. Then we can conclude the
statement of this lemma.

Using Proposition 12, Lemma 13 and Lyapunov conver-
gence theorem, we have the following convergence result:

Lemma 14. Any solution (PM (t), P (t), λ(t), µ(t)) of (21)
for t ≥ 0 asympotically approaches to a nonempty, compact
subset of the set of saddle points.

Proof. (22) tells that U(z) ≥ 0 for any z, and (23) tells that
U(z(t)) is decreasing with time t and U(z(t)) ≤ U(z(0))
for any t ≥ 0. Because of the structure of U(z) in (22),
z(t) is bounded for t ≥ 0. By Lyapunov convergence theory
[31] , we know that z(t) = (PM (t), P (t), λ(t), µ(t)) con-
verges to a nonempty invariant compact subset of Z (defined
in Lemma 13). To ensure the subset is invariant, we have
ṖM = −ΞPM

∂L̂(ẑ)
∂PM

= 0 and λ̇ = Ξλ
∂L̂(ẑ)
∂PM

= 0, implying
that µ̂ = −βjPM∗j − ω∗j and

∑
k:j→k Pjk −

∑
i:i→j Pij =

PM∗j − PLj −Djω
∗
j . Therefore we know ẑ is a saddle point

of L̂ according to Proposition 12.
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Now we are ready to conclude the convergence of the
algorithm (21).

Theorem 15. Any solution (PM (t), P (t), λ(t), µ(t)) of (21)
for t ≥ 0 asympotically converges to a saddle point
(PM∗, P ∗, λ∗, µ∗). The saddle point (PM∗, P ∗, λ∗, µ∗) may
depend on the initial point (PM (0), P (0), λ(0), µ(0)).

Proof. The proof of Lemma 14 show that {z(t)}t≥0 is a
bounded sequences, therefore, we know that there exists a sub-
sequence

{
z(tj) = (PM (tj), P (tj), λ(tj), µ(tj))

}
converges

to a point z∞ = (PM∞ , P∞, λ∞, µ∞). This implies that:

lim
tj→∞

Uz∞ (z(tj)) = 0 (24)

As shown in Lemma 14, z∞ is a saddle point of L̂. Therefore
Lemma 13, Lemma 14 and their proof tell that:

lim
t→∞

Uz∞(z(t)) = u (25)

for some constant u. Since {z(tj)} is a subsequence of {z(t)},
(24) tells that u = 0. Therefore, we can conclude that z(t)
converges to z∞.

The rest of the proof follows the exactly same argument of
the analysis for general optimization problem. Thus we omit
the details here to avoid duplication.
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