
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, DECEMBER 2015 1

On the Interaction between Load Balancing and

Speed Scaling
Lijun Chen, Member, IEEE, and Na Li, Member, IEEE

Abstract—Speed scaling has been widely adopted in computer
and communication systems, in particular, to reduce energy con-
sumption. An important question is how speed scaling interacts
with other resource allocation mechanisms such as scheduling
and routing, etc. In this paper, we study the interaction of speed
scaling with load balancing. We characterize the equilibrium
resulting from the load balancing and speed scaling interaction,
and introduce two optimal load balancing designs, in terms of
traditional performance metric and cost-aware (in particular,
energy-aware) performance metric respectively. Especially, we
characterize the load-balancing-speed-scaling equilibrium with
respect to the optimal load balancing schemes in processor
sharing systems. Our results show that the degree of inefficiency
at the equilibrium is mostly bounded by the heterogeneity of
the system, but independent of the number of servers. These
results provide insights in understanding the interaction of load
balancing with speed scaling and guiding new designs.

Index Terms—Load balancing, Speed scaling, Energy effi-
ciency, Efficiency loss, Data centers.

I. INTRODUCTION

The energy consumption rate of computer and communi-

cation systems has been increasing exponentially. Computer

and communication systems must make a fundamental tradeoff

between performance and energy usage; see, e.g., [1], [2]. The

addition of energy to standard performance metrics such as

delay, throughput and loss fundamentally changes the problem

space of some of resource allocation designs. Not only are

new mechanisms needed to optimize energy usage, existing

algorithms and protocols must be re-examined as a formerly

optimal algorithm may now perform poorly with respect to a

new energy-aware metric. Energy management decisions must

be decomposed and coordinated spatially as well as tempo-

rally, and yet global optimality must be achieved through local

algorithms that are implementable in a distributed manner. In

this paper we study load balancing and its interaction with

speed scaling.

Energy-aware speed scaling – to adapt the speed of the

system so as to balance energy and performance metrics – is

a widely-adopted power management technique; see, e.g., [3],

[4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. Previous works

on speed scaling usually focus on a single server and study its

Manuscript received March 20, 2015; revised July 10, 2015; accepted
September 8, 2015.

L. Chen is with Computer Science and Telecommunications, University of
Colorado, Boulder, CO 80309, USA (email: lijun.chen@colorado.edu). N. Li
is with Electrical Engineering, Harvard University, Cambridge, MA 02138,
USA (email: nali@seas.harvard.edu).

Preliminary result of this paper has been presented at the INFORMS Annual
Meeting, Austin, Texas, 2010 and the ITA Workshop, Lo Jolla, California,
2011.

interaction with scheduling; see, e.g, [14], [8], [9], [10], [13].

Here we consider a network setting and study the interaction of

speed scaling with load balancing, to provide insights into such

issues as: i) How does the system perform under speed scaling

in terms of traditional performance metrics as well as energy-

aware metrics? ii) How to design energy-aware optimal load

balancing and can we decouple the design of load balancing

from that of speed scaling? iii) How does the sophistication

of speed scaling impact the design and performance of load

balancing? We focus on gated-static speed scaling in processor

sharing systems, and our results provide useful insights into

the first two questions.

Specifically, we characterize the equilibrium resulting from

the load balancing and speed scaling interaction, and introduce

two optimal load balancing design problems, in terms of

traditional performance metric and cost-aware (in particular,

energy-aware) performance metric respectively. We study in

detail the load-balancing-speed-scaling (LBSS) equilibrium

and the optimal load balancing designs in processor shar-

ing systems with gated-static speed scaling, and propose

distributed load balancing algorithms to achieve the corre-

sponding equilibrium and optima. Especially, we characterize

the degree of inefficiency at the load-balancing-speed-scaling

equilibrium, in terms of delay as well as energy-aware metric.

We show that the degree of inefficiency is mostly bounded

by the heterogeneity of the system, but independent of the

number of servers in the system. Our results suggest that,

as in many applications a low-order polynomial provides a

good approximation to power function, we can decouple the

design of load balancing from that of speed scaling without

incurring much inefficiency in delay. In terms of power-aware

performance metric, our results suggest that, as long as the

heterogeneity in the system is small, we can decouple the

design of load balancing from that of speed scaling without

incurring much efficiency loss; but when the heterogeneity in

the system is large, we have to do energy-aware load balancing

if the energy consumption is a main concern.

To summarize, we make the following main contributions

in this paper:

1) We formulate three different models to study the in-

teraction of load balancing and speed scaling: energy-

oblivious load balancing where the dispatcher minimizes

the delay experienced by a job, delay-optimal load bal-

ancing where the dispatcher minimizes the overall delay

incurred at the servers, and energy-aware optimal load

balancing where the dispatcher minimizes the overall

energy-aware performance metric at the servers.

2) We characterize the equilibrium and optimum of the



2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, DECEMBER 2015

above three load balancing designs in terms of the set

of active servers, and propose distributed algorithms for

achieving the corresponding equilibrium or optimum.

Our algorithms have low implementation complexity,

and require only information that can be estimated or

measured locally at the dispatcher and the servers.

3) We characterize the efficiency loss at the LBSS equi-

librium (i.e., the energy-oblivious load balancing that

dominates the current practice) in delay and energy-

aware performance metric, and show that the degree of

inefficiency is mostly bounded by the heterogeneity of

the system but independent of the number of servers.

These results provide insights in understanding the inter-

action of load balancing with speed scaling and guiding

new designs.

4) We provide numerical examples to demonstrate the

convergence of the proposed distributed algorithms and

verify the bounds on the efficiency loss.

The paper is organized as follows. The next section briefly

discusses some related work. Section III describes the sys-

tem model. Section IV gives a brief characterization of the

load-balancing-speed-scaling equilibrium, and introduces two

optimal load balancing design problems. Section V studies in

detail the load-balancing-speed-scaling interaction in processor

sharing systems with gated-static speed scaling. Section VI

provides numerical examples to complement the theoretical

analysis, and Section VII concludes with some discussion on

further research.

Notation: Major notation used in this paper is summarized

in Table I.

TABLE I
NOTATIONS

N Set of servers
λ Job arrival rate at the dispatcher
λi, si Job arrival rate and service rate at server i ∈ N
Fi Performance metric at server i ∈ N
Ti Delay at server i ∈ N
ci(si) Operating cost at speed si of server i ∈ N
Pi(si) Power function of server i ∈ N
αi Order of polynomial power function of server i ∈ N
Mi Cost-aware performance metric at server i ∈ N
e Superscript denoting LBSS equilibrium
∗ Superscript denoting delay-optimal LB
+ Superscript denoting energy-aware optimal LB
Ce Social cost in delay at LBSS equilibrium
Co Optimal cost in delay
De Energy-aware social cost at LBSS equilibrium
Do Optimal energy-ware cost

II. RELATED WORK

Power management techniques have been increasingly

adopted in designs from single-device level such as chips

to network level such as data centers. It has spurred a new

branch of research in its own right. In particular, starting

with Yao et al [15], there is extensive research on analytical

study of speed scaling; see, e.g., [16], [17], [18], [19], [20],

[21], [14], [22], [8], [23], [24], [9], [10], [11], [12], [13].

Bansal et al [8] show that a speed scaling policy (SRPT,

P−1(n + 1)) is 3-competitive for regular power functions

in the worst-case analysis. This result has been tighten and

extended to PS scheduling as well as to stochastic analysis

by Andrew et al [10]. Especially, Andrew et al [10] provide a

comprehensive study of speed scaling and its interaction with

scheduling, and show a fundamental tradeoff between optimal-

ity, fairness and robustness in speed scaling designs. Stanojevic

and Shorten [11] study distributed speed scaling to minimize

energy consumption subject to performance constraints. Son

and Krishnamachari [12] study speed-scaling-aware load bal-

ancing for cellular networks, and their model has structural

similarity to ours for the energy-aware optimal load balancing

(see Section V-C). However, their model includes delay and

energy consumption in the networking components, in addition

to those in the computing/processing components. Their opti-

mum characterization focuses on user association, while ours

focuses on the set of active servers. Their iterative algorithm

is based heuristically on a variant of optimum characterization

(i.e., user association at the optimum), while ours is based on

the gradient method.

Related work also includes [25], [26] that show that the

degree of inefficiency in delay for load balancing in processor

sharing systems with fixed server speeds scales with the

number of servers in the system. This result has been extended

to the processor sharing system with multi-class load [27], and

to other scheduling policies such as SRPT [28]. In contrast to

these results, we show that the degree of inefficiency in delay

for load balancing in processor sharing systems with speed

scaling is bounded by the heterogeneity of the system, but

independent of the number of servers.

III. SYSTEM MODEL

Consider a system with a set N of servers1 and a Poisson

arrival process of rate λ > 0; see Figure 1. We assume

that job size is i.i.d., and without loss of generality, has

a mean of 1. Associated with each server i is a service

rate (or speed) si. There is a load balancing dispatcher that

probabilistically routes the arrivals to the severs according

to certain “traditional” performance metric Fi that end users

are concerned with, so that Fi at each server i is the same

and minimal. The metric Fi can be, for instance, the mean

response time E[Ti] at the server, the summation of E[Ti]
and propagation delay τi, and the blocking probability pi, etc.

It follows that the resulting arrival process to server i is

Poisson with rate λi. We assume that server i’s performance

curve Fi = fi(si, λi) (or its analytical approximation) is

continuously differentiable, increasing in the arrival rate λi,

and decreasing in the service rate si with fi(∞, λ) = 0. This

is a rather general assumption. In order to ensure stability, we

must have λi < si for all i ∈ N . We can thus assume that

fi(si, λi) = ∞ when λi ≥ si.
Besides performance metric Fi that is perceived by end

users, each server i incurs certain cost ci(si) per unit time

when it runs at a speed of si. The cost can be, for instance,

1Here a server can be a single server, or represent a cluster of collocated
servers in, e.g., a micro-datacenter.



CHEN AND LI: ON THE INTERACTION BETWEEN LOAD BALANCING AND SPEED SCALING 3

l

1l

2l

||Nl

1s

||Ns

2s

dispatcher

servers

Fig. 1. A pictorial diagram of the system model.

the power expended at the server, or any other types of service

costs. Given an incoming rate of λi, let gi(si, λi) = E[ci(si)],
the average cost. The average cost depends on the speed

as well as the scheduling policy at the server. The cost

function gi(si, λi) (or its analytical approximation) is assumed

to be continuously differentiable, increasing in si, and non-

decreasing in λi. Given the arrival rate λi and scheduling

policy, each server i will choose a speed si to minimize a

“cost-aware” performance metric Mi:

Mi = gi(si, λi) + βiλifi(si, λi), (1)

where βi > 0 is used to characterize the relative weight of

internal cost and traditional performance metric.

By the above model, we have actually assumed some kind

of static speed scaling, i.e., choose a single speed si for a

given arrival rate λi. With more complicated notation, we can

also model dynamic scaling, i.e., adapt speed to different states

such as the number of jobs in the server.

Speed scaling can be broadly defined as any behavior of

adapting speed to load, and can be due to various reasons,

corresponding to different choices of cost function gi(si, λi).
In this paper, we will mostly focus on energy-aware speed

scaling as a concrete system to study the interaction between

load balancing and speed scaling, and consider the following

performance metric:

Mi = E[Pi(si)] + βiλiE[Ti], (2)

where Pi(si) is the power expended when server i runs at

speed si. The modeling of the power function Pi(si) is an

active research topic, and measurements have shown it can

take on different forms depending on the system involved. In

many applications a low-order polynomial form

Pi(si) = kis
αi

i , ki > 0, αi > 1 (3)

provides a good approximation. For example, for dynamic

power in CMOS Pi is often assumed to be cubic in previous

works; see, e.g., [2]. We will focus on polynomial power

function (3) in this paper, as in many previous works on speed

scaling.

IV. LOAD-BALANCING-SPEED-SCALING INTERACTION

In this section, we characterize the equilibrium resulting

from the interaction between load balancing and speed scaling

for the general model described in Section III. We then

introduce two optimal load balancing problems, F -optimal

load balancing and cost-aware optimal load balancing, under

speed scaling. We intend to characterize the equilibrium with

respect to those two optimal load balancing problems, as well

as proposing distributed load balancing algorithms to achieve

the corresponding equilibrium and optima.

Given the server speeds (si)i∈N and denote the set of

servers used at load balancing by Nb, i.e., i ∈ Nb iff λi > 0.

At load balancing, the Fi value at any server i ∈ Nb is thus the

same, and not larger than the Fj value a job would experience

if routed to any unused server j ∈ N/Nb. This can be written

mathematically as

fi(si, λi) ≤ fj(sj , λj), ∀j ∈ N, ∀i ∈ Nb, (4)
∑

i∈N

λi = λ, (5)

where (λi)i∈N is the arrival rates at the servers at load

balancing. Denote the Fi value at server i ∈ Nb at load

balancing by γ. The load balancing condition (4)-(5) can be

equivalently written as: there exists a γ > 0, such that

(fi(si, λi)− γ)(λ̄i − λi) ≥ 0, ∀ λ̄i ≥ 0, ∀i ∈ N, (6)
∑

i∈N

λi = λ. (7)

To see this equivalence, note that equations (6)-(7) imply that

γ must equal the Fi value at server i ∈ Nb at load balancing.

Assume that speed scaling problem minsi>λi
Mi has a

unique solution si(λi). Under the aforementioned assumptions

on fi and gi, speed scaling si(λi) satisfies:

∂gi(si, λi)

∂si
+ βiλi

∂fi(si, λi)

∂si
= 0. (8)

Notice that the dynamic speed range of a server is usually

finite, i.e., si ≤ ri for some ri > 0. For simplicity, we do not

consider such a constraint in this paper. Such a constraint does

not change the general structure of our model since it does

not change the convexity and the distributed decomposition

structure of the model. But it will affect the characterization

of efficiency loss in Section V. However, to remove the speed

range constraint is reasonable for two reasons. First, one key

aspect of this paper is to study the impact of speed scaling,

but the speed range constraint (that is tight relative to the

job arrival rate) will limit the capability of or even “disable”

a server’s speed scaling. Second, the computing capacity is

usually not a constraint; and actually a main motivation for

speed scaling is to scale down “idle” server capacity in order

to save energy.

Definition 1. The load-balancing-speed-scaling (LBSS) equi-

librium is defined as a triple {(λe
i )i∈N , (sei )i∈N , γe} that

satisfies the variational inequalities (6), (7) and (8).



4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, DECEMBER 2015

The performance of the system under load balancing and

speed scaling is determined by the LBSS equilibrium. At the

LBSS equilibrium {(λe
i )i∈N , (si)

e
i∈N , γe}, sei = si(λ

e
i ) and

(fi(si(λ
e
i ), λ

e
i )− γe)(λ̄i − λe

i ) ≥ 0, ∀ λ̄i ≥ 0, (9)
∑

i∈N

λe
i = λ. (10)

The following result is straightforward [29].

Theorem 2. The LBSS equilibrium satisfies the local optimal-

ity condition for the following optimization problem:

min
λi≥0

∑

i

∫

fi(si(λi), λi)dλi (11)

s.t.
∑

i

λi = λ, (12)

and −γe is the corresponding optimal dual variable.

Proof. Note that LBSS equilibrium condition (9)-(10) is a

variational inequality characterization of optimality condition

for optimization problem (11)-(12) and its dual [29].

An optimization problem characterization of the equilibrium

is usually very useful. It captures the global structure of the

problem, and often we can easily tell from the optimization

problem if there exists an equilibrium, the multiplicity of the

equilibria, as well as derive distributed or efficient algorithm

to the equilibrium.

When there is no speed scaling, i.e., si is fixed, we

recover the optimization problem characterization of usual

load balancing. Under this situation, problem (11)-(12) is

strictly convex as fi(si, λi) is an increasing function of λi,

and the equilibrium is unique. In general, there may be no

or multiple LBSS equilibria, depending on properties of the

performance curve fi(si(λi), λi) under speed scaling. For

example, consider performance metric (2) with power function

(3) in a processor sharing system with gated static speed

scaling (see the next section). Speed scaling si(λi) satisfies

βi

(si − λi)2
= ki(αi − 1)sαi−2

i .

When αi < 2, fi(si(λi), λi) is decreasing. So, problem (11)-

(12) becomes a problem of minimizing a concave objective

function, which is usually a hard computing problem and may

admit multiple solutions.

In the above load balancing model, the dispatcher routes

the arrivals according to “traditional” performance metric Fi

but does not consider the internal cost gi of the server. We

call this model cost-oblivious load balancing (e.g., energy-

oblivious in the case of energy-aware speed scaling). It can

also be seen as a selfish routing game where each job chooses

a server with minimal Fi value; see, e.g., [30]. So, the

LBSS equilibrium might not be socially optimal, in terms

of metric Fi as well as energy-aware metric Mi. As we

mentioned before, speed scaling brings additional dimension

such as energy into the design objective. It is of significant

value to study its interaction with the existing algorithms

and protocols; for example, if it is optimal with respect to

traditional performance metric Fi as well as a new one Mi,

how to design distributed optimal algorithms in terms of new

performance metric, and if we can decouple speed scaling

from other resource allocation mechanisms. In order to study

these questions for load balancing, we consider two new load

balancing models, as follows.

F -optimal load balancing: The dispatcher routes arrivals so

as to achieve social optimum in terms of traditional perfor-

mance metric Fi:

min
λi≥0

∑

i

λifi(si(λi), λi) (13)

s.t.
∑

i

λi = λ. (14)

When Fi = E[Ti], we call it delay-optimal load balancing.

Cost-aware optimal load balancing: The dispatcher routes

arrivals so as to achieve social optimum in terms of cost-aware

performance metric Mi:

min
λi≥0

∑

i

gi(si(λi), λi) + βiλifi(si(λi), λi) (15)

s.t.
∑

i

λi = λ. (16)

We call it energy-aware optimal load balancing in the case of

energy-aware speed scaling.

The end users as a whole care about problem (13)-(14) and

the servers/end users as a whole care about problem (15)-

(16). We intend to characterize the LBSS equilibrium with

respect to them, as well as proposing distributed algorithms

to achieve the corresponding equilibrium or optima. Again,

the general problems (13)-(14) and (15)-(16) may be highly

nontrivial, depending on the performance curve fi under speed

scaling. In the remainder of this paper, we will focus on

load balancing with energy-aware speed scaling in processor

sharing systems with performance metric (2) with power

function (3), as a concrete system to study the interaction

between load balancing and speed scaling. We will leave the

general problem to future work.

V. LOAD-BALANCING-SPEED-SCALING INTERACTION IN

PROCESSOR SHARING SYSTEMS

In this section, we consider energy-aware speed scaling in

processor sharing (PS) systems with performance metric (2)

and power function (3). While general speed scaling policies

can be taken at a server, we focus on gated-static speed

scaling, in which the server has a zero speed when there is no

job and otherwise runs at a constant speed that balances the

response time and the energy usage; see, e.g, [9], [10]. Gated-

static speed scaling is the simplest nontrivial speed scaling. It

requires minimal hardware to support. For example, a CMOS

chip may set a constant clock speed but AND it with the gating

signal to set the speed to 0 when there is no job; see, e.g.,

[10]. The gated static speed scaling captures some essence of

dynamic speed scaling while admits more tractable analysis.

As mentioned in Section IV, when αi < 2, the problem

under gated-static speed scaling may become hard problem

of minimizing a concave objective function. We thus focus

on the system with αi ≥ 2, in order to obtain a clean



CHEN AND LI: ON THE INTERACTION BETWEEN LOAD BALANCING AND SPEED SCALING 5

characterization to gain insights. Power functions with αi ≥ 2
is also practically important, as in the server with a power

function with αi ≥ 2 the energy cost is usually the driving

force in deciding on server speed while in the server with a

power function with αi < 2 the traditional performance metric

is the driving force. Besides, the results obtained for gated-

static speed scaling with αi ≥ 2 are expected to carry over

to static provisioning with αi ≥ 1, in which the server runs

at a constant static speed that is chosen based on workload

to balance the response time and the energy usage. Static

provisioning is the simplest form of speed scaling, and is a

model often used in energy-aware capacity provisioning in

data centers.

A. Energy-oblivious load balancing

Under PS scheduling, the mean response time at server i ∈
N takes the form:

fi(si, λi) =
1

si − λi
. (17)

Under gated static speed scaling, the energy cost is only

incurred during the time when the server is busy. Note that

the fraction of the time when the server is busy is λi/si.
So, the server decides on speed si by solving the following

optimization problem:

min
si>λi

βi
λi

si − λi
+

λi

si
Pi(si). (18)

Thus, the speed scaling si(λi) satisfies

−
β̄i

(si − λi)2
+ sαi−2

i = 0, (19)

where β̄i =
βi

ki(αi−1) . By equation (19), we have

s′i(λi) =
2si(λi)

αisi(λi)− (αi − 2)λi
> 0, (20)

s′′i (λi) =
(2αi − 4)(si(λi)− λis

′
i(λi))

(αisi(λi)− (αi − 2)λi)2
≥ 0, (21)

where the second inequality follows from the fact that s′i(λi) ≤
1, and moreover, s′i(λi) = 1 and s′′i (λi) = 0 if and only if

αi = 2. Hence, speed scaling si(λi) is a strictly increasing,

convex function of λi. Further,

fi(si(λi), λi) =
1

si(λi)− λi
=

√

(si(λi))αi−2

β̄i
(22)

is also a strictly increasing function of λi.

Corollary 3. There exists a unique LBSS equilibrium for

processor sharing systems with gated-static speed scaling.

Proof. By Theorem 2, the LBSS equilibrium satisfies the

optimality conditions for optimization problem:

min
λi

∑

i

∫

1

si(λi)− λi
dλi (23)

∑

i

λi = λ. (24)

Since 1
si(λi)−λi

is strictly increasing in λi, the above optimiza-

tion problem is strictly convex. The existence and uniqueness

of LBSS equilibrium follows from the fact that problem (23)-

(24) has a unique optimum [29].

Now, let us characterize the equilibrium. For each server i,

define the “base” service rate s0i = si(0
+) = β̄

1
αi

i .2 Without

loss of generality, we assume that s01 ≥ s02 ≥ · · · ≥ s0|N |. For

later convenience, we also assume that s0|N |+1=0.

Theorem 4. The set of servers that are used at the LBSS

equilibrium is Ne = {1, 2, · · · , n}, with a unique n that

satisfies

n
∑

i=1

(f̃i)
−1(

1

s0n
) < λ ≤

n
∑

i=1

(f̃i)
−1(

1

s0n+1

), (25)

where

f̃i(λi) =
1

si(λi)− λi
. (26)

Proof. By equilibrium condition (9), we have 1
s0
i

< γe if i ∈

Ne and 1
s0
i

≥ γe otherwise. Further,

λe
i = sei −

1

γe
> 0, if

1

s0i
< γe (27)

λe
i = 0, if

1

s0i
≥ γe. (28)

Since s0i is decreasing in i, Ne takes the form of {1, 2, · · · , n}.

Note that 1
s0n

< γe ≤ 1
s0
n+1

, and f̃i(λi) is an increasing

function. So,

n
∑

i=1

(f̃i)
−1(

1

s0n
) <

n
∑

i=1

(f̃i)
−1(γe) ≤

n
∑

i=1

(f̃i)
−1(

1

s0n+1

),

i.e.,

n
∑

i=1

(f̃i)
−1(

1

s0n
) <

n
∑

i=1

λe
i = λ ≤

n
∑

i=1

(f̃i)
−1(

1

s0n+1

).

The uniqueness of n follows from the fact that the LBSS

equilibrium is unique.

We see that the LBSS equilibrium has a water-filling struc-

ture. If we see load balancing as a selfish routing problem

[30], the arrivals will aggressively occupy fast servers with

low delay first.

1) Distributed load balancing algorithm: The (convex)

optimization problem characterization of the LBSS equilib-

rium also suggests a distributed algorithm to achieve the

equilibrium.

At k-th iteration:

• Each server i estimates the arrival rate λi, and adjusts its

speed si, according to

si(k) = si(λi(k)). (29)

• The dispatcher measures delay ti(k) =
1

si(k)−λi(k)
expe-

rienced at each server i. Denote by E[t(k)] the minimal

2For a function f(x) : R 7→ R, f(a+) denotes the right hand limit
lim

x→a+ f(x).



6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, DECEMBER 2015

t̄(k) at step k such that t̄(k) = 1
|N̄(k)|

∑

i∈N̄(k) ti(k) with

N̄(k) := {i|λi(k) > 0 or ti(k) ≤ t̄(k), i ∈ N}.3 The

dispatcher adjusts λi to each server i, according to

λi(k + 1) = [λi(k)− ε(ti(k)− E[t(k)])]+, (30)

where ε is a positive stepsize, and ‘+’ denotes the

projection onto R+, the set of nonnegative real numbers.

When ε is small enough, the above algorithm converges.

Let δi(k) = λi(k + 1)− λi(k). It is straightforward to verify

that
∑

i

δi(k) = 0, (31)

∑

i

δi(k)ti(k) ≤ 0. (32)

We see that
∑

i δi(k)ti(k) = 0 only if δi(k) = 0, which

requires ti = t̄, or, λi = 0 and ti > t̄.
The above algorithm actually follows the negative gradient

direction of
∑

i

∫

1
si(λi)−λi

dλi subject to λi = λ [29]. Any

algorithms that follow a properly-chosen negative gradient

direction would work, and (30) picks a specific gradient

direction that will facilitate the convergence analysis. We skip

the convergence proof for brevity.

The above distributed algorithm, as well as the other two

proposed in Section V.B.1) and Section V.C.1), has low

implementation complexity. All the information required in

the algorithm can be estimated or measured locally at the

dispatcher and individual servers. Such algorithms are highly

desirable in a network setting that may involve a large number

of servers.

B. Delay-optimal load balancing

In this subsection, we study the delay-optimal load balanc-

ing design:

min
λi≥0

∑

i

λi

si(λi)− λi
(33)

s.t.
∑

i

λi = λ, (34)

and characterize the LBSS equilibrium with respect to it.

By equation (19),

λi

si(λi)− λi
=

√

1

β̄i
s

αi
2

i − 1, (35)

which is strictly increasing and convex in si. Notice that

si(λi) is increasing and convex. It follows that λi

si(λi)−λi

is a strictly convex function of λi.
4 So, problem (33)-(34)

is strictly convex, and has a unique optimum. Denote the

3 t̄ and N̄ can be determined in a recursive way as follows. In the beginning,
let N̄ = N and calculate t̄ = 1

|N̄ |

∑
i∈N̄

ti(k), and then exclude from N̄

those servers i such that λi = 0 and ti > t̄. Repeat the same procedure with
the new sets N̄ , and when it stops we get E[t].

4Note that, when αi = 2,
λi

si(λi)−λi
is not strictly convex but linear in

λi. But this would not change the uniqueness of the optimum.

optimum by (λ∗
i )i∈N . There exists a unique γ∗ > 0, such

that the optimality condition can be written as [29]

(
si(λ

∗
i )− λ∗

i s
′
i(λ

∗
i )

(si(λ∗
i )− λ∗

i )
2

− γ∗)(λ̄i − λ∗
i ) ≥ 0, ∀ λ̄i ≥ 0, (36)

∑

i∈N

λ∗
i = λ. (37)

Theorem 5. The set of servers that are used at the optimum

is No = {1, 2, · · · , n∗}, with a unique n∗ that satisfies

n∗

∑

i=1

(f̂i)
−1(

1

s0n∗

) < λ ≤

n∗

∑

i=1

(f̂i)
−1(

1

s0n∗+1

)}, (38)

where

f̂i(λi) =
si(λi)− λis

′
i(λi)

(si(λi)− λi)2
. (39)

Moreover, γ∗ ≥ γe and n∗ ≥ n.

Proof. Note that f̂i(λi) is an increasing function of λi, and

f̂i(0) = 1
s0
i

. The first part of the theorem follows the same

proof as in Theorem 4.

For the second part of the theorem. Note that s′i(λi) ≤ 1 by

equation (20). Thus, f̂i(λi) ≥ f̃i(λi). If γ∗ < γe, then n∗ ≤ n
and

n∗

∑

i=1

(f̂i)
−1(γ∗) <

n∗

∑

i=1

(f̃i)
−1(γ∗) ≤

n∗

∑

i=1

(f̃i)
−1(γe) ≤ λ.

This contradicts
∑n∗

i=1(f̂i)
−1(γ∗) =

∑n∗

i=1 λ
∗
i = λ. So, γ∗ ≥

γe, and n∗ ≥ n follows.

Notice that γe has the interpretation as the delay at the

energy-oblivious load balancing, but γ∗ does not have such

an interpretation as delay. So, γ∗ ≥ γe does not imply a

larger delay at the delay-optimal load balancing. In fact, in

the delay-optimal load balancing different servers may have

different delays and the whole system has the best overall

delay performance.

1) Distributed load balancing algorithm: The delay-

optimal load balancing is a convex problem. We can apply

similar distributed algorithm to algorithm (29)-(30), to guide

the optimal load balancing design.

At k-th iteration:

• Each server i estimates the arrival rate λi, and adjusts its

speed si, according to

si(k) = si(λi(k)). (40)

• The dispatcher measures delay ti(k) = 1
si(k)−λi(k)

ex-

perienced at each server i, and estimates f̂i, according

to

f̂i(k) = f̂i(λi(k)) =
αiλi(k)(ti(k))

2 + αiti(k)

2λi(k)ti(k) + αi
. (41)

Denote by E[f̂(k)] the minimal
¯̂
f(k) at step k such that

¯̂
f(k) = 1

|N̄(k)|

∑

i∈N̄(k) f̂i(k) with N̄(k) := {i|λi(k) >

0 or f̂i(k) ≤
¯̂
f(k), i ∈ N}. The dispatcher adjusts λi to

each server i, according to

λi(k + 1) = [λi(k)− ε(f̂i(k)− E[f̂(k)])]+, (42)



CHEN AND LI: ON THE INTERACTION BETWEEN LOAD BALANCING AND SPEED SCALING 7

where ε is a positive stepsize, and ‘+’ denotes the

projection onto R+, the set of nonnegative real numbers.

Notice that the delay-optimal load balancing algorithm (40)-

(42) is more complicated than the simple, energy-oblivious

load balancing algorithm (29)-(30). It requires to estimate f̂i.
In addition, it requires the dispatcher to know the servers’

power function characteristic parameters αi and ki.

2) Efficiency loss in delay at the LBSS equilibrium: Define

the social cost in delay:

C =
∑

i

λi

si(λi)− λi
, (43)

we now characterize the inefficiency in delay at the LBSS

equilibrium.

Lemma 6. Let α = maxi αi. Then,

γe ≤ γ∗ ≤
α

2
γe. (44)

Proof. The first inequality has been proved in Theorem 5. It

remains to prove the second one.

By equation (35), f̂i can be written as

f̂i(λi) =
αi

2

√

sαi−2
i

β̄i
s′i. (45)

Note that s′i(λi) is increasing. Thus, s′(λe
i ) ≥

2
αi

by equation

(20). Combining with s′(λe
i ) ≤ 1, we get

f̃i(λ
e
i ) ≤ f̂i(λ

e
i ) ≤

αi

2
f̃i(λ

e
i ) ≤

α

2
f̃i(λ

e
i ).

If γ∗ > α
2 γ

e, then

(f̂i)
−1(γ∗) ≥ (f̃i)

−1(
2

αi
γ∗) > (f̃i)

−1(γe).

Thus,

n∗

∑

i=1

(f̂i)
−1(γ∗) >

n
∑

i=1

(f̃i)
−1(γe) = λ.

This contradicts the fact that
∑n∗

i=1(f̂i)
−1(γ∗) = λ (also notice

that n∗ ≥ n). So, γ∗ ≤ α
2 γ

e.

Theorem 7. Denote the social cost in delay at the LBSS

equilibrium by Ce and the optimal cost by Co. Then,

Ce

Co
≤

α

2
. (46)

Proof. The social cost at the LBSS equilibrium is

Ce = λγe. (47)

When λ∗
i > 0, by equations (22), (45) and (44), we have

1

si(λ∗
i )− λ∗

i

=

√

sαi−2
i

β̄i
=

2γ∗

αis′i
≥

2γ∗

αi
≥

2γe

α
. (48)

So,

Co =
∑

i

λ∗
i

si(λ∗
i )− λ∗

i

≥
2γe

α

∑

i

λ∗
i =

2λγe

α
. (49)

Thus,

Ce

Co
≤

α

2
. (50)

We see that the degree of inefficiency in delay at the

LBSS equilibrium depends only on the order αi of the power

functions. For example, if αi = 2, the LBSS equilibrium

achieves the social optimum. As α is a constant independent

of the number |N | of the servers in the system, this result

is very different from the efficiency loss of the usual load

balancing (with fixed server speeds), which scales with |N |,
see, e.g., [25]. Also, note that α

2 can be seen as a measure of

heterogeneity in power functions. We can thus say that the de-

gree of inefficiency at the LBSS equilibrium is bounded by the

heterogeneity of the system. As the power function can usually

be well approximated as a low-order polynomial function, the

above result suggests “benign” interaction between energy-

oblivious load balancing and power-aware speed scaling, in

terms of delay. As the energy-oblivious load balancing is

already employed in practice and simple to implement, we

may not need to change it as it does not incur a large penalty

in delay.

C. Energy-aware optimal load balancing

In this subsection, we study energy-aware optimal load

balancing design:

min
λi,si

∑

i

βi
λi

si − λi
+

λiPi(si)

si
(51)

s.t.
∑

i

λi = λ, (52)

and characterize the LBSS equilibrium with respect to it.

By speed scaling (i.e., solving for si first), the above

problem reduces to:

min
λi

∑

i

hi(λi) (53)

s.t.
∑

i

λi = λ, (54)

where

hi(λi) = βi
λi

si(λi)− λi
+

λiPi(si(λi))

si(λi)
. (55)

Note that

h′
i(λi) =

βisi(λi)

(si(λi)− λi)2
+ ki(si(λi))

αi−1

=
αiβi

αi − 1

si(λi)

(si(λi)− λi)2
, (56)

h′′
i (λi) =

αiβi

αi − 1

2si(λi)− (si(λi) + λi)s
′
i(λi)

(si(λi)− λi)3
. (57)

We see that h′
i > 0 and h′′

i > 0, and thus hi(λi) is

strictly increasing and convex. So, problem (53)-(54) is a

strictly convex problem, and has a unique optimum. Denote



8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, DECEMBER 2015

the optimum by (λ+
i )i∈N . There exists a unique γ+ > 0, such

that the optimality condition can be written as [29]

(h′
i(λ

+
i )− γ+)(λ̄i − λ+

i ) ≥ 0, ∀ λ̄i ≥ 0, (58)
∑

i∈N

λ+
i = λ. (59)

Note that h′
i(λi) is strictly increasing, and

h′
i(λi) ≥

αiβi

αi − 1
f̂i(λi) ≥

αiβi

αi − 1
f̃i(λi). (60)

Let d0i = 1
h′

i
(0) = αi−1

αiβi
s0i . We can define a permutation

π : {1, 2, · · · , |N |} 7→ {1, 2, · · · , |N |}, such that d0i is in de-

creasing order under π. We have the following characterization

of the optimum.

Theorem 8. The set of servers that are used at the optimum is

Ns = {π−1(1), π−1(2), · · · , π−1(m)}, with a unique m that

satisfies

m∑

i=1

(h′
π−1(i))

−1(
1

d0
π−1(m)

) < λ ≤

m∑

i=1

(h′
π−1(i))

−1(
1

d0
π−1(m+1)

).

Proof. It follows the same proof as in Theorem 4. We skip it

for brevity.

We see that the energy-aware optimal load balancing has a

similar water-filling effect, and the arrivals will occupy servers

with low marginal cost in energy-aware metric first. As a

result, the jobs will be consolidated into a subset of servers

that have low energy-aware cost.

1) Distributed load balancing algorithm: The energy-aware

optimal load balancing is a convex problem. Again, we can

apply similar distributed algorithm to algorithm (29)-(30), to

guide the optimal load balancing design.

At k-th iteration:

• Each server i estimates the arrival rate λi, and adjusts its

speed si, according to

si(k) = si(λi(k)). (61)

• The dispatcher measures delay ti(k) = 1
si(k)−λi(k)

ex-

perienced at each server i, and estimates h′
i, according

to

h′
i(k) = h′

i(λi(k)) =
αiβi

αi − 1
(λi(k)(ti(k))

2 + ti(k)). (62)

Denote by E[h′(k)] the minimal h̄′(k) at step k such that

h̄′(k) = 1
|N̄(k)|

∑

i∈N̄(k) h
′
i(k) with N̄(k) := {i|λi(k) >

0 or h′
i(k) ≤ h̄′(k), i ∈ N}. The dispatcher adjusts λi to

each server i, according to

λi(k + 1) = [λi(k)− ε(h′
i(k)− E[h′(k)])]+. (63)

where ε is a positive stepsize, and ‘+’ denotes the

projection onto R+, the set of nonnegative real numbers.

Again, the energy-aware optimal load balancing algorithm

(61)-(63) is more complicated than the energy-oblivious load

balancing algorithm (29)-(30). In addition to the servers’

power function characteristic parameters, the dispatcher re-

quires to know their weights βi.

2) Efficiency loss in energy-aware performance metric at

the LBSS equilibrium: Define the social cost in energy-aware

performance metric Mi:

D =
∑

i

βi
λi

si − λi
+

λiPi(si)

si
=

∑

i

hi(λi). (64)

We now characterize the inefficiency in energy-aware perfor-

mance metric at the LBSS equilibrium.

It is complicated to characterize the efficiency loss for

the system with arbitrary power functions and loads. Here

we give a partial characterization, focusing on the case with

power functions of the same order, i.e., Pi(si) = kis
α
i for all

servers, and in heavy traffic, i.e., λ ≫ 1. We leave a complete

characterization of the efficiency loss to future work.

The case with power functions of the same order models a

system that employs similar servers but with different scaling

factors and weights. Heavy traffic regime is of significant

interest, as the inefficiency of load-balancing-speed-scaling

interaction is intuitively worst under heavy traffic.

Theorem 9. Assume that α = 2. Denote the energy-aware

social cost at the LBSS equilibrium by De and the optimal

cost by Do. Under the aforementioned conditions, we have

De

Do
≤

maxi ki
mini ki

|N |. (65)

Proof. When α = 2, at the LBSS equilibrium (λe
i )i∈N , the

arrivals will be routed to the server i∗ that has the maximal

β̄i value.5 Under heavy traffic, the energy-aware social cost at

the LBSS equilibrium is

De ≈ ki∗λ
2 ≤ max

i
kiλ

2.

At the social optimum (λ+
i )i∈N , λ+

i ≈ 1/ki∑
j
1/kj

λ. The optimal

social cost is

D0 ≈
∑

i

ki(λ
+
i )

2 ≈
λ2

∑

i 1/ki
≥

mini ki
|N |

λ2.

Thus,

De

Do
≤

maxi ki
mini ki

|N |. (66)

We see that when α = 2, the degree of inefficiency at

the LBSS equilibrium scales with the number of servers in

the system. This happens because the energy-oblivious load

balancing uses only the server with the largest base rate, which

incurs a huge energy cost at this server, while the energy-aware

optimal load balancing will spread load across all servers,

which leads to much smaller energy cost at the servers. This

suggests that we should do energy-aware load balancing if the

energy consumption is a main concern.

5There may exist multiple servers that have the maximal β̄i value. But it is
reasonable to expect that the number of such servers is bounded by a constant
that does not scale with the total number of the servers in the system. For
simplicity of presentation, we assume that there is only one server that has
the maximal β̄i value. This only brings in a constant factor to the bound on
efficiency loss, if there are multiple such servers.



CHEN AND LI: ON THE INTERACTION BETWEEN LOAD BALANCING AND SPEED SCALING 9

Lemma 10. Assume α > 2. Define ζi = αkiβ̄
α−1

α−2

i for each

server i,. Then,

min
i

ζi(γ
e)

2α−2

α−2 ≤ γ+ ≤ max
i

ζi(γ
e)

2α−2

α−2 . (67)

Proof. By equation (56), h′
i can be written as

h′
i(λi) = αki(si(λi))

α−1 = ζi(f̃i(λi))
2α−2

α−2 . (68)

If γ+ < mini ζi(γ
e)

2α−2

α−2 , then

(h′
i)

−1(γ+) < (f̃i)
−1(γe).

Thus,

∑

i

(h′
i)

−1(γ+) <
∑

i

(f̃i)
−1(γe) = λ.

This contradicts the fact that
∑

i(h
′
i)

−1(γ+) = λ . So,

γ+ ≥ mini ζi(γ
e)

2α−2

α−2 . The second inequality can be proved

similarly.

Theorem 11. Assume α > 2. Denote the energy-aware social

cost at the LBSS equilibrium by De and the optimal cost by

Do. Under the aforementioned conditions, we have

De

Do
≤ (

maxi ζi
mini ζi

)
α

α−1 . (69)

Proof. Under heavy traffic, λi ≫ 1. By Lemma 1 in [9],

we have the following approximation for speed scaling under

heavy traffic:

si(λi) ≈ λi +

√

β̄i

λα−2
i

≈ λi.

Thus,

βi
λi

si − λi
+

λiPi(si)

si
≈ βi

λ
α
2

i
√

β̄i

+ kiλ
α
i ≈ kiλ

α
i .

Note that, at the LBSS equilibrium (λe
i )i∈N ,

γe =

√

(sei )
α−2

β̄i
≈

√

(λe
i )

α−2

β̄i
.

The energy-aware social cost at the LBSS equilibrium is

De ≈
∑

i

ki(β̄iγ
e2)

α
α−2 ≤

∑

i

kiβ̄
α

α−2

i (
γ+

minj ζj
)

α
α−1 , (70)

where the inequality follows from (67).

At the social optimum (λ+
i )i∈N ,

γ+ = αkis
α−1
i ≈ αki(λ

+
i )

α−1. (71)

The optimal social cost is

Do ≈
∑

i

ki(
γ+

kiα
)

α
α−1 . (72)

Thus,

De

Do
≤

∑

i kiβ̄
α

α−2

i ( γ+

minj ζj
)

α
α−1

∑

i ki(
γ+

kiα
)

α
α−1

≤ max
i

kiβ̄
α

α−2

i ( γ+

minj ζj
)

α
α−1

ki(
γ+

kiα
)

α
α−1

= max
i

(
ζi

minj ζj
)

α
α−1

≤ (
maxi ζi
minj ζj

)
α

α−1 . (73)

We see that when α > 2, the degree of inefficiency at the

LBSS equilibrium depends only on the degree of heterogeneity
maxi ζi
minj ζj

in the system but not the number of servers |N |. If

the degree of heterogeneity in the system is small, energy-

oblivious load balancing interacts benignly with speed scaling,

in terms of the energy-aware cost. In this situation, we may

not need complicated energy-aware load balancing, i.e., we

can decouple the design of load balancing from that of speed

scaling. Otherwise, we must do energy-aware optimal load

balancing if energy consumption is a main concern.

VI. NUMERICAL EXAMPLES

In this section, we provide numerical examples to comple-

ment the analysis in the previous sections. We first show the

convergence of the three distributed algorithms proposed in

section V and the allocation of the arrival rates and service

rates of the servers as well, and then verify the bounds

on efficiency loss described in Theorem 7, Theorem 9, and

Theorem 11.

A. Distributed algorithms

We consider a system with 10 servers with speed scaling.

Half of the servers have a power function of the form

Pi(si) = kis
5
2

i and the other half have a power function of

the form Pi(si) = kis
3
i . The total load is normalized to be

λ = 10, and the values for parameter ki and βi used to

obtain numerical results are randomly drawn from [1, 10] and

[5, 15], respectively. Figures 2, 3 and 4 show the evolution

of the arrival rate and service rate with stepsize ε = 0.2
for the energy-oblivious load balancing, the delay-optimal

load balancing and the energy-aware optimal load balancing,

respectively. We see that the arrival rates and service rates

approach the corresponding equilibrium or optimum quickly.

The numerical results confirm previous analysis and intuitions.

As we go from the energy-oblivious load balancing to the

delay-optimal load balancing, the load is spread more across

the servers, which is driven by minimizing the social cost

in delay. We also see that the changes in the arrival rate

and service rate are not severe, which intuitively confirms

Theorem 7 that gives a small bound on efficiency loss at the

LBSS equilibrium. As we move to the energy-aware optimal

load balancing, the load becomes more evenly distributed.



10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, DECEMBER 2015

This is driven by minimizing the energy-aware social cost,

and an uneven load distribution will lead to uneven service

rate distribution, which may result in large cost in energy at

the server(s) with large speed. We also see large changes in

the arrival rate and service rate. This implies a large degree

of inefficiency at the LBSS equilibrium, which intuitively

confirms Theorem 11 even though it is a characterization for

the system with power functions of the same order.

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

A
rr

iv
al

 r
at

e 
λ i

Number of Iterations

 

 

server 1
server 2
server 3
server 4
server 5
server 6
server 7
server 8
server 9
server 10

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

S
er

vi
ce

 r
at

e 
s i

Number of Iterations

 

 

server 1
server 2
server 3
server 4
server 5
server 6
server 7
server 8
server 9
server 10

Fig. 2. The arrival rate and service rate evolution of the energy-oblivious
load balancing.

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

A
rr

iv
al

 r
at

e 
λ i

Number of Iterations

 

 

server 1
server 2
server 3
server 4
server 5
server 6
server 7
server 8
server 9
server 10

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

S
er

vi
ce

 r
at

e 
s i

Number of Iterations

 

 

server 1
server 2
server 3
server 4
server 5
server 6
server 7
server 8
server 9
server 10

Fig. 3. The arrival rate and service rate evolution of the delay-optimal load
balancing.

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

A
rr

iv
al

 r
at

e 
λ i

Number of Iterations

 

 

server 1
server 2
server 3
server 4
server 5
server 6
server 7
server 8
server 9
server 10

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

S
er

vi
ce

 r
at

e 
s i

Number of Iterations

 

 

server 1
server 2
server 3
server 4
server 5
server 6
server 7
server 8
server 9
server 10

Fig. 4. The arrival rate and service rate evolution of the energy-aware optimal
load balancing.

In order to study the impact of different choices of the

stepsize on the convergence of the algorithms, we have run

simulations with different stepsizes. We found that the smaller

the stepsize, the slower the convergence, and the larger the

stepsize, the faster the convergence but the system may only

approach to within a certain neighborhood of the equilibrium,

which is a general characteristic of any gradient based method.

In practice, the dispatcher can first choose large stepsizes to

ensure fast convergence, and subsequently reduce the stepsizes

once the price starts oscillating around some mean value.

B. Efficiency loss at the LBSS equilibrium

We now consider the same system but with different num-

bers of servers and with a normalized load of λ = 10|N |
that scales with the number of servers, corresponding to a

heavy traffic scenario. Also, the values for parameter ki and

βi used to obtain numerical results are instead randomly drawn

from [6, 9] and [0.4, 0.7], respectively. The key consideration in

choosing these ranges is to incorporate enough heterogeneity

in the system.6

10 12 14 16 18 20
1.006

1.007

1.008

1.009

Number of servers

C
e /C

o
Fig. 5. Efficiency loss in delay.

10 12 14 16 18 20
5

10

15

20

25

30

Number of servers

D
e /D

o

Fig. 6. Efficiency loss in energy-aware performance metric for a system with
α = 2. The line with dots shows the result of numerical experiments, while
the line without dots shows the worst-case bound given in Theorem 9.

10 12 14 16 18 20
2

3

4

5

Number of servers

D
e /D

o

Fig. 7. Efficiency loss in energy-aware performance metric for a system with
α = 3. The line with dots shows the result of numerical experiments, while
the line without dots shows the worst-case bound given in Theorem 11.

We simulate the system with different numbers |N | =
10, 11, . . . , 20 of servers. Figure 5 shows the efficiency loss

in delay at the LBSS equilibrium. We see that it is consistent

with the (worst-case) bound of 1.5 given by Theorem 7, and

the degree of inefficiency does not scale with the number

of servers in the system. Figure 6 shows the efficiency loss

in energy-aware performance metric at the LBSS equilibrium

for a system with α = 2. We see that it is consistent with

6Notice that in Subsection VI-A on convergence, the system has been
chosen to have more heterogeneity in order to contrast clearly the spread
of loads in the three load balancing designs.



CHEN AND LI: ON THE INTERACTION BETWEEN LOAD BALANCING AND SPEED SCALING 11

Theorem 9, and the degree of inefficiency scales linearly

with the number of servers in the system. Figure 7 shows

the efficiency loss in energy-aware performance metric at the

LBSS equilibrium for a system with α = 3. We see that it

is consistent with Theorem 11, and the degree of inefficiency

does not scale with the number of servers but depends only

on the degree of heterogeneity of the system.

VII. CONCLUSION

We have studied the interaction between load balancing and

speed scaling. We characterize the equilibrium resulting from

the load balancing and speed scaling interaction, and introduce

two optimal load balancing designs, in terms of traditional

performance metric and cost-aware (in particular, energy-

aware) performance metric respectively. We study in detail the

load-balancing-speed-scaling equilibrium and the optimal load

balancing designs in processor sharing systems with gated-

static speed scaling, and propose distributed load balancing

algorithms to achieve the corresponding equilibrium and op-

tima. Especially, we characterize the degree of inefficiency at

the load-balancing-speed-scaling equilibrium in terms of delay

as well as energy-aware metric, and show that the degree of

inefficiency is mostly bounded by the heterogeneity of the

system, but independent of the number of the servers. These

results provide insights in understanding the interaction of load

balancing with speed scaling and guiding new designs.

Further research stemming out of this paper includes the

following. We are characterizing the efficiency loss in energy-

aware metric at the load-balancing-speed-scaling equilibrium

for the system with power functions of different polynomial

orders. We are also studying the load balancing and speed

scaling interaction in the processor sharing system with gen-

eral power functions (e.g., nonconvex, discontinuous, with

possibly a discrete set of allowable speeds), as well as in

the system with other scheduling policies such as Shortest

Remaining Processing Time (SRPT). We will further study

other speed scaling policies and their impact on the design

and performance of load balancing. Finally, we will go beyond

energy-aware speed scaling, and study other types of speed

scaling behaviors and their interaction with load balancing in,

e.g., date centers or call centers.

REFERENCES

[1] O. S. Unsal and I. Koren. System-level power-aware deisgn techniques
in real-time systems. Proc. IEEE, 97(3):1055–1069, 2003.

[2] S. Kaxiras and M. Martonosi. Computer Architecture Techniques for

Power-Efficiency. Morgan and Claypool, 2008.
[3] S. Irani and K. R. Pruhs. Algorithmic problems in power management.

SIGACT News, 36(2):63–76, 2005.
[4] L. Yuan and G. Qu. Analysis of energy reduction on dynamic voltage

scaling-enabled systems. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., 24(12):1827–1837, 2005.

[5] Y. Zhu and F. Mueller. Feedback edf scheduling of real-time tasks
exploiting dynamic voltage scaling. Real Time Systems, 31:33–63, 2005.

[6] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy
and temperature. J. ACM, 54(1):1–39, 2007.

[7] S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors. In Proc. ISLPED, 2007.

[8] N. Bansal, H.-L. Chan, and K. Pruhs. Speed scaling with an arbitrary
power function. In Proc. ACM-SIAM SODA, 2009.

[9] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling
in processor sharing systems. In Proceedings of IEEE Infocom, 2009.

[10] L. L. Andrew, M. Lin, and A. Wierman. Optimality, fairness, and
robustness in speed scaling designs. In Proceedings of ACM Sigmetrics,
2010.

[11] R. Stanojevic and R. Shorten. Distributed dynamic speed scaling. In
INFOCOM, 2010 Proceedings IEEE, pages 1–5, March 2010.

[12] Kyuho Son and B. Krishnamachari. Speedbalance: Speed-scaling-aware
optimal load balancing for green cellular networks. In INFOCOM, 2012

Proceedings IEEE, pages 2816–2820, March 2012.
[13] Maryam Elahi, Carey Williamson, and Philipp Woelfel. Decoupled

speed scaling: Analysis and evaluation. Performance Evaluation, 73(0):3
– 17, 2014.

[14] N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow
times. In Proc. ACM-SIAM SODA, 2007.

[15] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu
energy. In Proceedings of IEEE Symposium on Foundations of Computer

Science (FOCS), 1995.
[16] J. M. George and J. M. Harrison. Dynamic control of a queue with

adjustable service rate. Operations Research, 49(5):720–731, 2001.
[17] K. Pruhs, P. Uthaisombut, and G. Woeginger. Getting the best response

for your erg. In Scandinavian Worksh. Alg. Theory, 2004.
[18] J. R. Bradley. Optimal control of a dual service rate m/m/1

production-inventory model. European Journal of Operations Research,
161(3):812–837, 2005.

[19] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time
minimization. Lecture Notes in Computer Science, 3884:621–633, 2006.

[20] D. P. Bunde. Power-aware scheduling for makespan and flow. In Proc.

ACM Symp. Parallel Alg. and Arch, 2006.
[21] S. Zhang and K. S. Catha. Approximation algorithm for the temperature-

aware scheduling problem. In Proceedings of IEEE Conference on

Computer Aided Design, 2007.
[22] N. Bansal, H.-L. Chan, T.-W. Lam, and L.-K. Lee. Scheduling for

speed bounded processors. In Int. Colloq. Automata, Languages and

Programming, 2008.
[23] N. Bansal, H.-L. Chan, K. Pruhs, and D. Katz. Improved bounds for

speed scaling in devices obeying the cube-root rule. In Int. Colloq.

Automata, Languages and Programming, 2009.
[24] T.-W. Lam, L.-K. Lee, I. K. K. To, and P. W. H. Wong. Speed scaling

functions for flow time scheduling based on active job count. In Proc.
Euro. Symp. Alg., 2009.

[25] M. Haviv and T. Roughgarden. The price of anarchy in an exponential
multi-server. Operations Research Letters, 35:421–426, 2007.

[26] T. Wu and D. Starobinski. On the price of anarchy in unbounded delay
networks. In Proc. of Game Theory for Comm. and Networks, 2006.

[27] E. Altman, U. Ayesta, and B. J. Prabhu. Optimal load balancing in
processor sharing systems. In Proceedings of GameComm, 2008.

[28] H. Chen, J. Marden, and A. Wierman. On the impact of heterogeneity
and back-end scheduling in load balancing designs. In Proceedings of

IEEE Infocom, 2009.
[29] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computa-

tion. Prentice Hall, 1989.
[30] N. Nissan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic

game theory. Cambridge University Press, 2007.

Lijun Chen (M’05) is an Assistant Professor of
Computer Science and Telecommunications at Uni-
versity of Colorado at Boulder. He received a Ph.D.
in Control and Dynamical Systems from California
Institute of Technology in 2007. He was a co-
recipient of the Best Paper Award at the IEEE Inter-
national Conference on Mobile Ad-hoc and Sensor
Systems (MASS) in 2007. His current research inter-
ests include optimization and control of networked
systems, distributed optimization and control, con-
vex relaxation and parsimonious solutions, and game

theory and its engineering application.



12 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, DECEMBER 2015

Na Li (M’09) is an Assistant Professor in the School
of Engineering and Applied Sciences in Harvard
University. She received her B.S. degree in Math-
ematics and Applied Mathematics from Zhejiang
University in China and PhD degree in Control
and Dynamical systems from California Institute
of Technology in 2013. She was a Postdoctoral
Associate of the Laboratory for Information and
Decision Systems at Massachusetts Institute of Tech-
nology. She entered the Best Student Paper Award
fnalist in the 2011 IEEE Conference on Decision and

Control. Her research lies in the design, analysis, optimization and control of
distributed network systems, with particular applications to power networks
and systems biology/physiology.


