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Abstract: We take a new approach to investigate synchronization in networks of coupled oscillators.
We show that the coupled oscillator system when restricted to a proper region is a distributed partial
primal-dual gradient algorithm for solving a well-defined convex optimization problem and its dual. We
characterize conditions for synchronization solution of the KKT system of the optimization problem,
based on which we derive conditions for synchronization equilibrium of the coupled oscillator network.
This new approach reduces the hard problem of synchronization of coupled oscillators to a simple
problem of verifying synchronization solution of a system of linear equations, and leads to a complete
characterization of synchronization condition for the coupled oscillator network in an interesting and
practically important region. Our synchronization condition is stated elegantly as the existence of
solution for a system of linear equations, of which one best existing synchronization condition is a
special sufficient condition case. In addition, we formulate a non-convex optimization problem with the
force balance constraint for which the afore convex optimization problem is relaxation, and show that
the coupled oscillator system is also a distributed algorithm for solving this non-convex problem. This
has interesting implication on exact convex relaxation, and confirms the insight that a physical system
usually solves a convex problem even though it may have a non-convex representation.
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1. INTRODUCTION

The network of coupled oscillators and its synchronization
is one of the most investigated network dynamical systems
and behaviors. It has broad applications in various disciplines
from biology and medicine to chemistry and physics and to
engineering and social sciences; see, e.g., Wiesenfeld et al.
(1998), Strogatz (2000), Varela et al. (2001), Winfree (2001),
Kiss et al. (2002), Strogatz (2003), Jadbabaie et al. (2004),
Boccaletti et al. (2006), Paley et al. (2007), Ha et al. (2010),
Dorfler and Bullo (2011), Dorfler et al. (2013), Zhao et al.
(2014), You and Chen (2014), Li et al. (2014), Mallada and
Low (2014). Despite its broad applications, a complete or tight
characterization of the condition for synchronization of coupled
oscillators is mostly an open question.

In this paper, we consider a general coupled oscillator model
that is partly motivated by the frequency dynamics and control
in power networks: some of the oscillators are subject to the
second-order Newtonian dynamics while the others are subject
to the first-order kinematic dynamics, and they are sinusoidally
coupled; see, e.g., You and Chen (2014) and Dorfler et al.
(2013). This coupled oscillator model and its various special
cases have been studied extensively; see, e.g., the above cited
references and particularly Dorfler et al. (2013) for a brief

review. In particular, Dorfler et al. (2013) presents an elegant
closed-form condition for synchronization that significantly
improves upon the existing conditions and is provably exact for
various interesting network topologies and parameters.

Motivated by our prior work on the reverse engineering of
the frequency control in the power network (You and Chen
(2014)), we take a new approach to investigate synchroniza-
tion of coupled oscillators. Specifically, we show that the cou-
pled oscillator system when restricted to a proper region is
a distributed partial primal-dual gradient algorithm for solv-
ing a well-defined convex optimization problem and its dual.
We characterize conditions for synchronization solution of the
KKT system of the optimization problem, based on which we
derive conditions for synchronization equilibrium of the cou-
pled oscillator network. This new approach reduces the hard
problem of synchronization of coupled oscillators to a simple
problem of verifying synchronization solution of a system of
linear equations, and leads to a complete characterization of
synchronization condition for the coupled oscillator network in
an interesting and practically important region. Our synchro-
nization condition is stated elegantly as the existence of solution
for a system of linear equations, of which one synchronization
condition of Dorfler et al. (2013) is a special sufficient condition
case.



We then formulate a non-convex optimization problem with the
force balance constraint for which the above-mentioned convex
optimization problem is a relaxation. We show that the coupled
oscillator system is also a distributed algorithm for solving this
non-convex problem. This has an interesting implication on
exact convex relaxation: a non-convex problem may be solved
through solving its convex relaxation using a carefully chosen
algorithm. This kind of exact convex relaxation is a bit different
from the conventional one where the optimum of the convex
problem is always a feasible point of the original non-convex
problem, and confirms the insight that a physical system usually
solves a convex problem even though it may have a non-convex
representation.

2. SYSTEM MODEL

Consider a network modeled by a connected graph G = (N , E),
with a setN of nodes and a set E of undirected links connecting
the nodes. Each node i ∈ N denotes an oscillator with phase
θi ∈ R and frequency ωi = θ̇i ∈ R, and each link (i, j) ∈ E
(or l ∈ E) 1 is associated with a weight or coupling constant
bij > 0 (or bl > 0). The node set is partitioned into two disjoint
sets N = N 1 ∪ N 2. Consider the following coupled oscillator
system:

Miω̇i + Fi(ωi) = fi −
∑

{j:(i,j)∈E}

bij sin(θi − θj), i ∈ N 1, (1)

Fi(ωi) = fi −
∑

{j:(i,j)∈E}

bij sin(θi − θj), i ∈ N 2, (2)

where each oscillator i ∈ N 1 follows the second-order Newto-
nian dynamics with an inertia constant Mi > 0 and each oscil-
lator i ∈ N 2 follows the first-order kinematic dynamics. Each
oscillator i ∈ N is subject to a constant force of fi ∈ R and a
frequency-dependent damping of Fi(ωi). The function Fi(·) is
assumed to be Lipschitz continuous and strictly increasing.

The above coupled oscillator model (1)-(2) is partly motivated
by the frequency dynamics and control in the power network,
and a huge literature exists on the synchronization of this
general system and its various special cases; see, e.g., Dorfler
et al. (2013) and You and Chen (2014) and references therein.
For instance, for the frequency dynamics of the power network,
the set N 1 is the set mechanical generators and N 2 the set of
load buses; fi is the power inject or draw, Fi(ωi) = Diωi with
damping coefficient Di > 0, 2 and Mi the generator inertia;
and bij =

vivj
xij

with vi the voltage magnitude at bus i and xij
the reactance of power line (i, j); see, e.g., Bergen and Vittal
(2000) and You and Chen (2014).

We aim to characterize conditions under which the network of
coupled oscillators has a synchronization equilibrium and its
stability.

1 We use (i, j) and l interchangeably to denote a link in E . Note that in this
section (i, j) is an un-ordered pair, i.e., (i, j) = (j, i). But from the next
section on, l ∈ E is directed and (i, j) 6= (j, i).
2 Note that this damping term can result from frequency-sensitive load or
frequency-based load or generation control. We can include more than one of
such terms at each node as in You and Chen (2014), which will not change the
structure of the problem and the results of this paper.

Definition 1. (Synchronization equilibrium) A synchronization
equilibrium (ω,θ = {θi; i ∈ N},θ0 = {θ0i ; i ∈ N}) of the
coupled oscillator system (1)-(2) is defined by the following
relations:

ωi = ω, i ∈ N , (3)

θi(t) = θ0i + ωt, i ∈ N , (4)

Fi(ω) = fi −
∑

{j:(i,j)∈E}

bij sin(θi − θj), i ∈ N , (5)

where θ0i ∈ [0, 2π), i ∈ N .

Motivated by the application in the power network where a
security constraint |θi− θj | < π

2 , (i, j) ∈ E is usually imposed
(see, e.g., Bergen and Hill (1981), Bergen and Vittal (2000),
and Dorfler et al. (2014)), we are particularly interested in the
synchronization equilibrium with |θ0i − θ0j | < π

2 , (i, j) ∈ E .
Definition 2. (Phase Cohesiveness (Dorfler et al. (2013)))
Given γ ∈ [0, π2 ), a synchronization equilibrium (ω,θ,θ0) is
γ phase cohesive if |θ0i − θ0j | ≤ γ, (i, j) ∈ E .

2.1 Reverse Engineering of Network Dynamics with Linearized
Coupling

Assume that the system is initially at a synchronization equilib-
rium with a “nominal” frequency ωn and phases θni , i ∈ N
such that |(θi − θj) − (θni − θnj )| � 1, (i, j) ∈ E . Let
b̃ij = bij cos(θni − θnj ), and consider the following system with
linearized coupling between oscillators:

Miω̇i + Fi(ωi) = fi −
∑

{j:(i,j)∈E}

pij , i ∈ N 1, (6)

Fi(ωi) = fi −
∑

{j:(i,j)∈E}

pij , i ∈ N 2, (7)

ṗij = b̃ij(ωi − ωj), (i, j) ∈ E . (8)
In the power network application, bij sin(θi− θj) is the nonlin-
ear power flow from bus i to bus j, and the above linearization
corresponds to the assumption of small phase angle deviation;
see, e.g., Bergen and Vittal (2000).

Let di = Fi(ωi), and F−1i (di) is well-defined because of
Fi being strictly monotone. As in You and Chen (2014), we
introduce a cost function corresponding to each damping term:

Ci(di) =

∫
F−1i (di)ddi, i ∈ N , (9)

which is a strictly convex function by the assumption on the
function Fi, and a convex optimization problem:

min
d,p

∑
i∈N

Ci(di) (10)

subject to fi = di +
∑

{j:(i,j)∈E}

pij , i ∈ N , (11)

where d = {di; i ∈ N} and p = {pij ; (i, j) ∈ E}. The cost
function Ci(di) and problem (10)-(11) can have different inter-
pretations, depending on specific applications. For instance, in
the power network, di = Fi(ωi) can be the primary frequency
control and Ci(di) is then the cost associated with the gener-
ation control, and problem (10)-(11) is a DC optimal power



flow problem (You and Chen (2014)). Notice that there may
be “operational” constraints on di. For instance, in the power
network, there is a limited capacity for generation. These oper-
ational constraints can be incorporated implicitly through care-
fully defining the domain of function Fi or explicitly through
adding to the optimization problem (10)-(11).

It has been shown that the system dynamics (6)-(8) can be seen
as a distributed algorithm for solving the problem (10)-(11) and
its dual; see, e.g., You and Chen (2014):
Theorem 3. (Theorem 1 in You and Chen (2014) tailored to
system (6)-(8)) The set of saddle points of the Lagrangian of
problem (10)-(11) is the set of synchronization equilibira of
dynamical system (6)-(8). Moreover, the dynamics (6)-(8) is a
partial primal-dual gradient algorithm for solving the problem
(10)-(11) and its dual.

We have applied the above reverse engineering result to guide
the design of new frequency control algorithms for the power
system to not only recover nominal frequency but also achieve
economic efficiency; see, e.g., You and Chen (2014) and Li
et al. (2014). However, the above linearized model and reverse
engineering result applies to the system with small phase angle
derivation from an initial synchronization equilibrium, which
is limited in applicability. An important question is if the
above reverse engineering result can extend to the coupled
oscillator system (1)-(2) with nonlinear coupling. In the next
sections, we give a positive answer to this question, and use it to
characterize the condition for synchronization in the network of
coupled oscillators, as well as discuss its implication on convex
relaxation.

3. REVERSE ENGINEERING AND SYNCHRONIZATION

We first introduce a few notations to simplify the presentation
of the system and its analysis. Assigning an arbitrary direction
to each link l ∈ E , we define a |N | × |E| incidence matrix A
with entry

Ali =


1, if node i is the source node of link l
−1, if node i is the sink node of link l .
0, otherwise

Since G is connected, we have Rank(A) = |N | − 1 and
Ker(AT ) = span(1|N |); see, e.g., Biggs (1993). With the
incident matrix, we can rewrite the problem (10)-(11) as:

min
d,p

∑
i∈N

Ci(di) (12)

subject to f = d +Ap, (13)
where f = {fi; i ∈ N}. Notice that the coupling bij sin(θi−θj)
between nodes i and j is bounded by ±bij . This implies that an
additional constraint should be imposed on the problem (12)-
(13):

−b � p � b, (14)
where b = {bl; l ∈ E}. The problem (12)-(14) is convex, so
all its optima are global optima. We further assume that the
problem (12)-(14) is strictly feasible.
Lemma 4. The problem (12)-(14) may have multiple (global)
optima in p, but has an unique optimum in d.

Proof. The objective function is not strictly convex in all the
decision variable, so the problem (12)-(14) may have multiple
global optima. Suppose that d can take two values d̄ and d̂ at
optima. Since the objective function is strictly convex in d, we
have

∑
i∈N Ci(di) < α

∑
i∈N Ci(d̄i) + (1−α)

∑
i∈N Ci(d̂i)

for any d = αd̄ + (1 − α)d̂, 0 < α < 1. This contradicts the
fact that d̄ and d̂ are optima. So, the problem (12)-(14) has an
unique optimum in d.

3.1 Synchronization Solution of the KKT System

Introduce Lagrangian multiplier λi for each constraint in (13),
and write down the KKT condition of the problem (12)-(14)
(see, e.g., Boyd and Vandenberghe (2004)):

fi = di +
∑
l∈E

Ailpl, i ∈ N , (15)

di = Fi(λi), i ∈ N , (16)

pl = bl, if λsl > λdl , l ∈ E , (17)

pl =−bl, if λsl < λdl , l ∈ E , (18)

pl ∈ [−bl, bl], if λsl = λdl , l ∈ E , (19)
where sl and dl denote the source and sink nodes of link l
respectively. For the reason that will become clear later, we
focus on those “synchronization” solutions to the above KKT
system.
Definition 5. A solution to the KKT system (15)-(19) is said to
be a synchronization solution if λi = λ for all i ∈ N .

It is obvious that, if there is a synchronization solution, λ is
uniquely determined by

∑
i∈N fi =

∑
i∈N Fi(λ). Let f̄i =

fi − Fi(λ). Then
∑
i∈N f̄i = 0, and at a synchronization

solution

f̄ = Ap, (20)

−b � p � b, (21)
where f̄ = {f̄i; i ∈ N}. From equation (20) we have

p =AT (AAT )†f̄ + p̄, (22)

p̄ ∈ Ker(A), (23)
where ‘†’ denotes Moore-Penrose pseudo inverse, and AAT

and its pseudo inverse satisfiesAAT (AAT )† = (AAT )†AAT =
I|N | − 1

|N |1|N |×|N|. The space Ker(A) is related to the cycles
in the network; see, e.g., Biggs (1993).
Theorem 6. The following three statements are equivalent:
(1) There exits at least one p̄ ∈ Ker(A) such that −b �

AT (AAT )†f̄ + p̄ � b.
(2) The KKT system (15)-(19) has a synchronization solution.
(3) All the solutions of the KKT system (15)-(19) are syn-

chronization solutions.

Proof. The equivalence of statements (1) and (2) is already
shown in the above. The statement (3) obviously implies state-
ment (2). Now, suppose that (2) holds but (3) does not, i.e., there
exists another solution that is not a synchronization solution.
Thus, the problem (12)-(14) has two different solutions in terms
of d by equation (16), which contradicts Lemma 4. So, (2)
implies (3), and thus statements (2) and (3) are equivalent.



The statement (1) of Theorem 6 gives a sufficient and necessary
condition for the synchronization solution of the KKT system
(15)-(19). To verify this condition is a linear programming (LP)
problem, for which efficient algorithms exit; see, e.g., Boyd and
Vandenberghe (2004).
Corollary 7. A sufficient condition for the existence of the
synchronization solution of the KKT system (15)-(19) is given
by

||(diag(b))−1AT (AAT )†f̄ ||∞ ≤ 1, (24)
where ‘|| · ||∞’ denotes infinity norm.

Proof. Let p̄ = 0. If condition (24) holds, then −b � p =
AT (AAT )†f̄ � b. So, p is a synchronization solution to the
KKT system (15)-(19).

The condition (24) is easier to verify. It is also necessary
for synchronization solution in certain networks with special
structure, e.g., for the tree network where Ker(A) = {0}. An
interesting question is how tight the condition (24) is for general
networks, compared with the sufficient and necessary condition
in the statement (1) of Theorem 6. We will investigate related
issues in future work.

3.2 Primal-Dual Gradient Algorithm

Let λ = {λi; i ∈ N}, and consider the Lagrangian for the
problem (12)-(14):

L(d,p;λ) =
∑
i∈N

Ci(di) + λT (f − d−Ap). (25)

A saddle point of L is a primal-dual optimum of the prob-
lem (12)-(14) and its dual (see, e.g., Boyd and Vandenberghe
(2004)), and moreover, the saddle point is unique in λ by
Lemma 4 and the strict monotonicity of the functions Fi.

Define a reduced Lagrangian:

L̄(p;λ1) = max
λ2

min
d
L(d,p;λ), (26)

where λ1 = {λi; i ∈ N 1} and λ2 = {λi; i ∈ N 2}. From the
inner minimization in (26) we have

di = Fi(λi), i ∈ N . (27)
The function mind L(d,p;λ) is strictly concave and continu-
ously differentiable in λ by the assumption on the functions Fi.
From the outer maximization we have

Fi(λi) = fi −
∑
l∈E

Ailpl, i ∈ N 2. (28)

Since mind L(d,p;λ) is strictly concave in λ, the reduced
Lagrangian L̄ is strictly concave in λ1.

Applying the continuous-time primal-dual gradient algorithm
(aka, saddle point dynamics) to the reduced Lagrangian, we
have

ṗl =−εl
∂L̄

∂pl
=

√
b2l − p2l (λsl − λdl), l ∈ E , (29)

λ̇i = γi
∂L̄

∂λi
=

1

Mi
(fi − Fi(λi)−

∑
l∈E

Ailpl), i ∈ N 1,(30)

where we have chosen specific scaling factors εl =
√
b2l − p2l

and γi = 1
Mi

. Notice that in equation (29) the choice of the
scaling factor ensures that the constraint (14) is satisfied. As
dpl/

√
b2l − p2l = d arcsin(pl/bl), if we identify λi with ωi, the

algorithm (27)-(30) is equivalent to the dynamical system (1)-
(2) with the phases being restricted to |θi− θj | < π/2, (i, j) ∈
E . We thus have the following result.
Theorem 8. If identifying λi with ωi for all i ∈ N , the
network dynamics (1)-(2) in the region defined by |θi − θj | <
π/2, (i, j) ∈ E is a distributed partial primal-dual gradient
algorithm for solving the following problem and its dual:

min
d,p

∑
i∈N

Ci(di) (31)

subject to f = d +Ap, (32)
− b ≺ p ≺ b. (33)

Moreover, the set of synchronization equilibria of the dy-
namical system (1)-(2) in the region defined by |θi − θj | <
π/2, (i, j) ∈ E is a subset of the set of saddle points of the
Lagrangian L.

We will study the synchronization equilibrium and its stability
of the network of coupled oscillators (1)-(2) from the perspec-
tive that it is a primal-dual gradient algorithm for solving the
problem (31)-(33) and its dual, i.e., we will study the network
dynamics (1)-(2) through studying the algorithm (27)-(30). For
this purpose, in the rest of this paper we will assume that there
exits at least one p̄ ∈ Ker(A) such that −b ≺ AT (AAT )†f̄ +
p̄ ≺ b, under which all the primal-dual optima of the problem
(31)-(33) and its dual are synchronization solutions by Theorem
6. We will also use ωi and λi interchangeably from now on.

3.3 Synchronization Equilibrium and Its Stability

We first study the convergence of the primal-dual gradient
algorithm (27)-(30) in the region defined by −b ≺ p ≺ b.
Theorem 9. The primal-dual gradient algorithm (27)-(30) con-
verges locally to a primal-dual optimum of the problem (31)-
(33) and its dual.

Proof. Let (p∗,λ∗) be a primal-dual optimum 3 of the prob-
lem (31)-(33) and its dual. Consider the Lyapunov function:

U(p,λ1;p∗,λ1∗)

=
∑
l∈E

∫ pl

p∗
l

ql − p∗l√
b2l − q2l

dql +
∑
i∈N 1

Mi

2
(λi − λ∗i )2, (34)

which is strictly convex if −b ≺ p ≺ b. Consider its Lie-
derivative under the algorithm (27)-(30):

U̇(p,λ1;p∗,λ1∗)

=−(p− p∗)T∇pL̄+ (λ1 − λ1∗)T∇λ1L̄

≤ L̄(p∗;λ1)− L̄(p;λ1) + L̄(p;λ1)− L̄(p;λ1∗) (35)

= L̄(p∗;λ1)− L̄(p;λ1∗)

= L̄(p∗;λ1)− L̄(p∗;λ1∗) + L̄(p∗;λ1∗)− L̄(p;λ1∗)

≤ 0, (36)

3 Notice that λ∗ = λ1|N|.



where inequality (35) follows from the fact that L̄ is con-
vex in p and concave in λ1, and inequality (36) from the
fact that (p∗;λ1∗) is a saddle point of L̄. Notice that if
U̇(p,λ1;p∗,λ1∗) = 0, then all the inequalities become
equality, and L̄(p∗;λ1) = L̄(p∗;λ1∗) and L̄(p∗;λ1∗) =
L̄(p;λ1∗). From LaSalle’s invariance principle (Khalil and
Grizzle (2002)), the trajectory of the algorithm (27)-(30) will
be eventually contained in a compact subset of the invariant set

I = {(p,λ) : U̇(p,λ1;p∗,λ1∗) = 0}. (37)

Since L̄(p;λ1) is strictly concave in λ1, by Proposition 11
in You and Chen (2014) the invariant set I is a subset of the
primal-dual optima of the problem (31)-(33) and its dual, and
λ = λ∗ for all (p,λ) ∈ I. When the network is a tree,
the set I is a singleton, and obviously the algorithm (27)-(30)
converges to the unique primal-dual optimum of the problem
(31)-(33) and its dual. In general, for any networks, since the
algorithm converges to the compact set I as t → ∞, there ex-
ists a convergence subsequence {(p(tk),λ(tk))}k=1,2,... with
0 ≤ t1 < t2 < · · · and limk→∞ tk → ∞, such that
limk→∞ p(tk) = p∞ and limk→∞ λ(tk) = λ∗ for some
(p∞,λ∗) ∈ I. Since the Lyapunov function can be defined in
terms of any primal-dual optimum, we choose the Lyapunov
function to be U(p,λ1;p∞,λ1∗). Notice that U ≥ 0 with
U = 0 only if p = p∞, and U̇ ≤ 0 along the trajectory
(p(t),λ(t)) of the algorithm (27)-(30). By the continuity of U ,
we have

lim
t→∞

U(p(t),λ1(t);p∞,λ1∗)

= lim
k→∞

U(p(tk),λ1(tk);p∞,λ1∗)

=U(p∞,λ1∗;p∞,λ1∗) = 0.

This implies that (p(t),λ(t)) converges to (p∞,λ∗), which is
a primal-dual optimum of the problem (31)-(33) and its dual.

Theorem 9 does not implies global convergence of the algo-
rithm (27)-(30), as its proof requires that the trajectory of the
algorithm is contained in the region defined by −b ≺ p ≺ b.
Moreover, the convergence is trajectory-wise and does not nec-
essarily imply the local stability of the primal-dual optimum
(p∞,λ∗). We will however show that the convergence point
(p∞,λ∗) is unique, i.e., independent of the specific trajectories,
and is indeed locally stable.
Theorem 10. The primal-dual gradient algorithm (27)-(30)
converges to a unique and locally stable primal-dual optimum
of the problem (31)-(33) and its dual.

Proof. By Theorem 8 or equation (29), at a convergence point
(p∞,λ∗), there exist phases θ with |θsl − θdl | < π/2, l ∈ E
such that

f̄i =
∑
l∈E

Ailpl =
∑
l∈E

Ailbl sin(θsl − θdl), i ∈ N . (38)

Notice that the above mapping from θ to f̄ is one to one in
the domain defined by |θi − θj | < π/2, (i, j) ∈ E ; see,
e.g., Araposthatis et al. (1981). So, p∞ and thus (p∞,λ∗) are
uniquely determined, independent of specific trajectories of the
algorithm (27)-(30). This further implies that the convergence
point (p∞,λ∗) is locally stable.

Combining Theorems 8-10, we have the following result.
Theorem 11. The following two statements are equivalent:
(1) There exits at least one p̄ ∈ Ker(A) such that −b ≺

AT (AAT )†f̄ + p̄ ≺ b.
(2) The network of coupled oscillators (1)-(2) has a unique

and locally stable synchronization equilibrium with cohe-
sive phases |θ0i − θ0j | < π/2, (i, j) ∈ E .

Theorem 11 states the synchronization condition elegantly as
the existence of solution for a system of linear equations, and
is a complete characterization of the condition for synchro-
nization of coupled oscillator network in the region defined by
|θi − θj | < π/2, (i, j) ∈ E .

Similar to Corollary 7, we have the following sufficient condi-
tion for synchronization equilibrium if choosing p̄ = 0.
Corollary 12. The network of coupled oscillators (1)-(2) has
a unique and locally stable synchronization equilibrium with
cohesive phases |θ0i − θ0j | < π/2, (i, j) ∈ E , if

||(diag(b))−1AT (AAT )†f̄ ||∞ < 1. (39)

This sufficient condition is exactly one condition given in
Dorfler et al. (2013).

Notice that the synchronization equilibrium of the coupled
oscillator network is locally stable. An important question is
to characterize its region of attraction, which has important
implication in applications to, e.g., the power network. We
will explore the Lyapunov function (34) and its convexity to
investigate this question in future work.

To recapture, the above conditions for synchronization of the
coupled oscillator network (1)-(2) are carried over from the
conditions for synchronization solution of the KKT system for
the problem (12)-(14). We have reduced the hard problem of
synchronization of coupled oscillators to a simple problem of
verifying solution of a system of linear equations, by identify-
ing the network system dynamics as a distributed partial primal-
dual gradient algorithm for solving a well-defined convex opti-
mization problem and its dual.

4. IMPLICATION ON CONVEX RELAXATION

Consider the following optimization problem:

min
d,θ

∑
i∈N

Ci(di) (40)

subject to fi = di +
∑
l∈E

Ailbl sin(θsl − θdl), i ∈ N , (41)

where the “physical” constraint (41) captures the force balance
that should hold at an equilibrium. The problem (40)-(41) looks
a more natural problem to study than the problem (12)-(14), as
it captures directly nonlinear coupling between the oscillators.
In the power network application, for instance, the problem
(40)-(41) corresponds to an optimal power flow problem with
nonlinear branch flows, i.e., without assuming small phase
deviation as in usual DC power flow approximation.

The problem (40)-(41) is nonconvex, even if the phases are
constrained to |θsl−θdl | ≤ π/2, l ∈ E . Notice that the problem
(12)-(14) is a convex relaxation of the problem (40)-(41), and



at its optimum the constraint (41) is satisfied when solved using
the algorithm (27)-(30).
Theorem 13. The network dynamics (1)-(2) in the region de-
fined by |θi − θj | < π/2, (i, j) ∈ E is a distributed algorithm
for solving the problem (40)-(41).

Notice that an optimum of the problem (12)-(14) may not be
an optimum of the problem (40)-(41). Theorem 13 thus has an
interesting implication: a non-convex problem may be solved
through solving its convex relaxation using a carefully chosen
algorithm. This kind of exact convex relaxation is a bit different
from the “conventional” exact relaxation where the optimum of
the convex problem is always a feasible point of the original
non-convex problem. Physically, this confirms an insight that
a physical system usually solves a convex problem (e.g., the
problem (12)-(14)) even though it may have a non-convex
representation (e.g., the problem (40)-(41)). Even though the
above implication on exact convex relaxation is based on the
result when the phases are restricted to |θsl−θdl | < π/2, l ∈ E ,
we expect that it holds generally and will further investigate it
in future work.

5. CONCLUSION

We have taken a new approach to investigate synchronization in
the coupled oscillator network, by identifying the network sys-
tem dynamics as a distributed primal-dual gradient algorithm
for solving a well-defined convex optimization problem and its
dual. This new approach reduces the hard problem of synchro-
nization of coupled oscillators to a simple problem of verifying
synchronization solution of a system of linear equations, and
leads to a complete characterization of synchronization con-
dition for the coupled oscillator network in an interesting and
practically important region. Our synchronization condition is
stated elegantly as the existence of solution for a system of
linear equations, of which one best existing synchronization
condition is a special case of sufficient condition. We have also
formulated a non-convex optimization problem with the force
balance constraints for which the afore convex optimization
problem is relaxation, and showed that the coupled oscillator
system is also a distributed algorithm for solving this non-
convex problem. This has interesting implication on exact con-
vex relaxation, and confirms the insight that a physical system
usually solves a convex problem even though it may have a non-
convex representation.
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