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Abstract—Inverter-based local volt/var control forms a closed-
loop dynamical system whereby the measured voltage determines
the reactive power injection, which in turn affects the voltage.
There has been only a limited rigorous treatment of the equi-
librium and dynamical properties of such feedback systems.
In this paper, we expand on our prior result that reverse-
engineers a class of non-incremental voltage control schemes and
provides a principled way to rigorously engineer the control to
incorporate new design goals and/or achieve better dynamical
properties. Specifically, it has been observed in the literature
that in practical circumstances the droop-based control scheme,
a commonly adopted non-incremental voltage control, can lead
to undesirable oscillatory behaviors even in the case of a single
inverter unit. This motivates us to forward-engineer the local
voltage control and apply the (sub)gradient method to design
an incremental voltage control algorithm that demands less
restrictive condition for convergence. We provide a sufficient
condition to ensure convergence of the proposed control algorithm
and evaluate its performance on a real-world distribution feeder
in Southern California with multiple large PV generation units
through simulations.

I. notation
t time index, t ∈ T := {1, 2, . . . ,∞}
N set of buses excluding bus 0, N := {1, ..., n}
L set of power lines
Li set of the lines form bus 0 to bus i
pc

i , q
c
i real, reactive power consumption at bus i

pg
i , q

g
i real, reactive power generation at bus i

Pi j,Qi j real and reactive power flow from i to j
ri j, xi j resistance and reactance of line (i, j)
Vi complex voltage at bus i
vi vi := |Vi|, i ∈ N
Ii j complex current from i to j
`i j `i := |Ii j|

2, (i, j) ∈ L
x+ positive part, x+ = max {0, x}
[x]b

a [x]b
a = x + (a − x)+ − (x − b)+

λmax the maximum eigenvalue

A quantity without subscript is usually a vector with
appropriate components defined earlier, e.g., v := (vi, i ∈
N), qg := (qg

i , i ∈ N).

II. introduction

Most developed countries around the globe have set them-
selves ambitious targets towards a renewable energy

future [4]. As the share of intermittent sources such as photo-
voltaic (PV) and wind generation increases, utility companies
may encounter several operational challenges related to voltage
regulation in power networks. A large number of recent studies
[5]–[10] have explored the possibility of utilizing inverter-
based distributed generators (DGs) to control voltage fluctua-
tions in distribution systems with high renewable penetration
levels, and recognized it as a viable solution. The basic
idea is to have DG inverters to support the network voltage

by injecting an appropriate amount of reactive power (vars)
during peak demand periods, and absorbing it during surplus
power conditions to mitigate the voltage rise problem. But
the implementation of this idea requires a departure from the
current standard [11] for interconnection of DG units. Indeed,
a series of IEEE SCC21 1547 standard development projects
[2], [3] are underway to upgrade inverter controls for ancillary
services in order to facilitate reliable integration of renewable
resources.

The literature on inverter-based volt/var control in distri-
bution systems can be divided into the following three main
categories: (i) Approaches that propose a centralized control
scheme by solving a global optimal power flow (OPF) prob-
lem. These methods implicitly assume an underlying complete
two-way communication system between a central computing
authority and the controlled nodes [7], [13], [14]; (ii) Dis-
tributed message-passing algorithms in which communications
are limited to neighboring nodes [8], [12], [15], [17]; (iii)
local control methods that require no communications and
rely only on local measurements and computations [6], [9],
[16]. These include reactive power control based on local real
power injection (referred to as Q(P)), power factor control,
and the more common voltage based reactive power control
(referred to as Q(V)). Although the methods proposed in the
first two categories are critical for theoretical analysis and
better understanding the impact of renewables on the grid,
lack of sufficient telecommunication infrastructure discourages
practical implementation of these methods in most practical
scenarios.

Inverter-based local volt/var control is a closed-loop dy-
namical system whereby the measured voltage determines the
reactive power injection, which in turn affects the voltage.
There has been only a limited theoretical treatment of the
equilibrium and dynamic properties of such feedback systems;
see, e.g., [1], [18], [19]. In [1], we have reverse-engineered
a class of non-incremental local control schemes by showing
that they can be seen as distributed algorithms for solving a
well-defined optimization problem. The resulting optimization
based model not only provides a way to characterize the
equilibrium, but also suggests a principled way to rigorously
engineer the control to incorporate new design goals such
as fairness and economic efficiency and/or achieve different
dynamical properties. Specifically, it has been observed in the
literature, e.g., [9], that in practical circumstances the droop-
based control scheme, a commonly adopted non-incremental
voltage control, can lead to undesirable oscillatory behaviors
even in the case of a single inverter unit. This motivates us
to forward-engineer the local voltage control and apply the
(sub)gradient method to design an incremental voltage control
algorithm that demands less restrictive condition for conver-
gence. We provide a sufficient condition to ensure convergence
of the proposed control algorithm and evaluate its performance
on a real-world distribution feeder in Southern California with
multiple large PV generation units through simulations.



The rest of this paper is organized as follows. Section III
describes the system model and briefly reviews the result on
reverse engineering of [1]. Section IV presents an incremental
local voltage control algorithm based on the gradient method
and its convergence analysis. Section V provides numeral
experiments to evaluate the proposed new control algorithm
in a real-world distribution circuit, and Section VI concludes
the paper.

III. SystemModel

A. Power flow model

We adopt the following branch flow model [20], [22] for
a radial distribution system:

Pi j = pc
j − pg

j +
∑

k:( j,k)∈L

P jk + ri j`i j, (1a)

Qi j = qc
j − qg

j +
∑

k:( j,k)∈L

Q jk + xi j`i j, (1b)

v2
j = v2

i − 2
(
ri jPi j + xi jQi j

)
+

(
r2

i j + x2
i j

)
`i j, (1c)

`i jvi = P2
i j + Q2

i j. (1d)

Following [21], [1], we use a linearized version of the above
model by letting `i j = 0 for all (i, j) ∈ L in (1). This
approximation neglects the higher order real and reactive
power loss terms. Since losses are typically much smaller
than power flows Pi j and Qi j, this only introduces a small
relative error, typically on the order of 1% [20]. We further
assume that vi ≈ 1 so that we can set v2

j − v2
i = 2(v j − vi) in

equation (1c).1 This approximation introduces a small relative
error of at most 0.25% (1%) if there is a 5% (10%) deviation in
voltage magnitude. With the above approximations the power
flow model (1) simplifies to the following linear model:

v = v0 + R(pg − pc) + X(qg − qc),

where v0 = (v0, . . . , v0) is an n-dimensional vector, and resis-
tance matrix R = [Ri j]n×n and reactance matrix X = [Xi j]n×n
are symmetric matrices with entries

Ri j :=
∑

(h,k)∈Li∩L j

rhk,

Xi j :=
∑

(h,k)∈Li∩L j

xhk. (2)

In this paper we assume that v0, pc, pg, qc are given con-
stants. The only variables are (column) vectors v := (v1, . . . , vn)
of voltage magnitudes and qg := (qg

1, . . . , q
g
n) of reactive

powers. Let ṽ = v0 + R(pg − pc) − Xqc, which is a constant
vector. For notational simplicity in the rest of the paper we
will ignore the superscript in qg and write q instead. Then the
linearized branch flow model reduces to the following simple
form:

v = Xq + ṽ. (3)

The following result is important for the rest of this paper.

Lemma 1 (Lemma 1 of reference [1]). The matrix X is positive
definite.

1Notice that this assumption is not essential and we can also work with v2
i

instead.

B. Local volt/var control

The goal of volt/var control on a distribution network is to
provision reactive power injections q := (q1, . . . , qn) in order
to maintain the bus voltages v := (v1, . . . , vn) to within a tight
range around their nominal values vnom

i , i ∈ N . This can be
modeled by a feedback dynamical system with state (v(t), q(t))
at discrete time t. A general volt/var control algorithm maps the
current state (v(t), q(t)) to a new reactive power injections q(t+
1). The new q(t+1) produces a new voltage magnitudes v(t+1)
according to (3). Motivated by the IEEE 1547.8 Standard [2],
[3], we have studied in [1] a local volt/var control where each
bus i makes an individual decision qi(t + 1) based only on its
own voltage vi(t).

Definition 1. A local volt/var control function f : Rn → Ω
is a collection of fi : R → Ωi functions that map the current
voltage vi(t) to a new local control qi(t + 1):

qi(t + 1) = fi(vi(t)), ∀i ∈ N , (4)

where Ω =
n∏

i=1
Ωi, with Ωi =

{
qi | qi

min ≤ qi ≤ qi
max

}
the set of

feasible reactive power injections at each bus i ∈ N .

The control algorithm (4) is non-incremental as the cur-
rent decision does not depend directly on the decision at
the previous time. We obtain the following dynamical system
that models the non-incremental local volt/var control of a
distribution network:

D1 :
∣∣∣∣∣ v(t) = Xq(t) + ṽ,

q(t+1) = f (v(t)). (5)

A fixed point (v∗, q∗) of the above dynamical system
represents an equilibrium operating point of the network.

Definition 2. (v∗, q∗) is called an equilibrium point, or a
network equilibrium, if it is a fixed point of (5), i.e.,

v∗ = Xq∗ + ṽ,
q∗ = f (v∗). (6)

C. Reverse engineering

The local volt/var control functions fi(·) are usually de-
creasing, but are not always strictly monotone because of the
deadband in control as well as the bounds on the available
reactive power. We assume for each bus i ∈ N a symmetric
deadband around the nominal voltage (vnom

i −δi/2, vnom
i +δi/2),

with δi ≥ 0. We have shown in [1] that the dynamical system
D1 can be seen as a distributed optimization algorithm for
solving a well-defined optimization problem under appropriate
conditions:

A1: The local volt/var control functions fi are nonincreas-
ing over R and strictly decreasing and differentiable
in (vi,−δi/2) and in (δi/2, vi).

A2: The derivative of the control function fi is bounded,
i.e., there exists a finite αi such that | f ′i (vi)|≤ αi for
all vi in the appropriate domain, for all i ∈ N .

Theorem 1 (Theorem 1 of reference [1]). Suppose A1 holds.
Then there exists a unique equilibrium point. Moreover, a point
(v∗, q∗) is an equilibrium if and only if q∗ is the unique optimal
solution of

min
q∈Ω

F(q) := C(q) +
1
2

qT Xq + qT ṽ (7)



and v∗ = Xq∗ + ṽ, where C(q) =
∑

i∈N Ci(qi) with the cost
function for each bus i ∈ N is defined by:

Ci(qi) := −

∫ qi

0
f −1
i (q) dq.

The cost function Ci(qi) is convex since f −1
i is decreasing.

Theorem 2 (Theorem 2 of reference [1]). Suppose A1–A2
hold. If

diag
(

1
αi

)
� X, (8)

i.e., if the matrix diag
(
α−1

i

)
− X is positive definite, then the

local volt/var control D1 converges to the unique equilibrium
point (v∗, q∗).

The following result is immediate.

Corollary 1. if max{αi} <
1

λmax(X) where λmax denotes the
largest eigenvalue, then the local volt/var control D1 converges
to the unique equilibrium point (v∗, q∗).

Proof: If max{αi} < 1
λmax(X) , we have diag

(
1
αi

)
�

λmax(X)I � X. The result follows from Theorem 2.

Notice that αi can be seen as a metric for the “aggressive-
ness” of the voltage control: a larger αi value corresponds to a
more aggressive response to the voltage deviation. Theorem 2
(and Corollary 1) implies that, in order to ensure convergence,
the voltage control cannot be too aggressive. Intuitively, a too
aggressive response will lead to overshoot in the control and
thus oscillation.

D. Piecewise linear control function

A particularly interesting example control function is the
piecewise linear droop control proposed in the latest draft of
the new IEEE 1547.8 Standard [2]:

fi(vi) :=
[
−αi

(
vi − vnom

i −
δi

2

)+

+ αi

(
−vi + vnom

i −
δi

2

)+
]qi

max

qi
min

,

(9)

where (δi, αi) are the local control parameters at each bus.2
This control function and the corresponding cost function
are illustrated in Fig. 1. The numerical examples reported in
Section V is based on this control function.

IV. Forward Engineering: An Incremental Voltage Control
Algorithm

The optimization based model (7) provides a way to
characterize the equilibrium and establishes the convergence
of the local volt/var control, as shown in Theorems 1-2. It also
suggests a principled way to engineer the control. New design
goals such as fairness and economic efficiency can be taken
incorporated by engineering the objective function in (7); and
new control schemes with better dynamical properties can be
designed based on various optimization algorithms, e.g., the
gradient algorithm.

In particular, the convergence condition (8) is hard to verify
in practice for two reasons. First, it is a computationally

2Here we “reload” notation, and use αi to also denote the slope of the droop
control function. It does not contradict the use of αi in the condition A2.

demanding problem to verify a linear matrix inequality of
potentially very large dimension. Second, matrix X depends on
the reactance of every line in the network, which is practically
hard to obtain. Moreover, even if you can verify the condition
(8), it is rather restrictive in constraining “allowable” control
functions, and the existing control schemes may not satisfy this
condition. Indeed, as already mentioned in Section II, it has
been observed in the literature that in practical circumstances
the droop-based control scheme, a commonly adopted non-
incremental voltage control, can lead to undesirable oscillatory
behaviors even in the case of a single inverter unit. We
therefore seek a local var/volt control scheme that demands
less restrictive condition for convergence.

A. An incremental control algorithm

As mentioned in the above, for a given optimization
problem, there may exist different optimization algorithms. In
this subsection, we will apply the (sub)gradient method to the
problem (7) to design a new voltage control algorithm:

qi(t + 1) =

[
qi(t) − γ

∂F(q)
∂qi

]qmax
i

qmin
i

, (10)

where γ > 0 is the stepsize, ‘[ ]a
b’ denotes the projection onto

[a, b], and

∂F(q)
∂qi

=


C
′

i (qi(t)) + vi(t) if qi(t) 6= 0
0 if qi(t) = 0 , − δ

2 ≤ vi(t) ≤ δ
2

− δ2 + vi(t) if qi(t) = 0 , vi(t) > δ
2

δ
2 + vi(t) if qi(t) = 0 , vi(t) < − δ2

.

(11)
The above control algorithm is incremental as at each time the
reactive power is “gradually” adjusted upon the provisioning
at the previous time. It is also distributed, since the reactive
power provisioning decision at each node i ∈ N depends only
on the current provisioning and voltage at node i.

We thus obtain the following dynamical system:

D2 :

∣∣∣∣∣∣∣ v(t) = Xq(t) + ṽ,

q(t+1)
i =

[
qi(t) − γ

∂F(q)
∂qi

]qmax
i

qmin
i

.
(12)

The following result is immediate.

Theorem 3. Suppose A1 holds. Then there exists a unique
equilibrium point for the dynamical system D2. Moreover, a
point (v∗, q∗) is an equilibrium if and only if q∗ is the unique
optimal solution of problem (7) and v∗ = Xq∗ + ṽ.

B. Convergence

We now analyze the convergence of the dynamical system
D2.

Theorem 4. Suppose A1 holds. If the stepsize γ satisfies

γ <
2

λmax(∇2C(q) + X)
, (13)

where λmax denotes the maximum eigenvalue, then the dy-
namical system D2 converges to the unique equilibrium.

Proof: Consider first the case when qi(t) 6= 0, ∀i ∈ N . By
the second order Taylor expansion,

F(q(t + 1))
= F(q(t)) + (∇F(q(t)))T (q(t + 1) − q(t))

+
1
2

(q(t + 1) − q(t))T (∇2C(q̃) + X)(q(t + 1) − q(t)), (14)



δi
2

−
δi
2

vi

vi

qi
min

qi
max

fi
−1 qi( )

−
1
αi

−
1
αi

δi
2

−
δi
2

vi
vi

qi
min

qi
max

fi vi( )

−αi

−αi

Fig. 1: From left to right: piecewise linear volt/var control curve discussed in the draft of the upcoming IEEE 1547
standard [2], its inverse, and the corresponding reverse-engineered cost function for reactive power injection.

where q̃ = θq(t) + (1 − θ)q(t + 1) for certain θ ∈ [0, 1]. By
Projection Theorem [23], we have (∇F)T (q(t + 1) − q(t)) ≤
− 1
γ
||q(t + 1) − q(t)||2, which leads to

F(q(t + 1))

≤ F(q(t)) −
1
γ
||q(t + 1) − q(t)||2

+
1
2

(q(t + 1) − q(t))T (∇2C(q̃) + X)(q(t + 1) − q(t))

= F(q(t))

+(q(t + 1) − q(t))T (−
2
γ

I + ∇2C(q̃) + X)(q(t + 1) − q(t)). (15)

When the condition (16) holds, − 2
γ

I + ∇2C(q̃) + X is negative
definite, and thus the second term in (15) is strictly negative as
long as q(t+1) 6= q(t) and zero only if q(t+1) = q(t). So, F(q(t+
1)) ≤ F(q(t)) with the equality if and only if q(t + 1) = q(t).
Since the equilibrium of the dynamical system D2 is unique
by Theorem 3, q(t + 1) = q(t) can only occur at the unique
equilibrium q∗ (with v∗ = Xq∗ + ṽ). Thus, F(q(t + 1)) ≤ F(q(t))
with the equality if and only if q(t + 1) = q(t) = q∗. Also,
notice that F(q) ≥ F(q∗) with equality if and only if q = q∗.
So, F is a discrete-time Lyapunov function for D2, and the
Lyapunov stability theorem then implies that q∗ is globally
asymptotically stable [24].

Consider now the case when qi(t) = 0 and thus Ci(qi(t))
in the function F(q(t)) is not differentiable for some i ∈ N .
The complication here is to use well-defined derivatives in the
Taylor expansion. We have three sub-cases; see equation (11):

1) vi(t) > δ/2: The subgradient in D2 is chosen as ∂F
∂qi

=

− δ2 + vi(t) > 0, so qi(t + 1) = −γ ∂F
∂qi

< 0. We can use
the left derivative C′i (0

−), which is well-defined, in
the Taylor expansion.

2) vi(t) < −δ/2: The subgradient in D2 is chosen as
∂F
∂qi

= δ
2 + vi(t) < 0, so qi(t + 1) = −γ( δ2 + vi(t)) > 0.

We can use the right derivative C′i (0
+), which is well-

defined, in the Taylor expansion.
3) −δ/2 ≤ vi(t) ≤ δ/2: The subgradient in D2 is chosen

as ∂F
∂qi

= 0. So, qi(t + 1) = qi(t) = 0. In this case, the
Taylor expansion on Ci is not needed, and F(q(t +
1)) ≤ F(q(t)) still holds.

With the above choice of the derivatives in the Taylor expan-
sion, we can similarly show that F is a discrete-time Lyapunov
function for D2 and q∗ is globally asymptotically stable.

Notice that for any control functions fi (that satisfies A1),
the convergence condition (16) can be always satisfied by
a properly chosen stepsize γ. Even though the range of γ
depends on the control functions, but the condition (16) does
not constrain the allowable control functions. In contrast, the
convergence condition (8) for the non-incremental voltage
control (4) does constrain the allowable control functions fi.

For the piecewise linear droop control functions (9), we
have the following result on convergence.

Corollary 2. Suppose A1 holds. If the stepsize γ satisfies

γ <
2

λmax(diag( 1
αi

) + X)
, (16)

then the dynamical system D2 with the piecewise linear droop
control functions (9) converges to the unique equilibrium.

Proof: For the piecewise linear control functions (9),
∇2C(q) = diag( 1

αi
). The result follows from Theorem 4.

Recall that αi can be seen as a metric for the “aggres-
siveness” of the voltage control. Theorem 4 (and Corollary 2)
implies that a more aggressive voltage control allows a larger
range of the stepsize for the convergence. This is different
from the convergence of the non-incremental voltage control
(4) where the control cannot be too aggressive. On the other
hand, a bound (16) on the “allowable” stepsize means that the
control cannot be too aggressive as well.

V. Numerical Examples

Focusing on the piecewise linear droop control functions
(9), we evaluate the proposed incremental var/volt control
algorithm (10) and compare it against the existing non-
incremental algorithm (4) on a distribution feeder of South
California Edison with a high penetration of photovoltaic (PV)
generation.3 Fig. 5 shows a 42-bus model of this feeder, where
bus 1 is the substation and five photovoltaic generators are
integrated at buses 2, 12, 26, 29, and 31. As we aim to study the
volt/var control through PV inverters, all shunt capacitors are
assumed to be off. Table I contains the network data including
the line impedance, the peak MVA demand of loads, and the
capacity of the PV generators. It is important to note that
all studies are run with a full AC power flow model (not

3This feeder is a modified version of the original feeder published in [2],
where zero impedance lines have been removed, and also the location and
capacity of the PV generators have changed for demonstration purpose.



(a)

(b)

Fig. 2: Dynamics in reactive power injection and volt-
age magnitude for the case of a single inverter.

the linearized model). Droop parameters at voltage controlling
nodes are such that the deadband is from 0.98p.u. to 1.02p.u.,
and the hard voltage thresholds are v̄i = 0.97p.u., vi = 0.97p.u.

on all inverters.

A. Case of a single inverter

We first provide a simple example to illustrate the potential
instability of the non-incremental voltage control scheme (4).
In the feeder in Fig. 5, assume that all loads are at 80% of
their peak value with a constant 0.9 Power Factor (PF), i.e., a
total demand of 8.24MW and 3.99MVar. We further assume that
all five PV generators are running at 60% of their nameplate
capacity with PF=1, except for the generator at bus 12 which
is enabled to inject/absorb reactive power within a range of
PF ∈ [0.8, 1], corresponding to qmax

12 = 1.35MVar. In this setup,
it is observed that the reactive power output of the inverter at
bus 12 oscillates between 0.18 and 1.35Mvar (dash line in Fig.
2a), corresponding to a voltage oscillation between 0.967 and
0.979p.u. (dash line in Fig. 2b). In contrast, when the proposed
incremental control algorithm (10) with γ = 20 is applied,
there is no oscillation and the system converges very quickly
to the equilibrium point of 0.85MVar, 0.974p.u. at bus 12 (solid
lines in Fig. 2a, 2b).

B. Multiple inverter interactions

As demonstrated above, the non-incremental voltage con-
trol (4) can potentially be unstable even with just a single
inverter. With multiple inverters operating simultaneously in
a distribution feeder, instability is even more of a serious
concern. To see this, suppose that all five PV units of the
feeder in Fig. 5 are active in controlling their inverters. Now
let all spot loads be at their peak value with a constant 0.9 PF,
and let the PV units be running at 70% of their capacity all
enabled to control their reactive power output within a range
of PF ∈ [0.8, 1]. Again, as shown in Fig. 3, it is observed
that in this case the non-incremental control scheme fails to
converge, causing the voltage profile of the feeder to oscillate

Fig. 3: Oscillation in voltage profile when all inverters
operate.

(a) γ = 10: fast convergence (b) γ = 1

(c) γ = 0.1: slow convergence (d) γ = 50: divergence

Fig. 4: Convergence of the proposed incremental volt-
age control with different stepsizes.

around the equilibrium (dashed blue line). Also, notice that,
when the control at an inverter oscillates, it causes oscillation
at all buses except for the substation bus.

In contrast, with the incremental voltage control algorithm
(10) there is no oscillation and the system converges with
appropriate stepsizes, as shown in Fig. 4. We see that with
“small” enough stepsize γ, the proposed incremental voltage
control scheme converges to the equilibrium; and the larger
the stepsize, the faster the convergence, which is a typical
characteristics of the gradient algorithm. Also notice that, as
shown in Fig. 4(d), if the stepsize is too large, the system
will oscillate. In practice, we can start with an analytical
estimate of the bound on the stepsize (16), and then run some
numerical experiments around the bound to choose a stepsize
that achieves a good tradeoff between convergence speed and
robustness.

VI. Conclusion

Motivated by the oscillatory behavior of the existing non-
incremental local var/volt control schemes, we have applied
the reverse-engineering result in our prior work to design an
incremental voltage control algorithm based on the gradient



Fig. 5: Circuit diagram for SCE distribution system.

TABLE I: Network of Fig. 5: Line impedances, peak spot load KVA, Capacitors and PV generation’s nameplate ratings.

Network Data
Line Data Line Data Line Data Load Data Load Data PV Generators

From To R X From To R X From To R X Bus Peak Bus Peak Bus Capacity
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVA No. MW

1 2 0.259 0.808 8 34 0.244 0.046 18 19 0.198 0.046 11 0.67 28 0.27
2 3 0.031 0.092 8 36 0.107 0.031 22 26 0.046 0.015 12 0.45 29 0.2 2 1
3 4 0.046 0.092 8 30 0.076 0.015 22 23 0.107 0.031 13 0.89 31 0.27 26 2
3 13 0.092 0.031 8 9 0.031 0.031 23 24 0.107 0.031 15 0.07 33 0.45 29 1.8
3 14 0.214 0.046 9 10 0.015 0.015 24 25 0.061 0.015 16 0.67 34 1.34 31 2.5
4 17 0.336 0.061 9 37 0.153 0.046 27 28 0.046 0.015 18 0.45 35 0.13 12 3
4 5 0.107 0.183 10 11 0.107 0.076 28 29 0.031 0 19 1.23 36 0.67
5 21 0.061 0.015 10 41 0.229 0.122 30 31 0.076 0.015 20 0.45 37 0.13
5 6 0.015 0.031 11 42 0.031 0.015 30 32 0.076 0.046 21 0.2 39 0.45
6 22 0.168 0.061 11 12 0.076 0.046 38 39 0.107 0.015 23 0.13 40 0.2
6 7 0.031 0.046 14 16 0.046 0.015 38 40 0.061 0.015 24 0.13 41 0.45
7 27 0.076 0.015 14 15 0.107 0.015 43 44 0.061 0.015 25 0.2 Vbase = 12.35 KV
7 8 0.015 0.015 17 18 0.122 0.092 43 45 0.061 0.015 26 0.07 S base = 1000 KVA
8 35 0.046 0.015 17 20 0.214 0.046 27 0.13 Zbase = 152.52 Ω

method that demands less restrictive condition for convergence.
We provide a sufficient condition to ensure convergence of the
proposed control algorithm and evaluate its performance on a
real-world distribution feeder in Southern California.
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