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Abstract—The optimal power flow (OPF) problem is generally
nonconvex. Recently a second-order cone relaxation for OPF has
been proposed using the branch flow model. In this paper, we
provide sufficient conditions under which the relaxation is exact,
and demonstrate that these conditions hold for a wide class of
practical power distribution systems.

I. INTRODUCTION

In previous work [1], [2], we advocate the use of branch
flow models for the design and operation of power systems,
including optimal power flow, demand response, and Volt/VAR
control. In contrast to bus injection models which focus on
nodal variables such as bus current and power injections,
branch flow models focus on currents and power flows on
individual branches [3], [4]. They have been used mainly
for modeling distribution circuits which tend to be radial,
but has received far less attention. The optimal power flow
(OPF) problem seeks to minimize a certain cost function,
such as power loss and generation cost, subject to physical
constraints including Kirchoff’s laws, thermal constraints, as
well as voltage regulation constraints. There has been a great
deal of research on OPF since Carpentier’s first formulation
in 1962 [5]. OPF is generally nonconvex and NP hard, and a
large number of optimization algorithms and relaxations have
been proposed; see, e.g., [6], [7], [8], [9], [10]. Recently, a
semidefinite relaxation (SDR) of OPF is proposed in [11] and
a sufficient condition is derived in [12] under which the SDR
is exact. This condition is shown to essentially hold in various
IEEE test systems. While this line of research has generated a
lot of interest, limitations of the SDR have also been studied
in [13] using 3, 5, and 7-bus system. Moreover, if SDR fails to
provide exact relaxations, the solutions produced by the SDR
are physically meaningless in those cases. Remarkably, it turns
out that if the network is radial, then the sufficient condition
of [12] always holds, provided that the bounds on the power
flows satisfy a simple pattern [14], [15], [16]. This is important
as almost all distribution systems are radial networks.

Indeed, for radial networks, different convex relaxations
have also been studied using branch flow models. The model
considered in this paper is first proposed in [3], [4] for the opti-
mal placement and sizing of switched capacitors in distribution
circuits for Volt/VAR control. Recasting the model as a set
of linear constraints together with a set of quadratic equality
constraints, references [17] [1] propose a second-order-cone
(SOC) convex relaxation, and prove that the relaxation is
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exact for radial networks, when there are no upper bounds
on the loads. See also [18] for an SOC relaxation of a linear
approximation of the branch flow model in [3], [4], and [19],
[20], [21] for other branch flow models.

Ignoring upper bounds on the load may be unrealistic,
e.g., in the context of demand response. In a previous paper
[2], we prove that the SOC relaxation is exact for radial
networks, provided there are no upper bounds on the voltage
magnitudes and some other sufficient conditions hold. Those
sufficient conditions however place strong requirements on
the impedance of the distribution lines and on the load and
generation patterns in the radial network. In this paper, we
propose less restrictive sufficient conditions under which the
SOC relaxation is exact. As examples, we show that these
conditions hold in two distribution circuits of the Southern
California Edison (SCE), with high penetration of photovoltaic
(PV) generation. Roughly speaking, these sufficient conditions
hold in many real distribution systems where v ∼ 1 p.u.,
p, q < 1 p.u. , r, x << 1 p.u., and r

x is bounded. Here v, p, q
are the bus voltage, real power consumption, and reactive
power consumption; and r, x are the resistance and reactance
of the distribution lines. Moreover, we provide upper bounds
on the voltage magnitudes for the SOC relaxation solutions.
This would facilitate the voltage regulation in distribution
systems.

The paper is organized as follows. We first present the
branch flow model in section II. We then provide in section III
sufficient conditions under which the SOC relaxation is exact
for radial networks when there are no upper bounds on bus
voltage magnitudes. Finally, in section IV, we illustrate these
sufficient conditions using two real-world distribution circuits.

II. PROBLEM FORMULATION

Due to space limit, we introduce here an abridged version
of the branch flow model; see, e.g., [1], [2] for more details.

A. Branch flow model for radial networks

TABLE I: Notations.

Vi, vi complex voltage on bus i with vi = |Vi|2
si = pi + iqi complex net load on bus i
Iij , `ij complex current from buses i to j with `ij =

|Iij |2
Sij = Pij + iQij complex power flowing out from buses i to bus j
zij = rij + ixij impedance on line (i, j)

Consider a radial distribution circuit that consists of a set N of
buses and a set E of distribution lines connecting these buses.



We index the buses in N by i = 0, 1, . . . , n, and denote a line
in E by the pair (i, j) of buses it connects. Bus 0 represents
the substation and other buses in N represent branch buses.
For each line (i, j) ∈ E, let Iij be the complex current flowing
from buses i to j, zij = rij +ixij the impedance on line (i, j),
and Sij = Pij + iQij the complex power flowing from buses
i to bus j. On each bus i ∈ N , let Vi be the complex voltage
and si be the complex net load, i.e., the consumption minus
generation. As customary, we assume that the complex voltage
V0 on the substation bus is given.

The branch flow model was first proposed in [3], [4] to
model power flows in a steady state in a radial distribution
circuit:

pj = Pij − rij`ij −
∑

k:(j,k)∈E
Pjk, j = 1, . . . , n (1)

qj = Qij − xij`ij −
∑

k:(j,k)∈E
Qjk, j = 1, . . . , n (2)

vj = vi − 2(rijPij + xijQij) + (r2
ij + x2

ij)`ij ,

(i, j) ∈ E (3)

`ij =
P 2
ij + Q2

ij

vi
, (i, j) ∈ E, (4)

where `ij := |Iij |2, vi := |Vi|2, and pi and qi are the
real and reactive net loads at node i. Equations (1)–(4)
define a system of equations in the variables (P,Q, `, v) :=
(Pij , Qij , `ij , (i, j) ∈ E, vi, i = 1, . . . , n), which do not
include phase angles of voltages and currents. Given an
(P,Q, `, v), these phase angles can be uniquely determined
for radial networks. This is not the case for mesh networks;
see [1] for exact conditions under which phase angles can
be recovered for (an extension of the model here for) mesh
networks.

B. Optimal power flow
Consider the problem of minimizing a cost function over

the network where the optimization variables are p :=
(p1, . . . , pn), q := (q1, . . . , qn), as well as (P,Q, `, v). Let

pi := pci − pgi , qi := qci − qgi ,

where pci and qci are the real and reactive power consumption
at node i, and pgi and qgi are the real and reactive power gen-
eration at node i. In addition to power flow equations (1)–(4),
we impose the following constraints on power consumption
and generation:

pc
i
≤ pci ≤ pci , qc

i
≤ qci ≤ qci , i = 1, . . . , n. (5)

pg
i
≤ pgi ≤ pgi , qg

i
≤ qgi ≤ qgi , i = 1, . . . , n. (6)

f c
i (pci , q

c
i ) ≤ 0, fg

i (pgi , q
g
i ) ≤ 0, i = 1, . . . , n. (7)

Here, equation (7) models additional constraints on (pci , q
c
i )

and (pgi , q
g
i ). For example, for PV generators, (pgi )2 +(qgi )2 ≤

C2 where C is the capacity of the PV generation [22]. We
assume f c

i , f
g
i are convex for all i = 1, · · · , n.

Finally, the voltage magnitudes must be maintained to be
above certain thresholds:

vi ≤ vi, i = 1, . . . , n. (8)

Here we do not impose upper bounds on the voltage magni-
tudes. However, we derive below upper bounds on the optimal
voltage magnitudes.

The objective of the optimal power flow problem is to
minimize the power generation costs Ci(p

g
i ), the power losses

ri,j`i,j , and maximize the user utilities fi(p
c
i ): 1

OPF:

min
P,Q,`,v,p,q

n∑
i=1

Ci(p
g
i )−

n∑
i=1

fi(p
c
i ) +

∑
(i,j)∈E

ri,j`i,j

s.t. (1)− (4), (5)− (8).

OPF is NP hard in general, due to the quadratic equality
constraint (4).

III. EXACT RELAXATION

A. Second-order cone relaxation

Following [17], [1], [2], we relax the quadratic equalities
in (4) into inequalities and consider the following convex
relaxation of OPF.
ROPF:

min
P,Q,l,v,p,q

n∑
i=1

Ci(p
g
i )−

n∑
i=0

fi(p
c
i ) +

∑
(i,j)∈E

ri,j`i,j

s.t. (1)− (3), (5)− (8)

`ij ≥
P 2
ij + Q2

ij

vi
, (i, j) ∈ E. (9)

Obviously, ROPF provides a lower bound on OPF. It was
shown in [17], [1] that this relaxation is exact when there are
no upper bounds on the real and reactive power consumptions
in (5) but with upper bounds on the voltage magnitudes in (8).

The main result of this paper is a variety of sufficient
conditions for exact relaxation when there are no upper bounds
on the voltage magnitudes. Given a solution of the relaxed
problem ROPF, one can always check if equality is attained
in (4). If it is, then the relaxed solution is optimal for the
original problem OPF as well. Otherwise, it is not feasible
for OPF. Our goal is to develop sufficient conditions for exact
relaxation that can be checked without having to solve ROPF
first.

B. Sufficient condition for exact relaxation

We start by developing our results on a simple network, an
one-line distribution circuit (main feeder). Then we will extend
the results to general radial networks. Due to space limit, all
proofs are omitted and can be found in [23].

1) Line networks: For an one-line network, we can ab-
breviate rij , xij , Pij , Qij , and lij by ri, xi, Pi, Qi and li
respectively, as shown in Figure 1. Rewrite the OPF problem
in terms of the simplified notations as:

1We can also include in the objective function the cost
C0

(∑
(0,j)∈E P0,j

)
on the total power fed into the radial network.

This additional term does not change the results of the paper.
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Fig. 1: An one-line distribution network.

LOPF:

min
P,Q,`,v,p,q

n∑
i=1

Ci(p
g
i )−

n∑
i=1

fi(p
c
i ) +

n−1∑
i=0

ri`i

s.t.
P 2
i + Q2

i

vi
= `i, i = 0, · · · , n− 1 (10)

Pi = Pi+1 + ri`i + pci+1 − pgi+1,

i = 0, · · · , n− 1 (11)
Qi = Qi+1 + xi`i + qci+1 − qgi+1,

i = 0, · · · , n− 1 (12)
vi − vi+1 = 2(riPi + xiQi)− (r2

i + x2
i )`i,

i = 0, · · · , n− 1 (13)
(5)− (8).

The above optimization problem can be relaxed to the follow-
ing second-order cone program:

RLOPF

min
P,Q,l,v,p,q

n∑
i=1

Ci(p
g
i )−

n∑
i=1

fi(p
c
i ) +

n−1∑
i=0

ri`i

s.t. (5)− (8), (11)− (13)

P 2
i + Q2

i

vi
≤ `i, i = 0, · · · , n− 1. (14)

The next lemma provides a sufficient condition guaranteeing
that RLOPF is an exact relaxation of OPF. For each bus k ∈
N\{0}, define Rk :=

∑k−1
i=0 ri and Xk :=

∑k−1
i=0 xi as the

cumulative resistance and reactance from the feeder to bus k.
Also define [a]+ = max(a, 0).

Lemma 1. Any optimal solution (P,Q, `, v, p, q) of RLOPF
is also optimal for LOPF, provided that for each k ∈ N\{0}
the following condition holds: for all i < k,

vi > 2 max

(
−Xk

[
rk
xk
− Rk

Xk

]+

Pi,

−Rk

[
xk

rk
− Xk

Rk

]+

Qi

)
. (15)

Moreover, for each node i ∈ N\{0}, the voltage is upper-
bounded by:2

vi ≤ v0 − 2

i−1∑
k=0

(rk(Pk − rk`k) + xk(Qk − xk`k)) .

The condition (15) in Lemma 1 is not checkable before
solving RLOPF as it involves a solution (P,Q, `, v, p, q) of

2Note that Pk − rk`k and Qk − xk`k are the real and reactive power
received by bus k + 1 from bus k.

RLOPF. We now provide a checkable condition by bounding
vi, Pi, Qi in terms of system parameters p

i
, p̄i, qi, q̄i, vi. De-

fine

Pnom
i ,

n∑
j=i+1

(pc
j
− p̄gj ); Qnom

i
,

n∑
j=i+1

(qc
j
− q̄gj ).

Using (11)–(12) we can iteratively derive that for any i ∈ N ,

Pi ≥ Pi − ri`i ≥ Pnom
i ,

and
Qi ≥ Qi − ri`i ≥ Qnom

i
.

Combining the above two inequalities with Lemma 1 give the
following result.

Theorem 2. Any optimal solution of RLOPF is also optimal
for LOPF, provided that for each k ∈ N\{0} the following
condition holds: for all i < k,

vi > 2 max

(
−Xk

[
rk
xk
− Rk

Xk

]+

Pnom
i ,

−Rk

[
xk

rk
− Xk

Rk

]+

Qnom

i

)
. (16)

Moreover, for each node i ∈ N\{0}, the voltage is upper-
bounded by:

vi ≤ v0 − 2

i−1∑
k=0

(
rkP

nom
k + xkQ

nom

k

)
.

Since Xk[ rkxk
− Rk

Xk
]+ ≥ 0, Rk[xk

rk
− Xk

Rk
]+ ≥ 0 for each

k = 1, · · · , n, and vi > 0 for each i ∈ N , we have the
following special cases:

(i) If Pnom
i > 0 and Qnom

i
> 0 for all i ∈ N\{0}, then

the right-hand side of (16) is always non-positive, which
implies that (16) is always satisfied. Hence the relaxation
is exact provided that both the real and reactive powers
do not flow backward.

(ii) If xk

rk
≤ Xk

Rk
for any k = 1, · · · , n, then [xk

rk
− Xk

Rk
]+ = 0.

Condition (16) reduces to the following condition:

vi > 2 max

(
−Xk

[
rk
xk
− Rk

Xk

]
Pnom

i

)
,∀i < k.

This condition is always satisfied if Pnom
i ≥ 0 for all

i ∈ N . Therefore the relaxation is exact provided real
powers do not flow backward.

(iii) If xk

rk
≥ Xk

Rk
for all k = 1, · · · , n, then the same

argument as above shows that the relaxation is exact
provided reactive powers do not flow backward, i.e., if
Qnom

i
≥ 0 for all i ∈ N .

(iv) If xk

rk
= Xk

Rx
for all k = 1, · · · , n, then [ rkxk

− Rk

Xk
]+ = 0

and [xk

rk
− Xk

Rk
]+ = 0. Therefore, condition (16) reduces

to: vi > 0 for all i ∈ N . This is always satisfied.
These four special cases are the main results in our previous
work [2]. See [2] for further discussion on their implications.

The conditions in these special cases are more stringent than
(16) and may not hold in practice. The sufficient condition



(16) depends only on how vi compare with the products of
resistances (reactances) and real (reactive) powers. In practice,
|V | ∼ 1 p.u., r, x << 1 p.u., r

x ∼ [0.1, 10], and p, q < 1 p.u..
As we show in Section IV, condition (16) usually holds when
the system parameters are in these ranges.

2) General radial networks: We now extend Lemma 1 and
Theorem 2 to general radial distribution circuits. Given a radial
network:
• For each node k, denote the unique path from

root 0 to node k by Pk , {(i, j) : (i, j) ∈
E is on the path from root 0 to node k}.

• Define the cumulative resistance and reactance from
root 0 to node k as Rk ,

∑
(i,j)∈Pk

ri,j and Xk ,∑
(i,j)∈Pk

xi,j .
It is straightforward to extend Lemma 1 to the case of

general radial networks.

Lemma 3. Any optimal solution (P,Q, `, v, p, q) of ROPF is
also optimal for OPF, provided that for each (k, l) ∈ E the
following condition holds: for all (i, j) ∈ Pk,

vi > 2 max

(
−Xk

[
rk,l
xk,l
− Rk

Xk

]+

Pi,j ,

−Rk

[
xk,l

rk,l
− Xk

Rk

]+

Qi,j

)
.

Moreover, for each node i ∈ N\{0}, the voltage is upper-
bounded by:

vi ≤ v0−2
∑

(j,k)∈Pi

(rj,k(Pj,k − rj,k`j,k) + xj,k(Qj,k − xi,j`j,k)) .

Similarly, this lemma involves a solution vi, Pi,j , Qi,j of
ROPF. For a sufficient condition that does not require solving
ROPF first, define

Pnom
j ,

n∑
i∈D(j)

(pc
i
− p̄gi ); Qnom

j
,

n∑
i∈D(j)

(qc
i
− q̄gi ),

for each j = 1, · · · , n. Here D(j) is the set of all the descen-
dants of j including j itself.3 Note that for any (i, j) ∈ E,

Pi,j ≥ Pi,j − ri,j`i,j ≥ Pnom
j ,

Qi,j ≥ Qi,j − xi,j`i,j ≥ Qnom

j
.

Lemma 3 then implies the following extension of Theo-
rem 2.

Theorem 4. Any optimal solution of ROPF is also optimal for
OPF, provided that for each (k, l) ∈ E the following condition
holds: for all (i, j) ∈ Pk,

vi > 2 max

(
−Xk

[
rk,l
xk,l
− Rk

Xk

]+

Pnom
j ,

−Rk

[
xk,l

rk,l
− Xk

Rk

]+

Qnom

j

)
. (17)

3A rigorous definition of D(j) is: D(j) , {l ∈ N :
there exist a sequence of nodes, j0, j1, · · · , jm, such that j0 = j, jm =
l, and (ji, ji+1) ∈ E,∀i = 0, . . . ,m− 1, where m ≥ 0}.

Moreover, for each node i ∈ N\{0}, the voltage is upper-
bounded by:

vi ≤ v0 − 2
∑

(j,k)∈Pi

(
rj,kP

nom
k + xj,kQ

nom

k

)
.

The above theorem requires checking condition (17) for
each (k, l) ∈ E and for all (i, j) ∈ Pk. We can derive
a simpler though more conservative sufficient condition for
exact relaxation. Define P = minj∈N\{0} P

nom
j , Q =

minj∈N\{0}Q
nom

j
, and v = mini∈N vi. Note that for any

(i, j) ∈ E, Pi,j ≥ P , Qi,j ≥ Q, and vi ≥ v.

Corollary 5. Any optimal solution of ROPF is also optimal
for OPF, provided:

v > −2 min

(
P · max

(k,l)∈E

(
Xk

[
rk,l
xk,l
− Rk

Xk

]+
)
,

Q · max
(k,l)∈E

(
Rk

[
xk,l

rk,l
− Xk

Rk

]+
))

. (18)

Moreover, for each node i ∈ N\{0}, the voltage is upper-
boudned by:

vi ≤ v0 − 2RiP − 2XiQ. (19)

Corollary 5 provides a condition which is much easier to
check but more restrictive. Nonetheless, since |V | ∼ 1 p.u.,
r, x << 1 p.u., and p, q < 1 p.u. in practice, condition
(18) holds for both a 47-bus distribution circuit and a 56-bus
distribution circuit of the Southern California Edison (SCE),
as show in Section IV.

Finally, the following corollary summarizes the special
cases we have discussed in Section III-B1.

Corollary 6. Any optimal solution of ROPF is also optimal
for OPF, provided that one of the following conditions holds:

1) For each j ∈ N\{0}, Pnom
j ≥ 0, Qnom

j
≥ 0;

2) For all (i, j) ∈ E, ri,j
xi,j
≥ Ri

Xi
, Pnom

j ≥ 0;
3) For all (i, j), (j, k) ∈ E, rj,k

xj,k
≥ ri,j

xi,j
, Pnom

j ≥ 0;
4) For all (i, j) ∈ E, xi,j

ri,j
≥ Xi

Ri
, Qnom

j
≥ 0;

5) For all (i, j), (j, k) ∈ E, xj,k

rj,k
≥ xi,j

ri,j
, Qnom

j
≥ 0;

6) For all (i, j), (j, k) ∈ E, rj,k
xj,k

=
ri,j
xi,j

.

IV. CASE STUDY

In this section we evaluate these conditions for exact
relaxation for two distribution circuits of SCE with high
penetration of photovoltaic (PV) generation [17], [24]. Figure
2 shows a 47-bus distribution circuit and Table II lists the
network data including line impedances, peak MVA demand of
loads, and the nameplate capacity of the shunt capacitors and
the photovoltaic generations [17]. Note that Bus 1 indicates
the substation, and there are 5 photovoltaic (PV) generators
located on buses 13, 17, 19, 23 and 24. See [24] for the
schematic diagram and network data for another circuit with
56 buses.



Fig. 2: Schematic diagram of two SCE distribution systems.

TABLE II: Network of Figure 2: Line impedances, peak spot load KVA, Capacitors and PV generation’s nameplate ratings.

Network Data
Line Data Line Data Line Data Load Data Load Data PV Generators

From To R X From To R X From To R X Bus Peak Bus Peak Bus Nameplate
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVA No. Capacity
1 2 0.259 0.808 8 41 0.107 0.031 21 22 0.198 0.046 1 30 34 0.2
2 13 0 0 8 35 0.076 0.015 22 23 0 0 11 0.67 36 0.27 13 1.5MW
2 3 0.031 0.092 8 9 0.031 0.031 27 31 0.046 0.015 12 0.45 38 0.45 17 0.4MW
3 4 0.046 0.092 9 10 0.015 0.015 27 28 0.107 0.031 14 0.89 39 1.34 19 1.5 MW
3 14 0.092 0.031 9 42 0.153 0.046 28 29 0.107 0.031 16 0.07 40 0.13 23 1 MW
3 15 0.214 0.046 10 11 0.107 0.076 29 30 0.061 0.015 18 0.67 41 0.67 24 2 MW
4 20 0.336 0.061 10 46 0.229 0.122 32 33 0.046 0.015 21 0.45 42 0.13
4 5 0.107 0.183 11 47 0.031 0.015 33 34 0.031 0 22 2.23 44 0.45 Shunt Capacitors
5 26 0.061 0.015 11 12 0.076 0.046 35 36 0.076 0.015 25 0.45 45 0.2 Bus Nameplate
5 6 0.015 0.031 15 18 0.046 0.015 35 37 0.076 0.046 26 0.2 46 0.45 No. Capacity
6 27 0.168 0.061 15 16 0.107 0.015 35 38 0.107 0.015 28 0.13
6 7 0.031 0.046 16 17 0 0 42 43 0.061 0.015 29 0.13 Base Voltage (KV) = 12.35 1 6000 KVAR
7 32 0.076 0.015 18 19 0 0 43 44 0.061 0.015 30 0.2 Base KVA = 1000 3 1200 KVAR
7 8 0.015 0.015 20 21 0.122 0.092 43 45 0.061 0.015 31 0.07 Substation Voltage = 12.35 37 1800 KVAR
8 40 0.046 0.015 20 25 0.214 0.046 32 0.13 47 1800 KVAR
8 39 0.244 0.046 21 24 0 0 33 0.27

A. Verifying sufficient conditions

We verify that the condition in Corollary 5 holds in both
circuits. To calculate P and Q, we only need values for lower
bounds of (pci , q

c
i ) and upper bounds of (pgi , q

g
i ):

• For load buses, we set pc
i

to be 0 and set qc
i

to be the
negative of peak MVA value.

• For PV generators, we set (p̄gi , q̄
g
i ) to be the generators’

capacities.
• For shunt capacitors, we treat them as reactive power

generators and set q̄gi to be their shunt capacities.
47-bus circuit: We calculate the following values:
• P = −6.4MW; Q = −22.5MW;

• max(k,l)∈E

(
Xk

[
rk,l

xk,l
− Rk

Xk

]+)
= 8.5649Ω;

• max(k,l)∈E

(
Rk

[
xk,l

rk,l
− Xk

Rk

]+)
= 0.9776Ω.

The right-hand side of inequality (18) is 109.6311. Since the
nominal voltage is 12.35KV, as long as the voltage magnitudes
are maintained above 85% of the nominal value (which they

are in practice), i.e., vi ≥ (12.35 × 0.85)2 = 110.1975 for
each bus i, then (18) holds and ROPF is an exact relaxation of
OPF. Moreover, (19) provides an upper bound for the voltage
magnitude on each bus: maxi∈N

√
v0 − 2RiP − 2XiQ =

15.1594KV.
56-bus circuit: Similarly, we calculate the following:

• P = −5MV; Q = −11.435MV;

• max(k,l)∈E

(
Xk

[
rk,l

xk,l
− Rk

Xk

]+)
= 10.8583Ω;

• max(k,l)∈E

(
Rk

[
xk,l

rk,l
− Xk

Rk

]+)
= 5.9590Ω.

The right-hand side of inequality (18) is 108.5383. Since the
nominal voltage is 12KV, as long as the voltage magnitudes
are maintained above 87.5% of the nominal value (which they
are in practice), i.e., vi ≥ (12 × 0.875)2 = 110.25 for each
bus i, then (18) holds and ROPF is an exact relaxation of
OPF. Moreover, (19) provides an upper bound for the voltage
magnitude on each bus: maxi∈N

√
v0 − 2RiP − 2XiQ =

18.1146KV.



Remark 1. All the above analysis is worst-case. In reality, pc
i

and qc
i

tend to be larger than the values we used above, and pg
i

and qg
i

smaller. This implies larger (P ,Q) and smaller values
for the right-hand side of inequality (18) and of inequality (19)
than the values we have calculated above. Thus the sufficient
condition in Corollary 5 is easier to meet and the voltage
upper bound is tighter than implied by the worst-case analysis.
This is further verified in the simulations below.

Remark 2. Condition (17) in Theorem 4 can be used as a rule
of thumb for designing distribution circuits that will ensure
that ROPF is an exact relaxation of OPF. Specifically, if the
distribution lines are more uniform, namely that distribution
lines have closer resistance to reactance ratios r

x , or if the
distribution lines have smaller resistance and reactance, then
condition (17) is easier to satisfy.

B. Simulation
We have also solved Problem ROPF using the CVX toolbox

[25]. In the simulation:
• for each load bus, we set p̄ci and q̄ci as the peak MVA

value, pc
i
, qc

i
as half of the peak MVA value. We use

utility functions of the form −ai(pi− p̄ci )
2 +bi where ai,

bi are drawn randomly from [2.5, 5];
• for each PV generator, we set (p̄gi , q̄

g
i ) as the generator’s

capacity value, pg
i
, qg

i
as 0. We use cost functions of the

form aip
2
i where ai are drawn randomly from [2.5, 5];

• for each shunt capacitor, we treat them as reactive power
generators and set p̄ci = pc

i
= qc

i
= 0 and q̄gi as their

shunt capacities;
• we use a cost C0(P0) := C0(

∑
j:(0,j)∈E P0,j) on the

total power fed into this distribution system of the form
a0P

2
0 + b0P0 with a0 = 0.1, b0 = 0.1.

After solving ROPF using CVX toolbox for both the 47-bus
system and the 56-bus system, we verify that the solutions
of ROPF satisfy the equality constraint (4) and are therefore
optimal for OPF. This implies that ROPF indeed is an exact
relaxation of OPF for both distribution circuits. Moreover, in
each case, the maximum voltage magnitude of the optimal
solution is 12.35KV which is the voltage magnitude of feeder
and much less than the upper bound we provided in Section
IV-A.

V. CONCLUSION

We have studied the second-order cone relaxation of the op-
timal power flow problem in radial networks using the branch
flow model. We provide sufficient conditions under which the
relaxation is exact when there are no upper bounds on the
voltage magnitudes. We have verified that these conditions are
satisfied in two real-world distribution circuits.
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