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Abstract—We propose a new algorithm to solve the non-convex
weighted sum-rate maximization problem in general MIMO in-
terference networks. With the Gaussian input assumption, the
previous state-of-the-art algorithms are the WMMSE algorithm
and the polite water-filling (PWF) algorithm. The WMMSE algo-
rithm is provably convergent, while the PWF algorithm converges
faster in most situations but sometimes oscillates. Thus, it is highly
desirable to design an algorithm that takes advantage of the
optimal transmit signal structure to ensure fast convergence while
being provably convergent. We present such an algorithm and
prove its monotonic convergence. Moreover, our convergence proof
uses very general convex analysis as well as a scaling invariance
property of the weighted sum-rate maximization problem. We
expect that the scaling invariance holds for and our proof
technique applies to many non-convex problems in communication
networks.

Index Terms—MIMO, Interference Network, Weighted Sum-
rate Maximization, Duality, Scaling Invariance, Optimization

I. I NTRODUCTION

One of the most effective approaches to accommodating the
explosive growth in mobile data is to reduce the cell size and
increase the base station/access point density. However, the
path loss versus distance curve is flatter at shorter distance,
as opposed to being steep at relatively long distance. As a
result, the inter-cell interference becomes significant asthe
cell size/coverage area shrinks. Therefore, joint transmit signal
design for interference networks is a key technology for the
next generation wireless communication systems.

In this paper, we consider the joint transmit signal design
for a general interference network called MIMO B-MAC net-
work [5]. The MIMO B-MAC network consists of multiple
mutually interfering data links between multiple transmitters
and multiple receivers that are equipped with multiple anten-
nas (MIMO). It includes broadcast channel (BC), multiaccess
channel (MAC), interference channels, X networks, and many
practical wireless networks as special cases.

Specifically, we study the problem of jointly optimizing the
transmit signals of all transmitters in order to maximize the
weighted sum-rate of the data links for the MIMO B-MAC
network, assuming Gaussian transmit signal and availability of
all channel state information. It typifies a class of problems that
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are key to the next generation wireless communication networks
where the interference is the limiting factor. This problemis
non-convex, and various algorithms have been proposed for this
problem or its special cases over the years; see, e.g., [1], [2],
[3], [4], [5], [8], [9], [12], [13], [14], [15], [16].

In particular, wehave recently proposed thepolite water-
filling (PWF) algorithm for the MIMO B-MAC network[5]. It
is based on the identification ofa polite water-filling structure
that the optimal transmit signalpossesses. It is an iterative
algorithm with the forward link polite water-filling followed
by the virtual reverse link polite water-filling. Because ittakes
advantage of the optimal signal structure, the PWF algorithm
has nearly the lowest complexity and the fastest convergence
when it converges. For instance, it converges to the optimal
solution in half iteration for parallel channels. However,the
convergence of the PWF algorithm is only guaranteed for
the special case of interference tree networks [5] and it may
oscillate under certain strong interference conditions. Another
state-of-the-art algorithm is the WMMSE algorithm in [9]. It
is proposed for the MIMO interfering broadcast channels but
could be readily applied to the more general B-MAC net-
works. It transforms the weighted sum-rate maximization into
an equivalent weighted sum-MSE cost minimization problem,
which has three sets of variables and is convex when any
two variable sets are fixed. With the block coordinate descent
technique, the WMMSE algorithm is guaranteed to converge
to a stationary point, though the convergence is observed in
simulations to be slower than the PWF algorithm.

Thus, it is highly desirable to have an algorithm with the
advantages of both PWF and WMMSE algorithms, i.e., fast
convergence by taking advantage of the optimal transmit signal
structure and provable convergence for the general MIMO B-
MAC network. One major contribution of this paper is to
propose such an algorithm. A key finding in proving the
polite water-filling structure is to identify that a term in-
volving interference in the KKT condition of the weighted
sum-rate maximization problem is equal to the reverse link
signal covariance of the dual network at a stationary point [5,
Theorem 22]. Then, solving the KKT condition reveals that
the optimal transmit signal has the polite water-filling structure,
which reduces to the well known water-filling structure for the
MIMO parallel channels. Instead of using this key finding to
solve the KKT condition, our new algorithm uses it directly
to alternatively update the forward link and reverse link signal
covariance matrices. Numerical experiments demonstrate that
the new algorithm could be a few iterations or more than ten
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Fig. 1. An example of B-MAC network

iterations faster than the WMMSE algorithm, depending on the
desired numerical accuracy. Note that being faster even by a
few iterations will be significant in distributed implementation
where the overhead of each iteration costs significant signaling
resources between the transmitters and the receivers. Indeed,
the new algorithm is highly scalable and suitable for distributed
implementation with distributed channel estimation because for
each data link, only its own channel state and the aggregated
interference plus noise covariance needs to be estimated no
matter how many interferers are there. The distributed imple-
mentation of the new algorithm will be developed in the future
work.

Besides proposing the new algorithm with fast convergence,
another major contribution of this paper is to present an elegant
proof of the monotonic convergence of the algorithm. The proof
uses only very general convex analysis, as well as a particular
scaling invariance property that we identify for the weighted
sum-rate maximization problem. We expect that the scaling
invariance holds for and our proof technique applies to many
non-convex problems in communication networks that involve
the rate or throughput maximization.

The rest of this paper is organized as follows. Section II
presents the system model and formulates the problem. Section
III briefly reviews the related results on the polite water-filling
and presents the proposed new algorithm. Its monotonic conver-
gence is established in Section IV. Section V presents numerical
examples and complexity analysis. Section VI concludes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a general interference network namedMIMO
B-MAC network [5], [6]. A transmitter in the MIMO B-MAC
network may send independent data to different receivers, like
in BC, and a receiver may receive independent data from
different transmitters, like in MAC.Assume there are totallyL
mutually interfering data links. The set of physical transmitter
labels isT = {TX1,TX2,TX3, ...} and the set of physical
receiver labels isR = {RX1,RX2,RX3, ...}. Define transmitter
Tl of link l as a mapping froml to link l’s physical transmitter
label in T . Define receiverRl as a mapping froml to link l’s
physical receiver label inR. The numbers of antennas atTl

andRl areLTl
andLRl

respectively. Fig. 1 shows a B-MAC
network with three data links. When multiple data links have
the same receiver or the same transmitter, techniques such as
successive decoding and cancellation or dirty paper codingcan
be applied [5]. The received signal atRl is

yl =

L
∑

k=1

Hl,kxk +wl, (1)

where xk ∈ C
LT

k
×1 is the transmit signal of linkk and

is assumed to be circularly symmetric complex Gaussian;
Hl,k ∈ C

LR
l
×LT

k is the channel matrix betweenTk andRl;
andwl ∈ C

LR
l
×1 is a circularly symmetric complex Gaussian

noise vector with identity covariance matrix. The circularly
symmetric assumption of the transmit signal can be dropped
easily by applying the proposed algorithm to real Gaussian
signals with twice the dimension.

Assuming the availability of channel state information at the
transmitters, an achievable rate of linkl is

Il (Σ1:L) = log
∣

∣

∣I+Hl,lΣlH
†
l,lΩ

−1
l

∣

∣

∣ (2)

whereΣl is the covariance matrix ofxl; the interferences from
other links are treated as noise; andΩl is the interference-plus-
noise covariance matrix of thelth link, which is

Ωl = I+

L
∑

k = 1
k 6= l

Hl,kΣkH
†
l,k. (3)

If the interference from linkk to link l is completely cancelled
using successive decoding and cancellation or dirty paper
coding, we can simply setHl,k = 0 in (3). It allows this paper
to cover a wide range of communication techniques.

The optimization problem that we want to solve is the
weighted sum-rate maximization under total power constraint:

WSRM_TP: maxΣ1:L

L
∑

l=1

wlIl (Σ1:L) (4)

s.t. Σl � 0, ∀l,
L
∑

l=1

Tr (Σl) ≤ PT

wherewl > 0 is the weight for linkl. The generalization to
multiple linear constraints can be done similarly to [7] andwill
be considered in future works.

III. T HE OPTIMIZATION ALGORITHM

In this section, we will review briefly some related results
on the polite water-filling and propose a new algorithm for
the weighted sum-rate problem (4) that has fast, monotonic
convergence.

A. A Review on the Polite Water-filling Structure and Algorithm

Although the problem (4) is non-convex and cannot be solved
directly, the optimal transmit signal has a polite water-filling
structure, based on which an efficient algorithm can be designed
[5]. The results in [5] are briefly reviewed here.

We first give the duality results. Let
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(

[Hl,k] ,
L
∑

l=1

Tr (Σl) ≤ PT

)

(5)

denote a network with total power constraint and channel
matrices[Hl,k] as in the problem (4). An achievable rate region
of (5) is defined as

R (PT ) ,
⋃

Σ1:L:
∑

L

l=1 Tr(Σl)≤PT

{

r ∈ R
L
+ : (6)

rl ≤ Il (Σ1:L) , 1 ≤ l ≤ L} .

Its dual network or reverse links is defined as
(

[

H
†
k,l

]

,
L
∑

l=1

Tr
(

Σ̂l

)

≤ PT

)

(7)

where the roles of all transmitters and receivers are reversed,
and the channel matrices are replaced with their conjugate
transpose.̂ denote the corresponding terms in thereverse
links. Similarly, the interference-plus-noise covariance matrix
of reverse linkl is

Ω̂l = I+

L
∑

k = 1
k 6= l

H
†
k,lΣ̂kHk,l; (8)

the achievable rate of reverse linkl is

Îl
(

Σ̂1:L

)

= log
∣

∣

∣I+H
†
l,lΣ̂lHl,lΩ̂

−1
l

∣

∣

∣ ; (9)

the reverse link achievable rate region is defined as

R̂ (PT ) ,
⋃

Σ̂1:L:
∑

L

l=1 Tr(Σ̂l)≤PT

{

r̂ ∈ R
L
+ : (10)

r̂l ≤ Îl
(

Σ̂1:L

)

, 1 ≤ l ≤ L
}

.

The rate duality states that the achievable rate regions of the
forward and reverse links are the same [5, Theorem 9] . A
covariance transformation[5, (18)] calculates the reverse link
input covariance matrices from the forward ones.The rate dual-
ity is proved by showing that the reverse link input covariance
matrices calculated from the covariance transformation achieves
equal or higher rates than the forward link rates under the same
value of linear constraintPT [5, Lemma 11] .

The Lagrange function of problem (4) is

L (µ,Θ1:L,Σ1:L)

=

L
∑

l=1

wllog
∣

∣

∣I+Hl,lΣlH
†
l,lΩ

−1
l

∣

∣

∣+

L
∑

l=1

Tr (ΣlΘl)

+µ

(

PT −
L
∑

l=1

Tr (Σl)

)

,

whereΘ1:L andµ are Lagrange multipliers. The KKT condi-
tions are

∇Σl
L

= wlH
†
l,l

(

Ωl +Hl,lΣlH
†
l,l

)−1

Hl,l +Θl − µI

−
∑

k 6=l

wkH
†
k,l

(

Ω−1
k −

(

Ωk +Hk,kΣkH
†
k,k

)−1
)

Hk,l

= 0, (11)

µ

(

PT −
L
∑

l=1

Tr (Σl)

)

= 0,

tr (ΣlΘl) = 0,

Σl, Θl < 0, µ ≥ 0.

The polite water-filling structure is given as follows [5,
Theorem 22]. A key finding leading to the polite water-filling
structure is that at a stationary point, the dual input covariance
matricesΣ̂1:L calculated from the covariance transformation
satisfies

Σ̂l =
wl

µ

(

Ω−1
l −

(

Ωl +Hl,lΣlH
†
l,l

)−1
)

, l = 1, . . . , L.

(12)
We substitute it into (11) to obtain thepolite water-filling
structure,

Ql = GlDlG
†
l , (13)

Dl =
(

νlI−∆−2
l

)+
, (14)

whereQl , Ω̂
1
2

l ΣlΩ̂
1
2

l is the equivalent input covariance matrix
of the link l; Gl and∆l are from SVD decomposition of the
equivalent single-user channel̄Hl = Fl∆lGl; H̄l is given

by H̄l = Ω
− 1

2

l Hl,lΩ̂
− 1

2

l ; Σ̂1:L is obtained fromΣ1:L by the
covariance transformation in [5, Definition 4] and is used to
calculate the correspondinĝΩ1:L; νl =

wl

µ
≥ 0 is the water-

filling level. That is the link l’s equivalent input covariance
matrix Ql is a water-filling over the equivalent channelH̄l.

In addition, at a stationary point, thêΣ1:L obtained from
the covariance transformation also have the polite water-filling
structure [5, Theorem 21] and satisfy the following KKT
conditions (16) of the following dual problem (15):

WSRM_TP_D: maxΣ1:L

L
∑

l=1

wlÎl
(

Σ̂1:L

)

(15)

s.t. Σ̂l � 0, ∀l,
L
∑

l=1

Tr
(

Σ̂l

)

≤ PT ,
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whose KKT conditions are

wlHl,l

(

Ω̂l +H
†
l,lΣ̂lHl,l

)−1

H
†
l,l + Θ̂l − µ̂I

−
∑

k 6=l

wkHk,l

(

Ω̂−1
k −

(

Ω̂k +H
†
k,kΣ̂kHk,k

)−1
)

H
†
k,l

= 0, (16)

µ̂

(

PT −
L
∑

l=1

Tr
(

Σ̂l

)

)

= 0,

tr
(

Σ̂lΘ̂l

)

= 0,

Σ̂l, Θ̂l < 0, µ̂ ≥ 0.

Similarly to (12), from the polite water-filling structure on
reverse links, we have

Σl =
wl

µ̂

(

Ω̂−1
l −

(

Ω̂l +H
†
l,lΣ̂lHl,l

)−1
)

, l = 1, . . . , L.

(17)
It is well known that

∑L

l=1 Tr (Σl) = PT when Σ1:L is a
stationary point of problem (4), e.g., [6, Theorem 8 (item
3)]. This indicates that the full power should always be used.
Since the covariance transformation preserves total power, we
also have

∑L

l=1 Tr (Σl) =
∑L

l=1 Tr
(

Σ̂l

)

= PT [5, Lemma

8]. It can also be proved that Tr(Ql) = Tr
(

Q̂l

)

, where

Q̂l , Ω
1
2

l Σ̂lΩ
1
2

l are the reverse link equivalent covariance
matrices [5, Lemma 20].

The polite water-filling algorithm, Algorithm PP in [5],
works as follows. After initializing the reverse link interference
plus noise covariance matriceŝΩ1:L, we perform a forward link
polite water-filling using (13, 14) followed by a reverse link
polite water-filling, which is defined to be one iteration. The
iterations stops when the change of the objective function is less
than a threshold or when a predetermined number of iterations
is reached. Because the algorithm enforces the optimal signal
structure at each iteration, it converges very fast. In particular,
for parallel channels, it reduces to the traditional water-filling
and gives the optimal solution in half an iteration with initial
valuesΩ̂l = I, ∀l. Unfortunately, this remarkable algorithm
sometimes does not converge and the objective function has
some oscillation, especially in very strong interference cases.

B. The New Algorithm

Instead of using (12) and (17) to solve the KKT condition for
the polite water-filling structure, we can directly use these two
equations to updatêΣ1:L andΣ1:L. Note that, since the full
power is used, Lagrange multiplierµ can be chosen to satisfy
the power constraint

∑L

l=1 Tr (Σl) = PT as

µ =
1

PT

L
∑

l=1

wltr

(

Ω̂−1
l −

(

Ω̂l +H
†
l,lΣ̂lHl,l

)−1
)

. (18)

Algorithm 1 Dual Polite Water-filling Algorithm

1. Initialize Σl’s, s.t.
∑L

l=1 Tr (Σl) = PT

2. R ⇐∑L

l=1 wlIl (Σ1:L)
3. Repeat
4. R

′ ⇐ R

5. Ωl ⇐ I+
∑

k 6=l HlkΣkH
†
lk

6. Σ̂l ⇐
PTwl

(

Ω
−1
l

−(Ωl+HllΣlH
†

ll)
−1

)

∑

L

l=1 wltr
(

Ω
−1
l

−(Ωl+HllΣlH
†

ll)
−1

)

7. Ω̂l ⇐ I+
∑

k 6=l H
†
klΣ̂kHkl

8. Σl =
PTwl

(

Ω̂
−1
l

−(Ω̂l+H
†

ll
Σ̂lHll)

−1
)

∑

L

l=1 wltr
(

Ω̂
−1
l

−(Ω̂l+H
†

ll
Σ̂lHll)

−1
)

9. R ⇐∑L

l=1 wlIl (Σ1:L)

10. until
∣

∣

∣R−R
′
∣

∣

∣ ≤ ǫ.

This gives a new algorithm, Algorithm 1, that takes advantage
of the structure of the weighted sum-rate maximization problem
and, as confirmed by the analytical analysis and numerical
experiments, has fast monotonic convergence. It converges
to a stationary point of both problem (4) and problem (15)
simultaneously, and at the stationary point, both (12) and (17)
achieve the same sum-rate. We will analyze the convergence
properties of Algorithm 1 in the next section.

IV. CONVERGENCE OFALGORITHM

In this section, we will prove the monotonic convergence
of Algorithm 1. As will be seen later, the proof uses only
very general convex analysis, as well as a particular scaling
invariance property that we identify for the weighted sum-rate
maximization problem. We expect that the scaling invariance
holds for and our proof technique applies to many non-convex
problems in communication networks that involve the rate or
throughput maximization.

A. Preliminaries

1) Lagrangian of the weighted sum-rate function:The
weighted sum-rate maximization problem (4) is equivalent to
the following problem:

max
Σ1:L,Ω1:L

L
∑

l=1

wl

(

log
∣

∣

∣Ωl +Hl,lΣlH
†
l,l

∣

∣

∣− log |Ωl|
)

s.t. Σl � 0, ∀l,
L
∑

l=1

Tr (Σl) ≤ PT ,

Ωl = I+
∑

k 6=l

Hl,kΣkH
†
l,k, ∀l,
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which is still non-convex. Consider the Lagrangian of the above
problem

F (Σ,Ω,Λ, µ)

=
L
∑

l=1

wl

(

log
∣

∣

∣Ωl +Hl,lΣlH
†
l,l

∣

∣

∣− log |Ωl|
)

+µ{PT −
L
∑

l=1

Tr(Σl)}

+
L
∑

l=1

Tr



Λl



Ωl − I−
∑

k 6=l

Hl,kΣkH
†
l,k







 ,

where the domain ofF is {Σ,Ω,Λ,µ|Σl ∈ H
LR

l
×LR

l

+ ,Ωl ∈
H

LR
l
×LR

l

++ ,Λl ∈ H
LR

l
×LR

l , µ ∈ R+}. Here Hn×n, H
n×n
+ ,

andHn×n
++ mean n by n Hermitian matrix, positive semidefinite

matrix, and positive definite matrix respectively.
One can easily verify that the functionF is concave inΣ

and convex inΩ. Furthermore, the partial derivatives are given
by

∂F

∂Σl

= wlH
†
l,l

(

Ωl +Hl,lΣlH
†
l,l

)−1

Hl,l

−µI−
∑

k 6=l

H
†
k,lΛlHk,l,

∂F

∂Ωl

= wl

(

(

Ωl +Hl,lΣlH
†
l,l

)−1

−Ω−1
l

)

+Λl.

Now suppose that we have the pair(Σ,Ω) such that

L
∑

l=1

Tr(Σl) = PT ,

Ωl = I+
∑

k 6=l

Hl,kΣkH
†
l,k,

then,

F (Σ,Ω,Λ, µ)

=
L
∑

l=1

wl

(

log
∣

∣

∣
Ωl +Hl,lΣlH

†
l,l

∣

∣

∣
− log |Ωl|

)

,

which is the original weighted sum-rate function. For notational
simplicity, denote the weighted sum-rate function byV (Σ), i.e.,

V (Σ)

=

L
∑

l=1

wl



log

∣

∣

∣

∣

∣

∣

I+
∑

k 6=l

Hl,kΣkH
†
l,k +Hl,lΣlH

†
l,l

∣

∣

∣

∣

∣

∣

− log

∣

∣

∣

∣

∣

∣

I+
∑

k 6=l

Hl,kΣkH
†
l,k

∣

∣

∣

∣

∣

∣



 .

2) Solution of the first-order condition:Suppose that we
want to solve the following system of equations in terms of
(Σ,Ω) for given (Λ, µ):

∂F

∂Σl

= 0,

∂F

∂Ωl

= 0.

Define

Σ̂l =
1

µ
Λl,

Ω̂l = I+
∑

k 6=n

H
†
k,lΣ̂lHk,l,

the above system of equations becomes

wlH
†
l,l

(

Ωl +Hl,lΣlH
†
l,l

)−1

Hl,l = µΩ̂l,

wl

(

Ω−1
l −

(

Ωl +Hl,lΣlH
†
l,l

)−1
)

= µΣ̂l.

A solution to this system of equations is given by

Σl =
wl

µ

(

Ω̂−1
l −

(

Ω̂l +H
†
l,lΣ̂lHl,l

)−1
)

(19)

Ωl =
wl

µ
Hl,l

(

H
†
l,lΣ̂lHl,l + Ω̂l

)−1

H
†
l,l. (20)

The proof can be found in [11].

B. Convergence Results

We are ready to present the following two main convergence
results regarding Algorithm 1. Denote byΣ(n) theΣ value at
thenth iteration of Algorithm 1.

Theorem 1. The objective value, i.e., the weighted sum-rate,
is monotonically increasing in Algorithm 1,i .e.,

V (Σ(n)) ≤ V (Σ(n+1)).

From the above theorem, the following conclusion is imme-
diate.

Corollary 2. The sequenceVn = V (Σ(n)) converges to some
limit point V∞.

Proof: SinceV (Σ) is a continuous function and its domain
{Σ|Σ � 0,Tr(Σ) ≦ PT } is a compact set,Vn is bounded
above. From Theorem 1,{Vn} is a monotone increasing
sequence, therefore there exists a limit pointV∞ such that
limn→∞ Vn = V∞.

If we define a stationary point (Σ⋆) of Algorithm 1 as,
Σ(n) = Σ⋆ implies Σ(n+k) = Σ⋆ for all k = 0, 1, · · · , then
we have the following result.

Theorem 3. Algorithm 1 converges to a stationary pointΣ⋆.

The proof of Theorems 1 and 3 will be presented later in
this section. Before that, we first establish a few inequalities
and identify a particular scaling property of the Lagrangian F .
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1) The first inequality:Suppose that we have a feasible point
Σ(n) � 0, and

∑L

l=1 Tr
(

Σ
(n)
l

)

= PT . In Algorithm 1, we

generateΩ(n)
l such that

Ω
(n)
l = I+

∑

k 6=l

Hl,kΣ
(n)
k H

†
l,k.

Now we have a pair(Σ(n),Ω(n)). Using this pair, we can
compute(Λ(n), µ(n)) such that

Λ
(n)
l = wl

(

Ω
(n)
l

−1
−
(

Ω
(n)
l +Hl,lΣ

(n)
l H

†
l,l

)−1
)

,

µ(n) =
1

PT

L
∑

l=1

Tr
(

Λ
(n)
l

)

.

Note thatΣ̂(n) in Algorithm 1 is equal to

Σ̂l

(n)
=

Λ
(n)
l

µ(n)
.

From this, the gradient ofF with respect toΩ at the point
(Σ(n),Ω(n)) vanishes, i.e.,

∂F (Σ(n),Ω,Λ(n), µ(n))

∂Ω
|Ω(n) = 0.

SinceF is convex inΩ, if we fix Σ = Σ(n), thenΩ(n) is a
global minimizer ofF . In other words,

F (Σ(n),Ω(n),Λ(n), µ(n)) ≤ F (Σ(n),Ω,Λ(n), µ(n)) (21)

for all Ω ≻ 0.

2) Scaling invariance ofF : We will identify a remark-
able scaling invariance property ofF , which plays a key
role in the convergence proof of Algorithm 1. For given
(Σ(n),Ω(n),Λ(n), µ(n)), we have

F (
1

α
Σ(n),

1

α
Ω(n), αΛ(n), αµ(n))

= F (Σ(n),Ω(n),Λ(n), µ(n))

for all α >0. To show this scaling invariance property, note
that

Ω
(n)
l −

∑

k 6=l

Hl,kΣ
(n)
k H

†
l,k = I,

L
∑

l=1

Tr(Σ(n)
l ) = PT ,

PTµ
(n) =

L
∑

l=1

Tr(Λ(n)
l ).

Applying the above equalities and some mathematical manip-
ulations, we have

F (
1

α
Σ(n),

1

α
Ω(n), αΛ(n), αµ(n))

=

L
∑

l=1

wl

(

log
∣

∣

∣Ω
(n)
l +Hl,lΣ

(n)
l H

†
l,l

∣

∣

∣− log
∣

∣

∣Ω
(n)
l

∣

∣

∣

)

+αµ(n){PT − 1

α
PT }+

L
∑

l=1

Tr

(

αΛ
(n)
l

(

1

α
I− I

))

=

L
∑

l=1

wl

(

log
∣

∣

∣Ω
(n)
l +Hl,lΣ

(n)
l H

†
l,l

∣

∣

∣− log
∣

∣

∣Ω
(n)
l

∣

∣

∣

)

+(α− 1)µ(n)PT + (1− α)
L
∑

l=1

Tr(Λ(n)
l )

=
L
∑

l=1

wl

(

log
∣

∣

∣
Ω

(n)
l +Hl,lΣ

(n)
l H

†
l,l

∣

∣

∣
− log

∣

∣

∣
Ω

(n)
l

∣

∣

∣

)

= F (Σ(n),Ω(n),Λ(n), µ(n)),

where the first equality uses the fact that

log

∣

∣

∣

∣

1

α

(

Ω
(n)
l +Hl,lΣ

(n)
l H

†
l,l

)

∣

∣

∣

∣

− log

∣

∣

∣

∣

1

α
Ω

(n)
l

∣

∣

∣

∣

= log
∣

∣

∣Ω
(n)
l +Hl,lΣ

(n)
l H

†
l,l

∣

∣

∣− log
∣

∣

∣Ω
(n)
l

∣

∣

∣ .

Furthermore,

∂F ( 1
α
Σ(n),Ω, αΛ(n), αµ(n))

∂Ω
| 1
α
Ω(n)

= wl

(

(

1

α
Ω

(n)
l +Hl,l

1

α
Σ

(n)
l H

†
l,l

)−1

−
(

1

α
Ω

(n)
l

)−1
)

+αΛ
(n)
l

= α
∂F (Σ(n),Ω,Λ(n), µ(n))

∂Ω
|Ω(n)

= 0.

Therefore, 1
α
Ω(n) is a global minimizer of

F ( 1
α
Σ(n),Ω, αΛ(n), αµ(n)), asF is convex inΩ.

3) The second and third inequalities:Given(αΛ(n), αµ(n)),
we generatẽΣ, Ω̃ using equation (19) and (20). If we choose
α so that

∑L

l=1 Σ̃l = PT , then Σ̃ = Σ(n+1) in Algorithm 1.
Since(Σ(n+1), Ω̃) is chosen to make partial derivatives zero:

∂F (Σ, Ω̃, αΛ(n), αµ(n))

∂Σl

|Σ(n+1) = 0,

∂F (Σ(n+1),Ω, αΛ(n), αµ(n))

∂Ωl

|
Ω̃

= 0,

we conclude thatΣ(n+1) is a global maximizer, i.e.,

F (Σ, Ω̃, αΛ(n+1), αµ(n+1)) ≤ F (Σ(n+1), Ω̃, αΛ(n), αµ(n))
(22)

for all Σ � 0; andΩ̃ is a global minimizer, i.e.,

F (Σ(n+1), Ω̃, αΛ(n), αµ(n)) ≤ F (Σ(n+1),Ω, αΛ(n), αµ(n))
(23)

for all Ω ≻ 0.
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4) Proof of Theorem 1:With the three inequalities (21)-
(23) obtained above, we are ready to prove Theorem 1. As in
Algorithm 1 Ω

(n+1)
l = I+

∑

k 6=l Hl,kΣ
(n+1)
k H

†
l,k, we have

V (Σ(n+1))

= F (Σ(n+1),Ω(n+1), αΛ(n), αµ(n))

≥ F (Σ(n+1), Ω̃, αΛ(n), αµ(n))

≥ F (
1

α
Σ(n), Ω̃, αΛ(n), αµ(n))

≥ F (
1

α
Σ(n),

1

α
Ω(n), αΛ(n), αµ(n))

= F (Σ(n),Ω(n),Λ(n), µ(n))

= V (Σ(n)),

where the first inequality follows from (23), and the second
and third inequalities follows from (22) and (21).

5) Proof of Theorem 3:We have shown in Corollary 2 that
Vn converges to a limit point under Algorithm 1. To show
the convergence of the algorithm, it is enough to show that
if V (Σ(n)) = V (Σ(n+1)), then Σ(n+1) = Σ(n+k) for all
k = 1, 2, · · · . SupposeV (Σ(n)) = V (Σ(n+1)), then from the
proof in the above, we have

F (Σ(n+1),Ω(n+1), αΛ(n), αµ(n))

= F (Σ(n+1), Ω̃, αΛ(n), αµ(n)).

Since Ω̃ is a global minimizer, the above equality implies
Ω(n+1) is a global minimizer too. From the first order condition
for optimality, we have

∂F (Σ(n+1),Ω, αΛ(n), αµ(n+1))

∂Ωl

|Ω(n+1)

= wl

(

(

Ω
(n+1)
l +Hl,lΣ

(n+1)
l H

†
l,l

)−1

− {Ω(n+1)
l }−1

)

+αΛ
(n)
l

= 0.

On the other hand, we generateΛ(n+1) such that

Λ
(n+1)
l

= wl

(

Ω
(n+1)
l

−1
−
(

Ω
(n+1)
l +Hl,lΣ

(n+1)
l H

†
l,l

)−1
)

= αΛ
(n)
l .

This showsΣ̂(n+1) ∝ Σ̂(n). However, since the trace of each
matrix is same, we conclude that

Σ̂(n+1) = Σ̂(n).

From this it is obvious thatΣ̂(n) = Σ̂(n+1) = · · · and
Σ(n+1) = Σ(n+2) = · · · .

V. NUMERICAL EXAMPLES AND COMPLEXITY ANALYSIS

A. Numerical Examples

In this section, we provide numerical examples to verify the
analysis in the previous sections and compare the proposed new
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Fig. 2. The monotonic convergence of the forward and reverselink weighted
sum-rates of the new algorithm withPT = 100 andgl,k = 0dB,∀l, k.

algorithm against the PWF algorithm [5] and the WMMSE
algorithm [9]. Consider a B-MAC network withL = 10
links among 10 transmitter-receiver pairs that fully interfere
with each other. Each link has 3 transmit antennas and 4
receive antennas. For each simulation, the channel matrices
are independently generated by one realization ofHl,k =√
gl,kH

(W)
l,k , ∀k, l, where H

(W)
l,k has zero-mean i.i.d. complex

Gaussian entries with unit variance andgl,k is the average
channel gain. The weightswl’s are uniformly chosen from 0.5
to 1. The total transmit powerPT in the network is 100.

Fig. 2 shows the convergence of the new algorithm for a
network with gl,k = 0dB, ∀l, k. From the proof of Theorem
1, the weighted sum-rate of the forward links and that of the
reverse links not only increase monotonically over iterations,
but also increase over each other over half iterations. In Al-
gorithm 1, the reverse link transmit signal covariance matrices
are updated in the first half of each iteration (line 6), and the
forward link transmit signal covariance matrices are updated
in the second half (line 8). From Fig. 2, we clearly see that
the weighted sum-rates of the forward links and reverse links
increase in turns until they converge to the same value, which
also confirms that problem (4) and its dual problem (15) reach
their stationary points at the same time.

We compare the performance of the new algorithm with
the PWF and WMMSE algorithms under different channel
conditions: weak, moderate, and strong interference. Fig.3
shows a comparison under the weak interference condition.
We see that the PWF algorithm converges slightly faster than
the new algorithm, and it is close to the stationary point in
three iterations. The reason for this remarkable convergence is
that under the weak interference condition, the channels inthe
network are close to parallel channels and the PWF algorithm
can converges to the optimal solution in half an iteration. Since
the new algorithm is also based on the polite water-filling
structure, it is not surprising that it has a fast convergence. In
contrast, the WMMSE algorithm’s convergence under such a
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Fig. 3. PWF algorithm vs. WMMSE algorithm vs. new algorithm under weak
interference withPT = 100, gl,l = 0dB andgl,k = −10dB for l 6= k.
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Fig. 4. PWF algorithm vs. WMMSE algorithm vs. new algorithm under
moderate interference withPT = 100 andgl,k = 0dB, ∀l, k.
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Fig. 5. PWF algorithm vs. WMMSE algorithm vs. new algorithm under strong
interference withPT = 100, gl,l = 0dB andgl,k = 10dB for l 6= k.
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Fig. 6. An example that PWF, WMMSE, and new algorithms converge to
different stationary points.PT = 100, gl,l = 0dB andgl,k = 10dB for l 6= k.

channel condition is significantly slower; e.g., more than ten
iterations slower to reach some high value of the weighted
sum-rate (i.e., if a high numerical accuracy is desired). When
the gain of the interfering channels are comparable to that of
the desired channel, as shown in Fig. 4, the difference in the
convergence speed between the PWF/new algorithm and the
WMMSE algorithm is less than that of the weak interference
case. But around five iteration difference for some high value
of the weighted sum-rate is still significant. Under some strong
interference conditions, as shown in Fig. 5, the PWF algorithm
oscillates around certain points and no longer converges, while
the other two algorithms still have the guaranteed convergence.
The new algorithm still converges faster than the WMMSE
algorithm and the difference is significant if high value of
the weighted sum-rate is desired. Even in the case that one
is satisfied with smaller weighted sum-rate, being faster bya
few iterations will be significant in distributed implementation
where the overhead of each iteration costs significant signaling
resources between the transmitters and the receivers.

Combining the three cases together, we see that while
both algorithms are provably convergent, the new algorithm
outperforms the WMMSE algorithm in all situations, especially
in the weak interference case. Although the PWF algorithm has
better convergence over the new algorithm, it does not converge
under certain strong interference channels. We can conclude
that the new algorithm preserves the fast convergence of the
PWF algorithm and has the desired convergence property as
the WMMSE algorithm as well.

Note that given the same initial point, these three algorithms
may converge to different stationary points, as shown in Fig. 6.
Since the original weighted sum-rate maximization problemis
non-convex, a stationary point is not necessarily a global max-
imum. In practical applications, we may run such algorithms
multiple times starting from different initial points and pick the
stationary point that gives the largest weighted sum-rate.

We may also create a hybrid algorithm by combining the
new algorithm and the PWF algorithm, by applying the PWF
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algorithm until the weighted sum-rate starts to drop, then
switching to the new algorithm which will converge to a
stationary point. In this way, the hybrid algorithm will retain the
PWF algorithm’s fast convergence and also will monotonically
converge under those strong interference channel conditions
where the PWF algorithm may oscillate.

B. Complexity Analysis

We have evaluated in the above convergence properties of the
proposed new algorithm, the PWF algorithm and the WMMSE
algorithm in terms of the number of iterations. We now analyze
the complexity of each iteration for these algorithms.

Recall thatL is the number of users or links, and for
simplicity, assume that each user hasN transmit (and receive)
antennas, so the resultingΣl (and Σ̂l) is a N × N matrix.
Suppose that we use the straightforward matrix multiplication
and inversion. Then the complexity of these operations are
O(N3). For the new algorithm, at each iteration,Ωl incurs
a complexity ofO(LN3) andΩl + Hl,lΣ

(n+1)
l H

†
l,l incurs a

complexity of O(LN3). To obtain Σ̂l, we have to invert a
N×N matrix, which incurs a complexity ofO(N3). Therefore,
the total complexity for calculating âΣl is given byO(LN3),
and the complexity of generatinĝΣ is given byO(L2N3). As
calculatingΣ incurs the same complexity as calculatingΣ̂, the
complexity of the new algorithm isO(L2N3) for each iteration.

The PWF algorithm uses the same calculation to generate
Ωl and incurs a complexity ofO(LN3) for eachΩl. Then,

it uses the singular value decomposition ofΩ
− 1

2

l Hl,lΩ̂
− 1

2

l ,
which incurs a complexity ofO(N3). Since we needL of
these operations, the total complexity of the PWF algorithmis
O(L2N3). For the WMMSE algorithm, it is shown in [9] that
its complexity isO(L2N3).

So, all three algorithms have the same computational com-
plexity per iteration if we useO(N3) matrix multiplication.
Recently, Williams [10] presents anO(N2.3727) matrix mul-
tiplication and inversion method. If we use this algorithm,
then the new algorithm and the WMMSE algorithm have
O(L2N2.3727) complexity since theN3 factor comes from
the matrix multiplication and inversion. However, in addition
to L2 number of matrix multiplications and inversions, the
PWF algorithm hasL number ofN by N matrix singular
value decompositions. Therefore the complexity of the PWF
algorithm isO(L2N2.3727 + LN3).

VI. CONCLUSION

We have proposed a new algorithm to solve the weighted
sum-rate maximization problem in general interference net-
works. Based on the polite water-filling results and the rate
duality [5], the new algorithm updates the transmit signal
covariance matrices in the forward and reverse links in a
symmetric manner and has fast and guaranteed convergence.
We present an elegant convergence proof for this otherwise
hard problem. Simulations demonstrate that the new algorithm
has convergence speed close to the state-of-the-art politewater-
filling algorithm, which is however not guaranteed to converge.

Compared with another state-of-the-art WMMSE algorithm,
which is guaranteed to converge, the convergence speed is a
few iterations or more than ten iterations faster, depending
on the desired numerical accuracy. Being faster even by a
few iterations will be significant in distributed implementation
where the overhead of each iteration costs significant signaling
resources between the transmitters and the receivers. Indeed,
the new algorithm is highly scalable and suitable for distributed
implementation with distributed channel estimation because for
each data link, only its own channel state and the aggregated
interference plus noise covariance needs to be estimated no
matter how many interferers are there (See lines 6 and 8
of Algorithm 1). The distributed implementation of the new
algorithm will be developed in the future work.
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