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Abstract—\We propose a new algorithm to solve the non-convex are key to the next generation wireless communication ndsvo
weighted sum-rate maximization problem in general MIMO in-  where the interference is the limiting factor. This problem

terference networks. With the Gaussian input assumption, fie 4 convex, and various algorithms have been proposetiifor t
previous state-of-the-art algorithms are the WMMSE algorithm

and the polite water-filling (PWF) algorithm. The WMMSE algo- problem or its special cases over the years; see, e.g.. 1], [
rithm is provably convergent, while the PWF algorithm converges (3], [4], [5], [8], [9], [12], [13], [14], [15], [16].

faster in most situations but sometimes oscillates. Thus,iis highly In particular, wehave recently proposed thmlite water-
desirable to design an algorithm that takes advantage of the fjlling (PWF) algorithm for the MIMO B-MAC network5]. It
optimal transmit signal structure to ensure fast convergege while is based on the identification af polite water-filling structure

being provably convergent. We present such an algorithm and that th timal t it si It i iterati
prove its monotonic convergence. Moreover, our convergeegroof at the optimal transmit signglossesses. It is an iterative

uses very general convex analysis as well as a scaling imance algorithm with the forward link polite water-filling folloed
property of the weighted sum-rate maximization problem. We by the virtual reverse link polite water-filling. Becausdakes
expect that the scaling invariance holds for and our proof advantage of the optimal signal structure, the PWF algarith
:’\eeCthr(])I?kuse applies to many non-convex problems in communi¢®n a5 pearly the lowest complexity and the fastest convergenc
' when it converges. For instance, it converges to the optimal
Index Terms—MIMO, Interference Network, Weighted Sum-  splution in half iteration for parallel channels. Howevére
rate Maximization, Duality, Scaling Invariance, Optimization convergence of the PWF algorithm is only guaranteed for
the special case of interference tree networks [5] and it may
|. INTRODUCTION oscillate under certain strong interference conditionsother
t%t te-of-the-art algorithm is the WMMSE algorithm in [9%. |
i) proposed for the MIMO interfering broadcast channels but

increase the base station/access point density. Howewer, ould be readily applied to the more general B-MAC net-

path loss versus distance curve is flatter at shorter dietan\e/orks' It transforms the weighted sum-rate maximizatio in

as opposed to being steep at relatively long distance. A2 equivalent weighted sum-MSE cost minimization problem,

result, the inter-cell interference becomes significantttes \tl\\/lvclc\r/]arri]:kflethsﬁes :reetsﬁ)(()ef dva\l/r\llﬁglfr?eabr}gclfcg?)?(\j/ﬁ:; t\gr:j?scir;y
cell size/coverage area shrinks. Therefore, joint transignal ‘

design for interference networks is a key technology for thtgchnlque, the WMMSE algorithm is guaranteed to converge

next generation wireless communication systems. 10 a stationary point, though the convergence is observed in

In this paper, we consider the joint transmit signal desigsﬂmwatlo.ns. to pe slower_ than the PWF aIgorlthm. .

. Thus, it is highly desirable to have an algorithm with the
for a general interference network called MIMO B-MAC netédvanta es of both PWE and WMMSE algorithms. ie.. fast
work [5]. The MIMO B-MAC network consists of multiple 9 g e

mutually interfering data links between multiple tranderis convergence by taking advantage of the optimal transniiig
. . . . . structure and provable convergence for the general MIMO B-
and multiple receivers that are equipped with multiple ante

nas (MIMO). It includes broadcast channel (BC), multiasceyIAC network. One major contribution of this paper is to

channel (MAC), interference channels, X networks, and mafyOPose such an algorithm. A key finding in proving the

. . . p¥)l|te water-filling structure is to identify that a term in-
practical wireless networks as special cases. N . . :
o o Lo volving interference in the KKT condition of the weighted
Specifically, we study the problem of jointly optimizing the LT . .
o : . S sum-rate maximization problem is equal to the reverse link
transmit signals of all transmitters in order to maximize thSi nal covariance of the dual network at a stationary pet [
weighted sum-rate of the data links for the MIMO B-MAC. 9 y pan

network, assuming Gaussian transmit signal and availaifi Theorem 22]. Then, solving the KKT condition reveals that

all channel state information. It typifies a class of protsdahmat the_ optimal transmit signal has the polite _vyater-ﬁllngsture,
which reduces to the well known water-filling structure fhet

ICollege of Engineering and Applied Science, University afic¢ado at MIMO parallel Chanr.‘?ls- Instead of USin_g this key _findjng to
BoQuIder _ o solve the KKT condition, our new algorithm uses it directly
Tecﬁﬁggg;"em of Control and Dynamical Systems, Californiatitate of tg zlternatively update the forward link and reverse lirgnsil

3Department of Electronic and Computer Engineering, Hongd<tniver- covariance m‘r_j‘mces' Numerical ex_perlments demonsthete t
sity of Science and Technology the new algorithm could be a few iterations or more than ten

One of the most effective approaches to accommodating
explosive growth in mobile data is to reduce the cell size a



T=TX, 53 L

yi = Z H; 1x), + wy, 1)
T,=TX, —

--=-- Interfering link where x;, € CFm*! js the transmit signal of linkk and
T,=TX, [ —— Transmission link is assumed to be circularly symmetric complex Gaussian;

H,; € CLr>*I7y s the channel matrix betweeh, and R;;
andw; € CF# 1 is a circularly symmetric complex Gaussian
noise vector with identity covariance matrix. The circjar
symmetric assumption of the transmit signal can be dropped

iterations faster than the WMMSE algorithm, depending an tigasily by applying the proposed algorithm to real Gaussian
desired numerical accuracy. Note that being faster even byignals with twice the dimension.

few iterations will be significant in distributed implematibn ~ Assuming the availability of channel state informationae t
where the overhead of each iteration costs significant kigna transmitters, an achievable rate of lihks

resources between the transmitters and the receiversednde _ t o-1

the new algorithm is highly scalable and suitable for distied i (Zr:) = log ‘I + Hy 2 H, 8 @
implementation with distributed channel estimation beesafor whereX; is the covariance matrix of;; the interferences from
each data link, only its own channel state and the aggregatgier links are treated as noise; édis the interference-plus-
interference plus noise covariance needs to be estimatednafse covariance matrix of th& link, which is

matter how many interferers are there. The distributed émpl

Fig. 1. An example of B-MAC network

L
mentation of the new algorithm will be developed in the faetur Q=1+ Z H, kEkHlTk- 3)
work. ' ’
Besides proposing the new algorithm with fast convergence, z: }
another major contribution of this paper is to present agaie 7

proof of the monotonic convergence of the algorithm. Theoprolf the interference from link: to link [ is completely cancelled
uses only very general convex analysis, as well as a paticulsing successive decoding and cancellation or dirty paper
scaling invariance property that we identify for the wegght coding, we can simply sdf; , = 0 in (3). It allows this paper
sum-rate maximization problem. We expect that the scaling cover a wide range of communication techniques.
invariance holds for and our proof technique applies to manyThe optimization problem that we want to solve is the
non-convex problems in communication networks that ingolwveighted sum-rate maximization under total power constrai
the rate or throughput maximization.

The rest of this paper is organized as follows. Section Il

L
presents the system model and formulates the problemo8ecti WSRM_TP: maxs, , Z wI; (S1.1) (4)
11 briefly reviews the related results on the polite watdlirfy =1
and presents the proposed new algorithm. Its monotonicezenv st > =0, Vi,
gence is established in Section IV. Section V presents nigaier L
examples and complexity analysis. Section VI concludes. ZTr (3)) < Pr

1=1
IIl. SYSTEM MODEL AND PROBLEM FORMULATION wherew; > 0 is the weight for linki. The generalization to

We consider a general interference network narkBMO  multiple linear constraints can be done similarly to [7] amid

B-MAC network [5], [6]. A transmitter in the MIMO B-MAC pe considered in future works.

network may send independent data to different receivies, |

in BC, and a receiver may receive independent data from 1. THE OPTIMIZATION ALGORITHM

different transmitters, like in MACAssume there are totalli

mutually interfering data links. The set of physical traitsen

labels isT = {TX;,TX2,TXs,...} and the set of physical

receiver labels iR = {RX;, RXq, RX3,...}. Define transmitter

T, of link [ as a mapping froni to link {'s physical transmitter

label in 7. Define receiver?; as a mapping froni to link I's ) ) . ]

physical receiver label irR. The numbers of antennas %t A. A Review on the Polite Water-filling Structure and Alduarit

and R; are Ly, and Lg, respectively. Fig. 1 shows a B-MAC  Although the problem (4) is non-convex and cannot be solved

network with three data links. When multiple data links haveirectly, the optimal transmit signal has a polite watdiwifj

the same receiver or the same transmitter, techniques suclstaucture, based on which an efficient algorithm can be desig

successive decoding and cancellation or dirty paper coching [5]. The results in [5] are briefly reviewed here.

be applied [5]. The received signal B} is We first give the duality results. Let

In this section, we will review briefly some related results
on the polite water-filling and propose a new algorithm for
the weighted sum-rate problem (4) that has fast, monotonic
convergence.



where®;.;, andp are Lagrange multipliers. The KKT condi-

L tions are
([Hl,k], doTr(m) < PT>
=1 VzlL
denote a network with total power constraint and channel — lesz (Qz +H, lle;l)il H,, + 0, —ul
matrices/H;, ;] as in the problem (4). An achievable rate region ' ’ " ’ .
of (5) is defined as _ ZwkHL,z (91?1 _ (Qk i HkkEkHLk) > H,,
k£l
= 0, (11)

R(Pr) = U {reRL: 6)
Sy, T(Z)<Pr
<L (Z1.n),1<I<L}.

Its dual network or reverse links is defined as

L
% (PT - ZTr(EZ)> =0,
=1
L
([HM ST (21) < PT> @) tr(3,0;) =0,
=1

where the roles of all transmitters and receivers are reders
and the channel matrices are replaced with their conjugate
transpose. denote the corresponding terms in theverse
links. Similarly, the interference-plus-noise covarianoatrix
of reverse linki is

2,0, =0, u>0.

The polite water-filling structure is given as follows [5,
Theorem 22]. A key finding leading to the polite water-filling
structure is that at a stationary point, the dual input cewere

) L ‘e matrices3;.; calculated from the covariance transformation
Q = I+ Z H; 3 Hy s (8) satisfies

k=1 R w, . N

k1 zlzz(n; ~ (% +,=H]) ),l:L...,L.

(12)
We substitute it into (11) to obtain thpolite water-filling
: (9) structure

the achievable rate of reverse lihks

I (Eu) = log ‘I +H] 3H, Q7

_ . o . Q; = G/D,G], (13)
the reverse link achievable rate region is defined as

D = (mI-A%)", (14)

R(Pr) = U {reRr:  (10)

AL A1 . . . .
A . whereQ; £ O 3,0 is the equivalent input covariance matrix
Sl T(2)<Pr

of the link I; G; and A; are from SVD decomposition of the
7 <1 (ﬁ;u) 1<i< L}. equivalent single-user channél, = F;A;G;; H; is given
by H; = Q, ?H;,, ?; 3,.;, is obtained fromZ,.;, by the
The rate duality states that the achievable rate regionsef tovariance transformation in [5, Definition 4] and is used to
forward and reverse links are the same [5, Theorem 9] . &lculate the correspondir@u; v = % > 0 is the water-

. . . ’
covariance transformatiof, (18)] calculates the reverse linkfiling level. That is the link/’s equivalent input covariance
input covariance matrices from the forward ongse rate dual- matrix Q; is a water-filling over the equivalent chanrid.

ity is proved by showing that the reverse link input covac@n |y addition, at a stationary point, tHE;.;, obtained from
matrices calculated from the covariance transformatites€es the covariance transformation also have the polite walterefi

equal or higher rates than the forward link rates under theesastrycture [5, Theorem 21] and satisfy the following KKT

value of linear constraintr [5, Lemma 11] . conditions (16) of the following dual problem (15):
The Lagrange function of problem (4) is

L(MaeliLazliL) . 7 3
WSRM_TP_D: maxs,, Y wl, (Eu) (15)

L L
_ Zwﬂog]HHl,lle;lnl—l] +3 Tr(ze) =
=1 =1 s.t. 3 =0, VI,

L L
+1 (PT - ZTT (20) , ZTr (El) < Pr,

=1 =1



whose KKT conditions are Algorithm 1 Dual Polite Water-filling Algorithm
1. Initialize X;’s, s.t. Zle Tr (X)) = Pr
R wT (Bh.r)
. Rgpeat
R <R
Q<1+ Zk;ﬁl HlkzkH}k

Prw; (Qfl—(ﬂz-ﬁ-szEszTz)A)
Sk, (97— (+HSH],) )
. Ql <=1+ Zk#l HLEA:;CHM

Pruw; (Qﬂ*(ﬁﬂrHLf}Lsz)il)
SE witr (97— () )
R« ZlL:I wlIl (leL)
10. until ‘R - R" <e

o N -1 o
wiH; (Ql + H27121H17l) Hj,l 4+ 0; — il

~ ~ ~ —1
— Zwkayl (le — (Qk + HLkzthk) > Hch,l
k£l
(16)

-2l<:

LY =

3, 0,0, 4> 0.

Similarly to (12), from the polite water-filling structureno ) )
reverse links, we have This gives a new algorithm, Algorithm 1, that takes advaatag

. of the structure of the weighted sum-rate maximization fmab
3 = ﬂ (Ql—l _ (Qz +H1T_121Hl,l) ) l=1,...,L. and, as confirmed by the analytical analysis and numerical
M ’ (17) experiments, has fast monotonic convergence. It converges
. ) to a stationary point of both problem (4) and problem (15)
It is well known thatZlL:1 Tr(X;) = Pr whenX;.; isa _ . .
stationary point of problem (4), e.g.. [6, Theorem 8 (ite simultaneously, and at the stationary point, both (12) dr@j (

A chieve the same sum-rate. We will analyze the convergence
3)_]. This |nd|cat§s that the full power should always be use roperties of Algorithm 1 in the next section.
Since the covariance transformation preserves total pomesr

also haveY ) Tr(%;) = Yr, Tr (El) = Pr [5, Lemma

8]. It can also be proved that TQ;,) = Tr (Qz) where IV. CONVERGENCE OFALGORITHM

~ 1. 1 . . .

Q & 02,07 are the reverse link equivalent covariance

matrices [5, Lemma 20]. In this section, we will prove the monotonic convergence

The polite water-filling algorithm, Algorithm PP in [5], of Algorithm 1. As will be seen later, the proof uses only
works as follows. After initializing the reverse link inference Very general convex analysis, as well as a particular sgalin
plus noise covariance matric€k., we perform a forward link invariance property that we identify for the weighted stater
polite water-filling using (13, 14) followed by a reversekin maximization problem. We expect that the scaling invaranc
polite water-filling, which is defined to be one iteration.erhholds for and our proof technique applies to many non-convex
iterations stops when the change of the objective functidess problems in communication networks that involve the rate or
than a threshold or when a predetermined number of itematidRroughput maximization.
is reached. Because the algorithm enforces the optimadlkign
structure at each iteration, it converges very fast. Ini@agr,
for pa_raIIeI channgls, it redl_Jces to the tra_ditior_1a| wzifilér_m_g_ A. Preliminaries
and gives the optimal solution in half an iteration with i@t
values2; = I, Vi. Unfortunately, this remarkable algorithm 1) Lagrangian of the weighted sum-rate functioThe
sometimes does not converge and the objective function R@sighted sum-rate maximization problem (4) is equivalent t
some oscillation, especially in very strong interferenases. the following problem:

B. The New Algorithm

Instead of using (12) and (17) to solve the KKT condition for ..« Zwl (log ’Qz +H, S H] l’ —log IQzI)
the polite water-filling structure, we can directly use #héso rnfhr
equations to updat&;.; and X,... Note that, since the full St Ez =0, VI,
power is used, Lagrange multipligr can be chosen to satisfy
the power constrainzleTr(El) = Pr as ZTr(zl) < Py,

=1

L
1 A . . -1
p=p > wir (ﬂll - (ﬂl + HLEsz,z) ) . (18) Q=1+ H,SH,, V.,
Ti= 7 k£l



which is still non-convex. Consider the Lagrangian of thewah
problem

F(X,Q,A, )

M=

w; (1og ‘Qz + Hz,lElHH —log |Ql|)

~

1
L

+p{Pr — ZTr(El)}
=1

T A 2 -1-) HSH] |
=1 k#l

where the domain of” is {Z,Q,A,u|%; € HiRlXLRL,Ql €

L L
H+TX LA € HLRZXLRZ,M € R*}. Here H"*", Hixn,

andH’’}"™ mean n by n Hermitian matrix, positive semidefinite

matrix, and positive definite matrix respectively.
One can easily verify that the functiofi is concave inX

and convex ir€2. Furthermore, the partial derivatives are given

by
oF —1
s le;rJ (Qz + Hl,lElel) H,,
—ul — Z HLZAJH/C,I,
k#l
oF —1
— = w (Ql + Hl,lle}l) — Q;l + Ay
6Ql ’

Now suppose that we have the p&¥, ©2) such that

L
Z Tr(Zl) = PT,
=1

Ql I+ ZHl,kEksza

k#l

then,

F(Z:? Q? A‘7 M)

g

wy (log ’Ql + Hl,lle}:l — log |Ql|) ,

which is the original weighted sum-rate function. For niotaal
simplicity, denote the weighted sum-rate functionibg), i.e.,
V(%)

L
= 2w
=1

log [T+ Z Hl,kEkHZk + Hl,lEleT,l
o

—log|T+ > H X:H]
k£l

2) Solution of the first-order conditionSuppose that we

oF
— =0
0% ’
oOF
—— =0
o,
Define

. 1

Z:l - _Ala
7]

Q = I+ Z Hzﬂllek,la

k#n
the above system of equations becomes

1
lezryl (Qz + Hz,lElHL) H;,

-1
wy (Qll — (Ql + Hlvlle},l) >

A solution to this system of equations is given by

wy [ A . R -1

% = ﬁ(ﬂll—(ﬂl—i—HLElHu) ) (19)
w . N1

Q = ?lHu (Hj7llel,l+nl) Hf,.  (20)

The proof can be found in [11].

B. Convergence Results

We are ready to present the following two main convergence
results regarding Algorithm 1. Denote (™) the X value at
the nth iteration of Algorithm 1.

Theorem 1. The objective value, i.e., the weighted sum-rate,
is monotonically increasing in Algorithm %,e.,

V(=m) < y(zrt),

From the above theorem, the following conclusion is imme-
diate.

Corollary 2. The sequenc¥, = V(X(™) converges to some
limit point V..

Proof: SinceV (X)) is a continuous function and its domain
{Z|ZX »>0,Tr(X) £ Pr} is a compact set}),, is bounded
above. From Theorem 1{V,,} is a monotone increasing
sequence, therefore there exists a limit poifif such that
lim, 00 Vi, = Vo [ |

If we define a stationary point3*) of Algorithm 1 as,
> = ¥* implies X% = ¥* for all k = 0,1,---, then
we have the following result.

Theorem 3. Algorithm 1 converges to a stationary poiRt*.

The proof of Theorems 1 and 3 will be presented later in

want to solve the following system of equations in terms dhis section. Before that, we first establish a few ineqigslit

(32, Q) for given (A, u):

and identify a particular scaling property of the Lagrangia



1) The first inequality:Suppose that we have a feasible poiM\pplying the above equalities and some mathematical manip-
= = 0, and S/, Tr (") = Pr. In Algorithm 1, we ~ ulations, we have

generatd)l(") such that F(lg(n)7 lg(n)7 aA™ apm)
(6% (6%
L
o = I+§Hz,kz§c )ij - Zwl (1Og‘ﬂl(n) +Hl,z§3§")HlT,l _1Og‘ﬂl(n) )
=1
1 L 1
Now we have a paifx(”, Q™). Using this pair, we can +ap™{Pp — —Pp} + ZTr <O‘Az(n) <_1 _ 1))
compute(A™ (™) such that @ =1 @
L
. 4 _ (n) (gt | ‘ (n) )
AP = (o - (o s, ). > (log | + H 3 VH |~ log )
1 & -
(n) _— _— (n) —Du™p (1-
pm = PTZTr(Al ). = 1)ut™ P+ ( a;
! - (n) (n) (n)
~ . i . o n n T n
Note that>(") in Algorithm 1 is equal to = sz (1og ‘Qz +Hy 3 H |~ log ‘Qz )
=1
— F(g(n)7 Q) A("),u(")),
ﬁz(n) _ Al(" where the first equality uses the fact that
() 1 1
log |— (Ql(n) + Hlvlzl(")Hj,l) — log —Ql(")
From this, the gradient of” with respect tof2 at the point @ @
(£, () vanishes, i.e., — log|@f" + H,={"H],| - log|2f"
AF(EM, QA 1) o F“”hermlore’
BLY) oo = 0. aF(Ez(n)’SFZ’OLA(n)’OLN(n))|1 )
o o
Since F is convex inQ, if we fix & = (" thenQ™ is a 1) U imyegt \ 1)
global minimizer ofF. In other words, = w <Eﬂz +Hy, % Hz,z) - <Eﬂl )
—|—ozAl(n)
FEM QM AM 00y < put) 0 A M) (21) OF (= QA ()
= «a lam
o
for all Q >~ 0. = 0
2) Scaling invariance off: We will identify a remark- Therefore, éﬂ(") is a global minimizer of

able scaling invariance property df, which plays a key F(1x™ @ aA™ au™), asF is convex inf.
role in the convergence proof of Algorithm 1. For given 3) The second and third inequalitie@iven (aA™), au(™),

(= Q) A 4 we have we generaté] Q using equation (19) and (20). If we choose
a SO thatzl . El = Pr, thenX = (1 in Algorithm 1.
F(lz(n)7 lﬂ(n)7 aA(n)’aM(n)) Slnce(z("“) Q) is chosen to make partial derivatives zero:
(0%
— F(Z("), Q(n)7 A(n)’ ,LL(”)) IF (S, fl, aA(n), Oéﬂ(n))
%, s = 0,
Iﬁ;tall a >0. To show this scaling invariance property, note aF(E(”“),Q,aA(”),au("))|~ .,
o, @«
_ ZHZ_’kgI(C")sz - 1 we conclude thaB("*+Y is a global maximizer, i.e.,
kAl F(2,Q,0A D aptD) < PO 0 aA™ ap)
(n) ) (22)
S = Pr, for all © = 0; and$ is a global minimizer, i.e.,
. F(E("Jrl)7 fh aA("), a,u(”)) < F(g("Jrl)7 Q, aA("), a,u(”))
Prut™ = 3TrAM), (23)

= for all 2 - 0.



4) Proof of Theorem 1:With the three inequalities (21)-
(23) obtained above, we are ready to prove Theorem 1. As in

Algorithm 1 Q{"*Y =T+, H;, 3"V H],, we have

30

25

20

r z(nJrl) Q(

)

) QA )

Y

15

Y

Weighted Sum-Rate / bits/s/Hz

101

Y

O forward link
A reverse link

30

F(g(n)7 Q) A M(n)) - -
V(Z(") ), half iterations

10 15 40

where the first inequality follows from (23), and the seconglg. 2. The monotonic convergence of the forward and revimkeweighted
and third inequalities follows from (22) and (21). sum-rates of the new algorithm withr = 100 and g; . = 0dB, VI, k.

5) Proof of Theorem 3We have shown in Corollary 2 that
V,, converges to a limit point under Algorithm 1. To show

the convergence Of( the algorithm(, i+tli)5 enou(gﬁkt)o show thafyorithm against the PWF algorithm [5] and the WMMSE
it V(E™) = V(ErTY), then Bt = 3 for all - 550rithm [9]. Consider a B-MAC network with, = 10

k=1,2,---. Supposd/ (X)) = V(x(n+1)

, then from the jinks among 10 transmitter-receiver pairs that fully ifitee

proof in the above, we have

RO, Q0D oA )
— FEM Q,aA™ ap™),

with each other. Each link has 3 transmit antennas and 4
receive antennas. For each simulation, the channel matrice
are independently generated by one realizationthf, =
mHE%),Vk,Z, where H%Wk) has zero-mean i.i.d. complex

Since 2 is a global minimizer, the above equality impliesGaussian entries with unit variance apg;; is the average
Q(+1) is a global minimizer too. From the first order conditiorthannel gain. The weights;’s are uniformly chosen from 0.5

for optimality, we have
IF (X)) Q oA aut)
oYy
-1
wy ((Ql(n+1) + Hl,zzl(n+l)H}L7l) - {Ql(n+1)}1)
—|—ozAl(n)
0.

|Q(n+1)

On the other hand, we generasé”+!) such that
Al(n+1)

—1 -1
wy (Ql(nH) — (Ql(n+1) +Hl,lzl(n+l)H}7l) >

aAl(n).

to 1. The total transmit powePr in the network is 100.

Fig. 2 shows the convergence of the new algorithm for a
network with g; , = 0dB, V!, k. From the proof of Theorem
1, the weighted sum-rate of the forward links and that of the
reverse links not only increase monotonically over itenadi
but also increase over each other over half iterations. i Al
gorithm 1, the reverse link transmit signal covariance oasr
are updated in the first half of each iteration (line 6), ane th
forward link transmit signal covariance matrices are uedat
in the second half (line 8). From Fig. 2, we clearly see that
the weighted sum-rates of the forward links and reverseslink
increase in turns until they converge to the same value, lwhic
also confirms that problem (4) and its dual problem (15) reach
their stationary points at the same time.

We compare the performance of the new algorithm with

This showsS("+1) « 33(") . However, since the trace of eacihe PWF and WMMSE algorithms under different channel

matrix is same, we conclude that

$(n+1) — $3(n).

From this it is obvious thatt(™ = 2+l —
»(n+1) — »n(n+2) — ...

- and

V. NUMERICAL EXAMPLES AND COMPLEXITY ANALYSIS
A. Numerical Examples

conditions: weak, moderate, and strong interference. Big.
shows a comparison under the weak interference condition.
We see that the PWF algorithm converges slightly faster than
the new algorithm, and it is close to the stationary point in
three iterations. The reason for this remarkable converéen
that under the weak interference condition, the channetldn
network are close to parallel channels and the PWF algorithm
can converges to the optimal solution in half an iteratianc&

the new algorithm is also based on the polite water-filling

In this section, we provide numerical examples to verify th&tructure, it is not surprising that it has a fast convergemt
analysis in the previous sections and compare the prop@sed rontrast, the WMMSE algorithm’s convergence under such a
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channel condition is significantly slower; e.g., more than t
iterations slower to reach some high value of the weighted
sum-rate (i.e., if a high numerical accuracy is desired).eWh
the gain of the interfering channels are comparable to that o
the desired channel, as shown in Fig. 4, the difference in the
convergence speed between the PWF/new algorithm and the
WMMSE algorithm is less than that of the weak interference
case. But around five iteration difference for some high @alu
of the weighted sum-rate is still significant. Under somersgr
interference conditions, as shown in Fig. 5, the PWF alborit
oscillates around certain points and no longer convergbie w
the other two algorithms still have the guaranteed converge
The new algorithm still converges faster than the WMMSE
algorithm and the difference is significant if high value of
the weighted sum-rate is desired. Even in the case that one
is satisfied with smaller weighted sum-rate, being fastemaby
few iterations will be significant in distributed implematibn
where the overhead of each iteration costs significant Bigna
resources between the transmitters and the receivers.

Combining the three cases together, we see that while
both algorithms are provably convergent, the new algorithm
outperforms the WMMSE algorithm in all situations, esplgia
in the weak interference case. Although the PWF algorithe ha
better convergence over the new algorithm, it does not ageve
under certain strong interference channels. We can coaclud
that the new algorithm preserves the fast convergence of the
PWF algorithm and has the desired convergence property as
the WMMSE algorithm as well.

Note that given the same initial point, these three algorith
may converge to different stationary points, as shown in €ig
Since the original weighted sum-rate maximization problem
non-convex, a stationary point is not necessarily a glokat-m
imum. In practical applications, we may run such algorithms
multiple times starting from different initial points anitk the
stationary point that gives the largest weighted sum-rate.

We may also create a hybrid algorithm by combining the
new algorithm and the PWF algorithm, by applying the PWF



algorithm until the weighted sum-rate starts to drop, thebompared with another state-of-the-art WMMSE algorithm,
switching to the new algorithm which will converge to awhich is guaranteed to converge, the convergence speed is a
stationary point. In this way, the hybrid algorithm will a& the few iterations or more than ten iterations faster, dependin
PWEF algorithm'’s fast convergence and also will monotomycalon the desired numerical accuracy. Being faster even by a
converge under those strong interference channel conditidew iterations will be significant in distributed implemation
where the PWF algorithm may oscillate. where the overhead of each iteration costs significant Bigna

resources between the transmitters and the receiversednde
B. Complexity Analysis the new algorithm is highly scalable and suitable for disttéd

We have evaluated in the above convergence properties of ff¢lementation with distributed channel estimation beesior
proposed new algorithm, the PWF algorithm and the WMMSEaCh data link, only its own c_hannel state and the aggregated
algorithm in terms of the number of iterations. We now analyZnterference plus noise covariance needs to be estimated no
the complexity of each iteration for these algorithms. matter how many interferers are there (See lines 6 and 8

Recall thatL is the number of users or links, and forof Algorithm 1). The distributed implementation of the new
simplicity, assume that each user sstransmit (and receive) algorithm will be developed in the future work.
antennas, so the resulting; (and X)) is a N x N matrix.
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