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Demand Shaping in Cellular Networks
Xinyang Zhou Lijun Chen

Abstract— Demand shaping is a promising way to mitigate
the wireless cellular capacity shortfall in the presence of ever-
increasing wireless data demand. In this paper, we formulate
demand shaping as an optimization problem that minimizes
the variation in aggregate traffic. We design a distributed and
randomized offline demand shaping algorithm under complete
traffic information and prove its almost surely convergence.
We further consider a more realistic setting where the traffic
information is incomplete but future traffic can be predicted
to a certain accuracy. We design an online demand shaping
algorithm that updates the schedules of deferrable applications
each time when new information and updated prediction are
available, based on solving at each timeslot an optimization
problem over a shrinking horizon from the current time to
the end of the day. We compare the performance of the online
algorithm against the optimal offline algorithm, and provide
numerical examples.

Index Terms— Demand shaping, offline algorithm, online
algorithm, supermartingale, deferrable applications, cellular
networks.

I. INTRODUCTION

The recent decade has witnessed rapid increase in demand
on wireless data, driven by the proliferation of smartphones,
tablets, and laptops with mobile broadband cards. The global
mobile traffic in 2012 has reached 10,620 petabytes, almost
12 times greater than the global Internet traffic of 900
petabytes in 2000; yet, this number is expected to increase
at a compound annual growth rate of 66%, i.e., a 13-fold
growth, from 2012 to 2017 [11]. However, despite frequent
upgrades of cellular networks from 2G to 3G and to 4G and
beyond, wireless service providers fall short of keeping up
with this increasing wireless data demand, which leads to
congestion in the network and degraded quality of service
(QoS) for the end users.

The capacity shortfall can be mitigated by allocating
more wireless spectrum and deploying more wireless in-
frastructures including more and smaller cells and offload
to WiFi networks, etc. However, spectrum allocation and
infrastructure upgrading are not only costly but also time-
consuming. A promising alternative is to improve spectrum
and infrastructure efficiency through managing wireless data
traffic (i.e., demand). Notice that wireless traffic or demand
usually fluctuates with a large peak-to-valley ratio throughout
a day; e.g., the traffic in peak hours can be as much as 10
times more than that in off-peak hours [10], and see also
Fig. 1 for a trace of smartphone web browsing over a day.
However, wireless capacity needs to be provisioned to meet
the peak demand rather than the average. This means that the
cellular network is stressed in peak hours while underutilized
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Fig. 1. North America smartphone web browsing activity by time of day
[12].

at other times. If the demand can be shaped to reduce the
peak and smooth the variation, not only can more traffic be
accommodated under limited capacity constraints, but also
additional spectrum allocation and infrastructure upgrades
can be slowed down, which greatly improves wireless net-
work efficiency and yields huge savings.

In this paper, we focus on designing demand shaping algo-
rithms for cellular networks. We divide wireless traffic into
two categories: non-deferrable traffic and deferrable traffic.
Non-deferrable traffic refers to the traffic of applications such
as online gaming that have no or low delay tolerance, and
constitute the base traffic that cannot be shaped. Deferrable
traffic refers to the traffic of applications such as file down-
loading that are flexible in time and only require being served
by a designated deadline. Deferrable applications are further
divided into two major types: continuous-rate interruptible
applications such as file downloading that allow any data
rates, and discrete-rate noninterruptible applications such as
online movie watching that usually require certain constant
data rate and should not be interrupted once they are started.
We seek to schedule the deferrable applications to flatten the
aggregate traffic profile over a day.

Specifically, we formulate demand shaping as an optimiza-
tion problem that minimizes the (time) variation in aggregate
traffic subject to the specification on each deferrable applica-
tion. We first assume complete traffic information and design
an offline demand shaping algorithm. There are two challeng-
ing issues in the offline algorithm design. First, the resulting
optimization problem is non-convex because of discrete-rate
noninterruptible applications. We instead solve its convex
relaxation and design a randomized scheme based on the
solution for the relaxed problem. Second, demand shaping
involves potentially a huge number of applications and users.
A centralized algorithm is not scalable. We instead design
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an iterative and distributed algorithm based on the steepest
descent method. We establish the almost surely convergence
of the algorithm based on supermartingale theory.

We then consider a more realistic setting with incomplete
information where we can only predict future traffic to
a certain accuracy, and design an online and distributed
demand shaping algorithm that updates the schedules of
deferrable applications each time when new information and
updated prediction are available, based on the above offline
algorithm for an optimization problem over a shrinking
horizon from the current time to the end of the day. We
compare the performance of the online algorithm against the
optimal offline algorithm, and provide numerical examples.

Demand shaping in cellular networks is similar to demand
response in power networks, in terms of design objectives,
problem formulations, and the associated algorithmic chal-
lenges. Indeed, we borrow insights from demand response
in power networks, see, e.g., [6]–[8], [15]. In particular,
our online demand shaping algorithm is motivated by the
solution approach in [8], and mathematically can be seen as
its extension to include discrete decision variables.

Remarks: In this paper we focus on designing demand
shaping algorithms based on a general and simplified sys-
tem model. We do not investigate the important practical
issues such as the timescale and granularity at which we
schedule and reschedule the deferrable applications. We plan
to develop a platform to enable automatic demand shaping
in the future, and will investigate various practical issues
then. Also, demand shaping involves not only the design of
control algorithms but also the design of right mechanisms to
incentivize the users to move out of their “comfortable zone”
in wireless applications and data usage. Incentive design for
demand shaping is currently an active research area; see, e.g.,
the smart data pricing [10], [17] and the references therein.

Remarks: Some discussion on the practicality of demand
shaping is in place. People tend to use mobile data services
whenever they want, regardless of whether it is at peak time
or valley time for the cellular network. However, a survey
[16] conducted in India and USA in 2012 shows that, given
proper monetary incentive, many people are willing to post-
pone their mobile data usage, with acceptable postponement
varying from minutes to hours, depending on different types
of services and different individual preferences [10]. For
example, wireless service providers can motivate the users
to shift their demand by implementing the time-dependent
pricing (TDP) strategy. TDP is now applied as a simple two-
period plan by many wireless service providers around the
world, in voice services and data services; e.g., Verizon [4]
and Sprint [2] in the US have “happy hours” in the night and
weekend for voice service, TelCom [3] in South Africa has
“Night Surfer” plans giving free data from 11pm to 5am, and
Airtel [1] in India provides unlimited data in the night. More
refined TDP strategies can be applied, to maximize benefits
for both wireless service providers and users, by dynamically
adjusting prices according to the data usage of the current
time and predicted future. For instance, Ha et al [10] have
been working on a TDP based application named TUBE.
Trials in cooperation with local wireless service provider

shows its effectiveness in shaping the traffic profile [13].

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless cellular network that serves users for
different applications such as web browsing, file sharing,
and real-time entertainment. The applications can be broadly
divided into two categories: deferrable and non-deferrable.
The deferrable applications (DAs) refer to those that are
flexible in the starting time and/or data rate, while the non-
deferrable applications refer to those that should be served
immediately and often have stringent rate requirement.

Our goal is to schedule the DAs so as to flatten the traffic
profile over a day, subject to the time constraints and rate
constraints of each application. We use a discrete-time model
where a day is divided into T timeslots of equal duration,
indexed by t ∈ T = {1, 2, · · · , T}. The duration of a
timeslot can be, e.g., 30 minutes, corresponding to the time
resolution at which the scheduling decisions are made.

A. Non-deferrable applications

Non-deferrable applications include web browsing, online
gaming, and real-time chatting, etc. The latency tolerated
by these applications vary from hundreds of milliseconds
to seconds. Since they should be served immediately upon
request, the traffic from those applications is inelastic and
constitutes the base traffic that cannot be shaped. Denote
the base traffic profile by b = {b(t); t ∈ T }. As we can
only predict the base traffic to a certain accuracy, we model
it as a random variable with mean b̄ = {b̄(t); t ∈ T } and
random derivation δb = {δb(t); t ∈ T } from the mean, i.e.,
b = b̄+δb. We assume that δb(t) has a mean of 0 and variance
of δ2(t) respectively, and may be temporally correlated. We
further assume that as time goes by, better prediction of base
traffic is possible, modeled by a time-dependent deviation
from the mean, i.e., the base traffic at time τ ∈ T is predicted
at time t as

bt(τ) = b̄(τ) + δbt(τ), (1)

with δbt(τ) having a decreasing variance δ2t (τ) as time t goes
by. The parameters b̄ and δt will be specified exogenously,
and can be estimated from the historical traffic records.

B. Deferrable applications

Assume that there are N deferrable applications (DAs),
indexed by n ∈ N = {1, · · · , N}. Each application n is
characterized by an arrival time tan when it is requested
or after which it can be started, a deadline tdn by which
it must be done, and certain requirement or constraint on
data rate pn = {pn(t); t ∈ T }. Let Pn denote the total
traffic required for DA n, i.e.,

∑
t∈T pn(t) = Pn. We can

classify DAs into two main categories: continuous-rate in-
terruptible applications that allow variable data rate between
certain upper and lower bounds and can be interrupted and
resumed at any times before the deadline, and discrete-rate
noninterruptible applications that require certain (roughly)
constant data rate and cannot be interrupted once they are
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started.1 For example, file-sharing is usually interruptible and
allows any continuous data rates; while online streaming is
usually non-interruptible and runs at a constant, discrete data
rate once it is started.

We assume that there are N ′ continuous-rate interruptible
DAs, denoted by N ′ = {1, · · · , N ′}. For each DA n ∈ N ′,
denote by p

n
(t) and pn(t) the lower and upper bounds on

the data rate at time t ∈ T , i.e.,

p
n
(t) ≤ pn(t) ≤ pn(t), t ∈ T . (2)

The lower bounds p
n
(t) are actually zero, and the upper

bounds pn(t) can be set according to, e.g., the available
bandwidth. The arrival time tan and the deadline tdn can be
represented by the rate constraint (2) by setting pn(t) = 0
for t < tan and t > tdn.

Denote those N − N ′ discrete-rate noninterruptible DAs
by N ′′ = {N ′ + 1, · · · , N}. For each DA n ∈ N ′′, we
assume for simplicity that it runs at a single, discrete rate
rn > 0. For discrete-rate applications, which are dominantly
streaming applications such as online movie watching, a
constant bit rate corresponds to a certain graphic quality;
e.g., rn = 2 Mb/second for a 720P video on Youtube. As
the graphic quality usually does not change during those
applications, this seemingly over-simplified assumption of a
single discrete rate is reasonable.

For each DA n ∈ N ′′ with the total traffic Pn and the rate
rn, it will take ln = Pn/rn consecutive timeslots. Therefore,
the number of its feasible traffic profiles An = tdn−tan−ln+1,
and the a-th feasible profile fn,a = {pn| pn(t) = rn, if tan+
a−1 ≤ t ≤ tan+a+ ln & pn(t) = 0, otherwise}. We denote
the set of all feasible traffic profiles by Fn = {fn,a; 1 ≤
a ≤ An}, i.e., for DA n ∈ N ′′ the traffic profile

pn ∈ Fn. (3)

C. Problem Formulation

We aim to schedule the DAs, so as to flatten the aggregate
traffic profile as much as possible. Denote the “average”
traffic profile by d = {d(t); t ∈ T } = 1

N

(
b+

∑
n∈N pn

)
.

Traffic flattening can be achieved by minimizing the variance
V (d) of d, formulated as the following optimal demand
shaping (ODS) problem.

ODS:

min
p,d

V (d) =
1

T

∑
t∈T

(
d (t)− 1

T

∑
τ∈T

d (τ)

)2

(4)

s.t. d (t) =
1

N

(
b (t) +

∑
n∈N

pn (t)

)
, t ∈ T , (5)

0 ≤ pn(t) ≤ pn(t), t ∈ T , n ∈ N ′, (6)∑
t∈T

pn (t) = Pn, n ∈ N ′, (7)

pn ∈ Fn, n ∈ N ′′, (8)

1There are applications, e.g., short messages, that are hard to characterize
in terms of interruptibility and/or rate. But they only contribute a small
portion of traffic, and may incur a large complexity to shape while not
help much. We will not seek to control them and will treat them as non-
deferrable.

where p = {pn;n ∈ N}. In the next section, we will
investigate offline algorithm for solving the ODS problem
under the assumption of complete information about the
base traffic and deferrable applications. In the section next,
we will study online algorithm for demand shaping under
the more realistic setting of incomplete information where
we can only predict the future traffic to a certain accuracy.
The offline ODS problem and algorithm will serve as a
benchmark to characterize the performance of the online
algorithm.

III. OFFLINE DEMAND SHAPING ALGORITHM

In this section, we assume complete traffic information,
i.e., there is no uncertainty in either base traffic or DAs, and
study how to solve the resulting offline ODS problem.

A. Convex relaxation

The offline ODS problem is nonconvex, as each discrete-
rate noninterruptible DA has to pick a traffic profile from a
discrete set; see the constraint (8). Consider the convex hull
of Fn

conv(Fn)

= {p̃n| p̃n =

An∑
a=1

un,afn,a, ua,n ≥ 0 &

An∑
a=1

un,a = 1}.

We will instead solve the convex relaxation of the ODS
problem by replacing (8) with the following constraint:

pn ∈ conv(Fn), n ∈ N ′′. (9)

We call this relaxed problem the R-ODS problem. Since a
solution p∗n, n ∈ N ′′ to the R-ODS problem might not be
feasible, i.e., p∗n /∈ Fn, suppose that p∗n can be written as the
convex combination

∑An

a=1 un,afn,a, we will randomly pick
a traffic profile pn = fn,a with probability un,a. That said,
we will design a randomized algorithm for the offline ODS
problem, based on the solution for the R-ODS problem.

B. Distributed algorithm

Solving the R-ODS problem (and the offline ODS prob-
lem) in a centralized way requires collecting information
on all DAs, which may incur too much communication
overhead. We seek to solve it in a distributed way. Notice
that R-ODS problem has decoupled constraints, so we may
design an iterative and distributed algorithm based on the
steepest decent method [5].

Before deriving the algorithm, let us first establish a useful
result. At k-th iteration, let pk = {pkn; n ∈ N} be the traffic
profile, dk = 1

N (b +
∑
n∈N p

k
n) the average traffic profile,

and xn = pk+1
n − pkn, n ∈ N the change in traffic profile

between two consecutive iterations. We have

E

[
‖
∑
n∈N

xn‖22

]
=
∑
n∈N

V ar (xn) + ‖
∑
n∈N

E[xn]‖22,
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where the variance V ar(x) = E[‖x‖22] − ‖E [x]‖22,
and E[·] denotes the average.2 By Jensen’s inequality,
‖
∑
n∈N E[xn]‖22 ≤ N

∑
n∈N ‖E[xn]‖22. Thus,

E

[
‖
∑
n∈N

xn‖22

]
≤
∑
n∈N

V ar (xn) +N
∑
n∈N
‖E[xn]‖22 . (10)

Now, let V k = V (dk), we have

E[V k+1|pk]− V k =
1

TN2
E

[
‖
∑
n∈N

xn‖22 + 2〈Ndk,
∑
n∈N

xn〉

]
.

By equation (10),

E[V k+1|pk]− V k

≤
∑
n∈N

V ar (xn) +N
∑
n∈N
‖E[xn]‖22 + 2

∑
n∈N

E
[
〈Ndk, xn〉

]
=

∑
n∈N ′

(
2〈Ndk, xn〉+N ‖xn‖22

)
+
∑
n∈N ′′

(
2〈Ndk,E[xn]〉+N‖E[xn]‖22+V ar (xn)

)
. (11)

Denote by W1 the first term in (11) and W2 the second term.
For n ∈ N ′, we choose pk+1

n so as to minimize W1, i.e., to
solve

min
pn

2〈dk, pn − pkn〉+
∥∥pn − pkn∥∥22 (12)

s.t. (6)− (7). (13)

Also, after some mathematical manipulations, we have

W2 =
∑
n∈N ′′

(2N〈dk − pkn, E[pk+1
n ]〉

+(N − 1)‖E[pk+1
n ]‖22) + C,

where C is a certain constant that depends on pkn. For n ∈
N ′′, we choose p∗k+1

n = E[pk+1
n ] so as to minimize W2,

i.e., to solve

min
pn∈conv(Fn)

2〈dk − pkn, pn〉+
N − 1

N
‖pn‖22. (14)

In essence, what we have done is to maximize the average
incremental decrease in objective value at each iteration (i.e.,
steepest descent). This motivates a distributed demand shap-
ing algorithm with the help of a coordinator; see Algorithm
1. The wireless service provider can implement a logical
coordinator at the base station.

Remarks: Notice that, if there is no continuous-rate inter-
ruptible DA, Algorithm 1 reduces to the stochastic algorithm
in [7]. We expect that the solution approach – randomized
algorithm based on the “steepest” descent method for the
convex relaxed problem – that we lay out in Sections
III-A and III-B will find broad application in designing
efficient algorithms for optimization problems that involve
both continuous and discrete decision variables.

2Notice that we consider a randomized scheme only for discrete-rate
noninterruptible applications. That said, for continuous-rate interruptible
applications there is no randomness and the variance is zero.

Algorithm 1 Offline Demand Shaping (Off-DS) Algorithm

At k-th iteration:
1) Upon gathering traffic profiles pkn from DAs, the co-

ordinator calculates the average traffic profile dk =
1
N

(
b+

∑
n∈N p

k
n

)
and announces it to DAs (or the end

users) over a signaling or control channel.
2) Upon receiving the average traffic profile dk,

• Each DA n ∈ N ′ updates its traffic profile accord-
ing to

pk+1
n = arg min

pn

∥∥pn − pkn + dk
∥∥2
2

s.t. (6)− (7),

and submits it to the coordinator.
• Each DA n ∈ N ′′ calculates the average traffic

profile according to

p∗k+1
n = arg min

pn∈conv(Fn)

∥∥∥∥pn − N

N − 1

(
pkn − dk

)∥∥∥∥2
2

,

represents it as a convex combination p∗k+1
n =∑An

a=1 u
k+1
n,a fn,a, and then randomly chooses a traf-

fic profile pk+1
n = fn,a with probability uk+1

n,a and
submits it to the coordinator.

C. Convergence

Before showing the convergence of Algorithm 1, we first
establish two relations that will be needed. For each DA
n ∈ N ′, since pk+1

n solves the problem (12)-(13), we have
first-order optimality condition

〈pk+1
n − pkn + dk, pn − pk+1

n 〉 ≥ 0

for any feasible pn. Set pn = pkn, we obtain

〈dk, pk+1
n − pkn〉 ≤ −

∥∥pk+1
n − pkn

∥∥2
2
. (15)

For each DA n ∈ N ′′, let p∗k+1
n = E

[
pk+1
n

]
, i.e., the

optimum of the problem (14). By the first oder optimality
condition, we have

〈 N

N − 1

(
dk − pkn

)
+ p∗k+1

n , pn − p∗k+1
n 〉 ≥ 0

for any feasible pn. Set pn = pkn, we obtain

〈Ndk, p∗k+1
n − pkn〉 ≤ − (N − 1)

∥∥p∗k+1
n − pkn

∥∥2
2

+〈pkn, p∗k+1
n − pkn〉. (16)

Now, construct a filtration Σ∗ of the probability space
{Ω,Σ,P}, where the sample space Ω is the feasible set
specified by the constraints (6)-(8), the σ-algebra Σk =
Ω, k ≥ 0, and P(Σk) = {δ(pn − pkn), n ∈ N ′; ukn,a, 1 ≤
a ≤ An, n ∈ N ′′}, i.e., determined by the k-th iteration of
the Off-DS algorithm.

Theorem 1: The pair (V (d), Σ∗) is a supermartingale.
Proof: First, notice that V (d) is bounded from below, so

E[−min{0, V (d)}] < ∞. Second, applying relations (15)-
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(16) to equation (11), we have

E[V k+1|pk]− V k

≤
∑
n∈N ′

−N ‖xn‖22 +
∑
n∈N ′′

(V ar (xn)

+ (−N + 2) ‖E[xn]‖22 + 2〈pkn, p∗k+1
n − pkn〉

)
=

∑
n∈N ′

−N ‖xn‖22 +
∑
n∈N ′′

(−N + 1) ‖E[xn]‖22

≤ 0,

i.e., E[V k+1|pk] ≤ V k. By definition, (V (d), Σ∗) is a
supermartingale [9].

Notice that (V (d), Σ∗) is a non-negative supermartingale.
By the martingale convergence theorem [9], the following
result is immediate.

Corollary 1: V∞ = limk→∞ V k exists almost surely.
Theorem 2: Denote by P∞ an “equilibrium” distribution

over traffic profiles that (V (d), Σ∗) converges to. The
support of P∞ is a singleton.

Proof: When (V (d), Σ∗) converges, E[V k+1|pk] =
V k. This requires E[xn] = E[xn′ ], n, n′ ∈ N , pk+1

n =
pkn, n ∈ N ′, and p∗k+1

n = pkn, n ∈ N ′′ for (10), (15), and
(16) to hold with equality. Notice that p∗k+1

n = pkn implies
pk+1
n = pkn, as different feasible traffic profiles of DA n ∈
N ′′ are linearly independent. Thus, pk+1

n = pkn, n ∈ N . So,
The support of P∞ contains only one point.

Denote by p∞ an “equilibrium” traffic profile of the Off-
DS algorithm, i.e., if pk = p∞, then pk+1 = p∞. Obviously
the set of equilibrium profiles is not empty, as an optimum
of the offline ODS problem is an equilibrium. The following
result follows immediately from Theorem 2 and Corllary 1.

Theorem 3: The Off-DS algorithm converges almost
surely to an equilibrium traffic profile.

IV. ONLINE DEMAND SHAPING ALGORITHM

In this section, we consider a realistic setting with incom-
plete information where we can only predict future traffic
to a certain accuracy, and study online demand shaping that
makes decision based on the prediction of future traffic and
updates the decision as new information becomes available.

A typical algorithm used in this setting is the receding
horizon control; see, e.g., [14]. However, as the objective
function (4) does not have a nice additive structure, receding
horizon control algorithm does not admit an easy analysis.
We will instead extend a shrinking horizon control algorithm,
which is used in [8] that studies mathematically the same
problem with only continuous-rate interruptible applications,
to include discrete-rate noninterruptible applications, and
apply it to our online demand shaping (Online DS) problem.

A. Online algorithm

We assume that the number mt of DAs arriving at time
t is randomly distributed with a mean λt and variance
(δλt)

2, and the total amount of traffic of each DA X is
randomly distributed with a mean P and variance (δP )2. We
further assume for simplicity that each DA is equally likely
continuos-rate interruptible or discrete-rate noninterruptible.

Denote by N ′t = {1, · · · , N ′t} the set of continuous-rate
interruptible DAs and N ′′t = {N ′ + 1, · · · , N ′′t } the set of
discrete-rate noninterruptible DAs that have arrived by time
t ∈ T , and let Nt = N ′t∪N ′′t and Nt = N ′t+N

′′
t . Notice that

we cannot reschedule the remaining traffic of a discrete-rate
noninterruptible DA that has been started. Denote by Ñ ′′t ⊆
N ′′t the set of discrete-rate noninterruptible DAs that have
not been started by time t, and let Ñt = N ′t ∪ Ñ ′′t . For each
DA n ∈ Ñ ′′t , denote by Fn(t) = {fn,a; 1 ≤ a ≤ An(t)}
the set of feasible traffic profiles at time t.

At time time t, we assume that a prediction bt of base
traffic is available, and the information on DA n ∈ Nt
and the expected total future deferrable traffic

∑T
τ=t+1 Pλτ

are known. Following [8], we introduce a virtual deferrable
traffic profile q(t : T ) = {q(τ); t ≤ τ ≤ T} with q(t) = 0
and

∑T
τ=t q(τ) =

∑T
τ=t+1 Pλτ , and use it to emulate the

impact of the future deferrable traffic on the current demand
shaping decision. With the afore setup, we aim to schedule
and reschedule the DAs, so as to solve the following problem
at each timeslot t ∈ T .

ODSt:

min V (d) =
1

T − t+ 1

T∑
τ=t

(
d(τ)−

∑T
s=t d(s)

T − t+ 1

)2

(17)

over p(t : T ), d(t : T ), q(t : T )

s.t. d (τ)=
bt(τ)+q(τ)+

∑
n∈Nt

pn(τ)

Nt
, τ ≥ t, (18)

0 ≤ pn (τ) ≤ pn (τ) , τ ≥ t, n ∈ N ′t , (19)
T∑
τ=t

pn (τ) = Pn (t) , n ∈ N ′t , (20)

pn ∈ Fn(t), n ∈ Ñ ′′t , (21)
T∑
τ=t

q (τ) =

T∑
τ=t+1

Pλτ , (22)

where p(t : T ) = {pn(τ); t ≤ τ ≤ T, n ∈ Ñt}, d(t : T ) =
{d(τ); t ≤ τ ≤ T}, and Pn(t) = Pn −

∑t−1
τ=1 pn(τ), n ∈ N ′t

is the amount of traffic to be served at or after time t.
We can solve the ODSt problem the same way as we

solve the offline ODS problem (4)-(8), which gives an
online demand shaping algorithm; see Algorithm 2. The
convergence of Step 2) can be established in the same way
as Algorithm 1.

B. Performance analysis
We have characterized the performance of the On-DS

algorithm with respect to the optimal offline problem under
certain specific assumption; see the extended version [18] for
the detail.

V. NUMERICAL EXAMPLES

In this section, we provide numerical experiments to
evaluate the performance of the On-DS algorithm. We use
certain composite traffic traces to drive simulations, to show
the impact of base traffic prediction, deferrable traffic pre-
diction, and deferrable traffic penetration level. We expect
the conclusions obtained to be hold for real traffic.
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Algorithm 2 Online Demand Shaping (On-DS) Algorithm
At each time slot t ∈ T :

1) Denote by p
(t−1)
n , n ∈ Nt−1 the schedules determined

by time t−1, and by N̂ ′′t ⊆ N ′′t the set of discrete-rate
noninterruptible DAs that has been started before time
t. For each DA n ∈ N̂ ′′t , set its schedule pn(t;T ) =

{pn(τ); t ≤ τ ≤ T} as pn(τ) = p
(t−1)
n (τ), t ≤ τ ≤ T .

2) Solve the ODSt problem iteratively
At k-th iteration:

a) Upon gathering traffic profiles pkn(t : T ) =
{pkn(τ); t ≤ τ ≤ T} from DAs n ∈ Ñt, the
coordinator solves the following problem

min
q(t+1:T )

T∑
τ=t+1

bt(τ) + q(τ) +
∑
n∈N̂ ′′

t

pn(τ) +
∑
n∈Ñt

pkn(τ)

2

s.t. (22)

to obtain a virtual deferrable traffic
{qk(τ); t + 1 ≤ τ ≤ T}, and then
calculates the average traffic dk(τ) =
1
Nt

(
bt(τ) + qk(τ) +

∑
n∈N̂ ′′

t
pn(τ) +

∑
n∈Ñt

pkn(τ)
)

for τ ≥ t and announces it to DA n ∈ Ñt over a
signaling or control channel.

b) Upon receiving the average traffic profile dk,
• Each DA n ∈ N ′t obtains a new traffic profile
pk+1
n (t : T ) by solving

min
pn(t:T )

∥∥pn(t : T )− pkn(t : T ) + dk(t : T )
∥∥2
2

s.t. (19)− (20),

and submits it to the coordinator.
• Each DA n ∈ Ñ ′′t calculates the average traffic

profile p∗k+1
n (t : T ) by solving

min
pn(t:T )

∥∥∥∥pn(t : T )− Nt
Nt − 1

(
pkn(t : T )− dk(t : T )

)∥∥∥∥2
2

s.t (21),

represents it as a convex combination p∗k+1
n =∑An(t)

a=1 uk+1
n,a fn,a, and then randomly chooses a

traffic profile pk+1
n = fn,a with probability uk+1

n,a

and submits it to the coordinator.

A. Experimental setup

Consider 24-hour period starting from 4:00pm to 4:00pm
on the next day. The duration of one timeslot is set to be 30
minutes, making totally 48 timeslots.

1) Non-deferrable traffic: The “real” trace we use for base
traffic, is shown in Fig. 2 (red line), which consists of an
average trace (blue line) and randomly generated deviation.
The average trace is composed based on the North American
mobile web browsing activity by time of day in 2013 [12],
shown in Fig. 1. As modeled in Section II-A, the prediction
of base traffic follows (1), consisting of average base traffic
b̄(τ) and random deviation from the average value δbt(τ).
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Fig. 2. Base traffic: the average (blue/dotted) and a “real” trace (red/solid).

Following [8], at time t, δbt(τ) is modeled as

δbt(τ) =

τ∑
s=t+1

ns(τ), t < τ ≤ T,

where ns(τ) are random variables with Gaussian distribution,
with 0 mean and variances

E[n2s(τ)] =
σ2

τ − s+ 1
, 1 ≤ s ≤ τ ≤ T. (23)

In this way, we have δbt(τ) with decreasing variance as t
approaches τ , simulating a gradually improving prediction
of future timeslot τ . In simulation, we take the values of σ
in (23) from 0 to 100 with increment of 10, corresponding
to a root-mean-square prediction error (RMSE) ranging from
0% to 32%, looking T timeslots ahead.

2) Deferrable traffic: We assume that the number of DAs
arriving at each time slot follows a “shifted” Poisson process
m + poissrnd(λp), with m ≥ 0 and poissrnd(λp) denoting
a Poisson process with rate λ. The total traffic Pn of each
DA is uniformly distributed in [P , P ], and we set P = 12
and P = 24 in the numerical examples reported here. The
deadline for each DA n is uniformly distributed in [tan +
ln + D, tan + ln + D], with ln = pPn/pnq the minimum
number of timeslots required by the DA, and we set D = 6
and D = 14, and the bit rate upper bound pn = 3 in the
numerical examples reported here. Further, as we have a fixed
ending of the time horizon, for those DAs that arrive “close”
to the end, in numerical experiments we adjust the amount
of traffic (for discrete-rate DAs) or the upper bound on data
rate (for continuous-rate DAs) such that they can be finished
within the time horizon.

3) Benchmarks for comparison: We compare the perfor-
mance of the On-DS algorithm with a few typical bench-
marks, in order to evaluate (1) the impact of base traffic
prediction error, and (2) the impact of DAs’ penetration level.
We thus consider four cases in our experiments:
(a) Online demand shaping with On-DS algorithm. We apply

On-DS algorithm to schedule deferrable traffic, based on
the prediction of future DAs and the updated prediction
of base traffic at each timeslot.

(b) Offline demand shaping with Off-DS algorithm. We use
complete information including real trace of future base
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traffic and all DAs’ arrival information recorded from
(a). By applying Off-DS algorithm, this gives the optimal
performance for a given realization of traffic. It is used as
a benchmark to characterize the sub-optimality of other
cases.

(c) Online demand shaping with exact information on base
traffic and without exact information on DAs. We apply
On-DS algorithm, based on the real trace of base traffic
and the prediction of DAs. Since this case assumes
perfect information on base traffic, it is used to examine
the impact of prediction error of base traffic for cases
(a) and (d).

(d) Demand shaping without updating prediction of base
traffic and with exact information on DAs. We use initial
prediction made at t = 0 for base traffic and without any
further updating, and use arrival information recorded
from (a) for DAs. Since this case is only influenced by
the prediction error of base traffic, it is used to show
the impact of uncertain future arrivals of DAs in cases
(a) and (c). Also, comparison between cases (a) and (d)
demonstrates the benefit of using updated prediction of
base traffic.

Denote by V opt the objective value achieved by the opti-
mal offline algorithm, i.e., case (b). We use the metric G =
V−V opt

V opt to measure the “sub-optimality” in performance of
other scenarios or algorithms.

B. Experiment results

Given the stochastic nature of deferrable traffic arrival,
base traffic prediction, and the decision of traffic profiles of
DAs with discrete rate, we run simulation for ten times and
show the average over these ten realizations.

1) The impact of base traffic prediction error: We fix the
penetration level of deferrable traffic at 10.5%, and tune the
variance σ2 to emulate different levels of prediction error
in base traffic (as described in Section V-A.1). As shown
in Fig. 3, compared with case (c) that has complete base
traffic information, case (a) has a rather good performance
despite of the increase in prediction error of base traffic and
maintains a sub-optimality of under 10%. This is because
our online algorithm keeps improving its prediction of base
traffic as time goes by. In contrast, case (d), which does not
update base traffic prediction, has poor performance when
σ2 is large even though it has complete information on
deferrable traffic. This is because case (d) always uses the
initial prediction of base traffic, which can be very different
from real value if prediction error is large. We conclude that
one of the key features in our online algorithm – updating
the prediction – helps ensure the performance of demand
shaping.

2) The impact of penetration level of deferrable traffic:
We fix the prediction error of base traffic with σ2 = 50,
and choose different average numbers of DA arrivals at each
timeslot to set different deferrable traffic penetration levels.
As shown in Fig. 4, case (d) has an improving performance
as the penetration level of deferrable traffic increases. This is
because it has exact information on deferrable traffic while
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Fig. 3. The impact of base traffic prediction error.
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Fig. 4. The impact of penetration level of deferrable traffic.

the impact from the prediction error of base traffic decreases
with the increased deferrable traffic penetration. In contrast,
we see an increase and then a decrease of sub-optimality for
cases (a) and (c) as the penetration level increases. Taking a
closer look at the data, however, we find that this does not
really mean their performance starts to improve when the
deferrable traffic penetration level is large enough; instead,
it is because the optimal result from case (b), the benchmark
that they are compared against, is getting worse as a result
from putting all the unfinished deferrable traffic to the end
of the day. We conclude that, as expected, the higher the
deferrable traffic penetration is, the worse the online demand
shaping is. However, we do not have to worry much about the
high penetration level of deferrable traffic, since in practice a
penetration of 10-20% is already a large penetration and the
online demand shaping has a reasonably good performance
within this penetration range.

VI. CONCLUSION

We have formulated demand shaping in cellular networks
as an optimization problem that minimizes the variation in
aggregate traffic. We design a distributed and randomized
offline demand shaping algorithm under complete traffic
information and prove its almost surely convergence. We
then consider a more realistic setting with incomplete infor-
mation where we can only predict future traffic to a certain
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accuracy, and design an online demand shaping algorithm
that updates the schedules of deferrable applications each
time new information is available, based on solving at each
timeslot an optimization problem over a shrinking horizon
from the current time to the end of the day. We compare
the performance of the online algorithm against the opti-
mal offline algorithm, and provide numerical examples. As
future work, we are investigating to integrate the incentive
mechanisms such as the smart data pricing into the demand
shaping algorithm design. We also plan to develop a platform
to enable automatic demand shaping in cellular networks and
investigate the related practical issues.
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