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An Incentive-Based Online Optimization
Framework for Distribution Grids

Xinyang Zhou, Emiliano Dall’Anese, Lijun Chen, and Andrea Simonetto

Abstract— This paper formulates a time-varying social-welfare
maximization problem for distribution grids with distributed en-
ergy resources (DERs) and develops online distributed algorithms
to identify (and track) its solutions. In the considered setting,
network operator and DER-owners pursue given operational and
economic objectives, while concurrently ensuring that voltages
are within prescribed limits. The proposed algorithm affords an
online implementation to enable tracking of the solutions in the
presence of time-varying operational conditions and changing
optimization objectives. It involves a strategy where the network
operator collects voltage measurements throughout the feeder to
build incentive signals for the DER-owners in real time; DERs
then adjust the generated/consumed powers in order to avoid
the violation of the voltage constraints while maximizing given
objectives. The stability of the proposed schemes is analytically
established and numerically corroborated.

Index Terms— Voltage regulation, real-time pricing, social
welfare maximization, exact convex relaxation, distribution net-
works, time-varying optimization.

I. INTRODUCTION

Market-based algorithms have been recently developed to
control distributed energy assets with the objective of in-
centivizing end-customers to provide services to the grid
while maximizing economic benefits and performance objec-
tives [1]–[3]. For example, end-customers may be incentivized
to adjust the output powers of distributed energy resources
(DERs) in real time to aid voltage regulation [4], control
the aggregate network demand [5], and follow regulating
signals [6].

This paper aims to design incentive-based distributed algo-
rithms that allow network operator and end-customers to pur-
sue given operational and economic objectives and, in doing
so, ensure that voltage magnitudes are within the prescribed
limits. We start with the formulation of a time-varying social
welfare maximization problem that captures a variety of opti-
mization objectives, hardware constraints, and the nonlinear
power-flow equations governing the physics of distribution
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systems. The time-varying nature of the problem [7], [8]
enables us to model optimization and operational objectives
that vary in time and to capture variability of ambient con-
ditions and non-controllable energy assets; the time-varying
problem thus defines optimal trajectories for the active and
reactive powers of the DERs as well as voltage levels. A linear
approximation of the nonlinear power-flow equations [9]–[12]
is utilized to facilitate the development of computationally-
tractable algorithms. Even when linear power-flow models are
adopted, the resultant problem is non-convex; however, we
propose a convex relaxation and provide conditions under
which the relaxation is exact, i.e., the optimal solutions of
the relaxed problem coincide with the global optimal points
of the non-convex social-welfare problem. We then design
distributed algorithms to identify (and track) the solutions
of the time-varying social welfare maximization problem.
The algorithm enables a distributed solution of the social-
welfare-maximization problem where: (i) customers do not
share private information such as their cost function and the
feasible set of the DERs’ output powers; and (ii) customers and
network operator pursue their own economic and operational
objectives, while ensuring that voltage limits are systematically
satisfied throughout the network.

The first algorithm is applicable to problems that vary
slowly in time, where offline iterative methods can be utilized
to solve sampled instances [7] of the time-varying problem to
convergence. An online algorithm is then proposed to enable
tracking of the solutions in the presence of fast time-varying
operational conditions and changing optimization objectives.
The online algorithm involves a strategy where the network
operator collects voltage measurements through the feeder to
build incentive signals for the DER-owners in real time; DERs
then adjust the generated/consumed powers in order to avoid
the violation of the voltage constraints while maximizing given
objectives. Stability of the proposed schemes is analytically
established and numerically corroborated. The design of the
algorithms is grounded on the decomposability of the primal-
dual gradient algorithms, and convergence of the distributed
algorithm to the optimal solution of the social-welfare max-
imization problem is shown by leveraging the contraction
mapping arguments with a regularized Lagrangian.

It should be pointed out that, traditionally, voltage regu-
lation problems arising from reverse power flows [4] have
been tackled by considering local Volt/VAR and Volt/Watt
controllers [13]–[19] or optimization-based techniques [11],
[20], [21] that leverage the flexibility of power-electronics-
interfaced renewable sources of energy in adjusting the output
real and reactive powers. Compared to local control strate-
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gies, the proposed method allows the network operator and
end-customers to pursue well-defined performance objectives;
compared to existing optimization strategies, the proposed
method casts the voltage regulation problem within a pric-
ing/incentive realm, and provides insights as to how to design
real-time pricing/incentive schemes.

Load control is formulated as a Stackelberg game in
e.g., [22], [23], and [5], and conditions for convergence of
a leader-follower strategy to an equilibrium point are derived.
Based on a Stackelberg game formulation, a distributed al-
gorithm with only local information available for both utility
companies and DER-owners is developed in [2]. A two-level
game setting is considered in [24]. A time-varying pricing
strategy is proposed in [25] to maximize social welfare.
However, the strategies outlined in [2], [5], [22]–[25] and
pertinent references therein are network agnostic, in the sense
that AC power flows in the power network are ignored (and
DERs are assumed to be connected to one single electrical
node). It follows that network-agnostic methods do not account
for voltage variations induced by the controlled DERs and
must be complemented by voltage-regulation mechanisms.
The frameworks proposed in, e.g., [25], [26] offer a way to
account for the power flows, but their applicability is limited
to a restricted class of network topologies.

As for online optimization methods for distribution systems,
Centralized controllers are developed in [27], [28], based
on continuous gradient steering algorithms; the framework
accounts for errors in the implementable power setpoints, and
convergence of the average setpoints to the minimum of the
considered control objective is established. An online gradient
algorithm for AC optimal power flow in single-phase radial
networks is proposed in [29]; it is shown that the proposed
algorithm converges to the set of local optima of a static
AC OPF problem, and sufficient conditions under which the
online OPF converges to a global optimum are provided.
A real-time control strategy that enables DERs to maximize
given performance objectives is proposed in [8]. The proposed
online algorithm is close in spirit to [8]; however compared
to [8], this paper casts the real-time voltage regulation problem
within a time-varying game-theoretic framework and develops
distributed strategies based on pricing/incentive signals; [8]
does not address the design of pricing/incentive signals.

The paper is organized as follows. Section II introduces
the system model and presents the problem formulation.
Section III focuses on the design of iterative algorithms that
afford an offline implementation, while Section IV presents the
online algorithm. Section V outlines results from numerical
experiments and Section VI concludes the paper. Preliminary
results were presented in [39].

II. PRELIMINARIES AND SYSTEM MODEL

A. Network Model

Consider a distribution network with N +1 nodes collected
in the set N ∪ {0} with N := {1, ..., N} and node 0 being
the point of common coupling or substation, and distribution
lines collected in the set E . Let V ti ∈ C denote the line-to-
ground voltage at node i at time t, and define vti := |V ti |.

TABLE I
NOTATION.

N Set of nodes, excluding node 0; N := {1, ..., N}
E Set of distribution lines
pi Net real power injected at node i
qi Net reactive power injected at node i
zi Overall power injected at node i, zi := [pi, qi]

ᵀ

Zi Feasible set of real and reactive power at node i
p p := [p1, . . . , pN ]ᵀ

q q := [q1, . . . , qN ]ᵀ

z z := [pᵀ, qᵀ]ᵀ

Vi Complex voltage at node i
vi Voltage magnitude at node i
v v := [v1, . . . , vN ]ᵀ

αi Signal for injected real power for node i
βi Signal for injected reactive power for node i
si Overall signal zi := [αi, βi]

ᵀ

α α := [α1, . . . , αN ]ᵀ

β α := [β1, . . . , βN ]ᵀ

s Compact signal vector s := [αᵀ, βᵀ]ᵀ

[x]+ Projection of x onto the nonnegative orthant
[x]Z Projection of x onto the convex set Z

Denote as pti ∈ R and qti ∈ R the (net) active and reactive
power injections, respectively, of a distributed energy resource
(DER) located at node i ∈ N . For notational simplicity,
exposition is tailored to the case where one DER is located at
each node; however, the technical approach straightforwardly
applies to the case where multiple DERs are connected to
a node. Hereafter, Zti denotes the feasible set of active and
reactive powers pti and qti at node i ∈ N at time t. In the
following, we explain how to construct this set for some types
of DERs.
Photovoltaic (PV) systems: Let pti,av denote the available real
power from a PV system at time t, and let ηi be the rated
apparent capacity. Then, the set Zti is given by:

Zti =
{

(pi, qi): 0 ≤ pi ≤ pti,av, p
2
i + q2

i ≤ η2
i

}
.

Energy storage systems: The set Zti for an energy storage
system is given by:

Zti =
{

(pi, qi): p
t
i
≤ pi ≤ pti, p2

i + q2
i ≤ η2

i

}
,

for given limits pt
i
, pti and for a given inverter capacity rating

ηi. The limits pt
i
, pti are updated during the operation of the

battery based on the state of charge.
Variable frequency drives: For devices such as water pumps
and supply fans of commercial HVAC systems, the set Zti can
be described as:

Zti =
{

(pi, qi): p
t
i
≤ pi ≤ pti, qi = 0

}
,

for given limits pt
i
, pti. These limits can be fixed or updated

by local controllers at a regular time intervals, based on the
state of e.g., thermal loads.

The operating region of small-scale diesel generators can
be modeled using constant box constraints. For DERs with
discrete levels of output powers (e.g., electric vehicle chargers
with discrete charging levels), Zi represents the convex enve-
lope of the possible operating points; see e.g., [28]. Random-
ization techniques can then be utilized to recover a feasible
setpoint. However, the development of control strategies for
DERs with discrete levels of output powers is left as a future
research activity.
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Voltages, currents, and powers {pti, qti} are related by the
well-known nonlinear AC power-flow equations; assuming, for
illustrative purpose, a balanced tree network, these equations
read:

P tij = −ptj +
∑

k:(j,k)∈E

P tjk + rij`
t
ij , (1a)

Qtij = −qtj +
∑

k:(j,k)∈E

Qtjk + xij`
t
ij , (1b)

vtj
2

= vti
2 − 2

(
rijP

t
ij + xijQ

t
ij

)
+
(
r2
ij + x2

ij

)
`tij ,(1c)

`tijv
t
i
2

= P tij
2

+Qtij
2
, (1d)

where `tij is the squared magnitude of the current on line (i, j),
P tij , Q

t
ij are real and reactive powers injected on line (i, j),

and rij + jxij is the impedance on line (i, j).
To facilitate the design and analysis of computationally-

tractable algorithms, the proposed approach will employ suit-
able linearization approaches for (1). Particularly, the follow-
ing approximate linear relationship between voltage magni-
tudes and injected powers is utilized:

vt ≈ v̂t = Rpt +Xqt + a, (2)

where the parameters R,X ∈ RN×N++ and a ∈ RN can
be obtained using one of the two following approaches:
i) regression-based methods, based on real-time measure-
ments of {vti}, pt, and qt, e.g., the recursive least-squares
method [30] can be utilized to continuously update the model
parameters; and, ii) suitable linearization methods for the AC
power-flow equations; see e.g., [9]–[13]. In the latter case, the
model parameters R, X , and a can be time-varying too, by
using current operating points as linearization points for the
AC power-flow equations. Parameters R, X , and a should be
re-computed every time that the system changes topology.

The approximate model (2) is utilized to facilitate the
design of computationally-affordable algorithms. Section IV
will show how to leverage appropriate measurements to cope
with approximation errors and systematically enforce voltage
limits.

Remark 1 (multiphase systems) For notational and exposi-
tion simplicity, the framework is outlined for a single-phase
system. However, the proposed algorithmic solution is applica-
ble to unbalanced multiphase networks. This can be obtained
by substituting (2) with the linearized model recently proposed
in [31] for unbalanced multiphase networks with both wye-
connected and delta-connected DERs. 2

B. Problem Setup

The goal is to design a strategy wherein the network
operator and end-customers pursue their own operational and
economic objectives, while achieving a global coordination to
enforce voltage regulation.

1) End-customer optimization problem: Consider a cost
function Cti (p

t
i, q

t
i) that captures a well-defined performance

objective for the customer(s) located at node i ∈ N at time t.
Let αti ∈ R and βti ∈ R be incentive signals produced by the
network operator (e.g., distribution system operator or aggre-
gator) for active and reactive power injections, respectively,

at time t. Given signals (αti, β
t
i ), the following optimization

problem is solved at each node i ∈ N at time t:

(Pt
1,i) min

pti,q
t
i

f ti (p
t
i, q

t
i |αti, βti ), (3a)

s.t. (pti, q
t
i) ∈ Zti , (3b)

where

f ti (p
t
i, q

t
i |αti, βti ) := Cti (p

t
i, q

t
i)− αtipti − βtiqti (4)

with αtip
t
i and βtiq

t
i representing payment to/reward from the

network operator. The following standard assumption is made.

Assumption 1 Functions Cti (p
t
i, q

t
i), ∀i ∈ N are continu-

ously differentiable and strongly convex in (pti, q
t
i). Moreover,

the first-order derivative of Cti (p
t
i, q

t
i) is bounded in Zi.

The assumption of bounded derivative means that an in-
finitesimal change in power should not lead to a jump in cost.
Because (3a) is strictly convex in (pti, q

t
i) and Zti is convex

and compact, a unique solution (pt∗i , q
t∗
i ) exists for each t.

For future developments, consider the so-called best re-
sponse strategy of node i, denoted as bti(α

t
i, β

t
i ), for given

αti and βti :

(pt∗i , q
t∗
i ) = bti(α

t
i, β

t
i ) := arg min

(pti,q
t
i)∈Zt

i

f ti
(
pti, q

t
i |αti, βti

)
. (5)

2) Social-welfare problem: Consider a cost function Dt(v̂t)
that captures network-oriented objective in voltage at time
t. For example, to minimize the voltage deviation from the
nominal value vnom, we can set Dt(v̂t) = 1

2‖v̂
t− vnom‖2. The

following assumption is made.

Assumption 2 Function Dt(v̂t) is continuously differen-
tiable, convex, and with bounded first-order derivative at
achievable voltage magnitude values.

Because the set of power injections (p, q) is compact and v̂
is a continuous function of (p, q), the achievable v̂ values are
bounded. Thus, the boundedness of the first-order derivative
of Dt(v̂t) is a reasonable assumption.

Consider the following optimization problem to be solved
by the network operator, which captures both customer-
oriented and network-oriented objectives of a distribution
network:

(Pt
2) min

pt,qt,v̂t,αt,βt

∑
i∈N

Cti (p
t
i, q

t
i) + γtDt(v̂t), (6a)

s.t. v̂t = Rpt +Xqt + a, (6b)
vt ≤ v̂t ≤ vt, (6c)
(pti, q

t
i) = bti(α

t
i, β

t
i ), ∀i ∈ N , (6d)

where γt ∈ R+ is used to trade off between the end-
customer and network-oriented objectives, and vt and vt are
vectors collecting prescribed minimum and maximum voltage
magnitude limits (the inequalities are component-wise).

Note that (Pt
2) is usually non-convex due to the constraint

(6d). This is because (6d) is usually not affine. For better illus-
tration of the non-convexity of (Pt

2), consider the following
simple example with real power only. Assume a quadratic cost
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function Cti (p
t
i) = pti

2 and a box feasible set pti ∈ [p
i
, pi] with

upper and lower bounds for real power injections p
i

and pi,
and we end up with a non-convex piece-wise linear function
bti:

pti = bti(α
t
i) =


p
i
, if αti/2 < p

i
αti/2, if p

i
≤ αti/2 ≤ pi

pi, if αti/2 > pi

, (7)

which will become more complex if we consider more com-
plicated Cti and Zti .

Problem (Pt
2) defines optimal operational trajectory

{pt∗, qt∗}t∈R+
over time for the active and reactive powers of

the distribution network. One way to identify (and track) the
time-varying optimal points of (Pt

2) consists in discretizing
the temporal domain as tm := mh, k ∈ N, where h is a given
time interval, and solve (Pt

2) at each time tm. Section III
will focus on the case where distributed algorithms can be
utilized to solve (Ptm

2 ) to convergence at each time tm. These
algorithms are suitable for operational conditions where non-
controllable demand/generation, ambient conditions, and cost
functions are slow time-varying (i.e., the interval h is “large
enough” to allow convergence of the distributed algorithm).
Section IV will then focus on faster time-varying operational
settings, and will advocate the development of online algo-
rithms [7] that track {pt∗, qt∗}t∈R+

over time.

III. INCENTIVE-BASED DISTRIBUTED ALGORITHM

Focusing on a particular problem instance at time t, (Pt
2)

lends itself to a Stackelberg game interpretation where αt and
βt are calculated via (Pt

2) by the network operator (i.e., the
leader) and broadcasted to all nodes i ∈ N ; subsequently, each
end-consumer (i.e., the follower) computes the power setpoints
pt∗i and qt∗i from (Pt

1,i). By design, (pt∗, qt∗) is an optimal
point of (Pt

2).
However, it is challenging for the network operator to

solve (Pt
2) not only because of the non-convexity introduced

by constraint (6d), but also because it requires knowledge
of the end-customer’s best-response function bti. To solve
the problem, in Section III-A we first formulate a convex
relaxation of (Pt

2) and show that its optimum gives the
optimum of (Pt

2), and then in Section III-B we design a
distributed algorithm to solve (Pt

2) based on the algorithm for
the relaxed problem. Since the same solution procedure is used
to solve (Pt

2) to convergence at each time t, the superscript
t will be dropped in this section. The superscript t will be re-
introduced in Section IV where we outline an online solution
method.

A. Convex Reformulation

We start by deriving a convex relaxation of the non-convex
problem (P2) as well as conditions under which an optimal
point of (P2) can be identified. Consider the following convex

optimization problem:

(P3) min
p,q,v̂

∑
i∈N

Ci(pi, qi) + γD(v̂), (8a)

s.t. v̂ = Rp+Xq + a, (8b)
v ≤ v̂ ≤ v, (8c)
(pi, qi) ∈ Zi, ∀ i ∈ N , (8d)

where we replace the non-convex constraint (6d) in (P2) with
(8d), and signals αt and βt are to be determined later. We
assume that the above problem is feasible.

Assumption 3 (Slater’s condition) There exists a feasible
point (p̃, q̃) ∈ Z , Z := Z1 × . . .×ZN , such that:

v ≤ Rp̃+Xq̃ + a ≤ v. (9)

Assumption 3 does not involve strict inequality because
the constraint is linear. Given the strong convexity of the
objective function (8a) in (pi, qi) and the linear relation (8b),
a unique optimal solution exists for problem (P3). Notice
that a solution (p∗i , q

∗
i , v̂
∗) of (P3) may not be feasible for

(P2), i.e., there does not exist a (α∗, β∗) such that (p∗i , q
∗
i ) =

bi(α
∗
i , β
∗
i ). We will, however, show next that such a (α∗, β∗)

exists, and thus the solution of (P3) gives the solution of
(P2).

Denote by µ and µ the dual variables associated with the
constraint (8c). Let v̂∗ be the optimal voltage magnitudes
produced by (P3) and µ∗, µ∗ the optimal dual variables. Then,
we propose to design the incentive signals as follows:

α∗ = R
(
µ∗ − µ∗ − γ∇v̂D(v̂∗)

)
, (10a)

β∗ = X
(
µ∗ − µ∗ − γ∇v̂D(v̂∗)

)
, (10b)

where ∇v̂D denotes the gradient of function D with respect to
the vector v̂. Note that α∗ and β∗ are composed of dual prices
µ∗, µ∗ and the marginal cost of network operator γ∇v̂D(v̂∗),
together with R,X characterizing the network structure. As
will be shown shortly, α∗ and β∗ are in fact designed based
on the optimality conditions of (P2) and (P3). The above
incentive signals are bounded, which precludes the possibility
of infinitely large signals.

Theorem 1 Under Assumptions 1–3, the incentive signals
(α∗, β∗) defined by (10) are bounded. 2

Proof: Notice that the derivative ∇v̂D is bounded. To
show the boundedness of (α∗, β∗), it is enough to show that
the optimal duals (µ∗, µ∗) are bounded.

Consider the KKT conditions for problem (P3):(
∇p
∑
i∈N

Ci(p
∗
i , q
∗
i ) + γR∇v̂D(v̂∗)−R(µ∗ − µ∗)

)ᵀ
(p− p∗) ≥ 0,∀(p, q) ∈ Z, (11a)(

∇q
∑
i∈N

Ci(p
∗
i , q
∗
i ) + γX∇v̂D(v̂∗)−X(µ∗ − µ∗)

)ᵀ
(q − q∗) ≥ 0, ∀(p, q) ∈ Z, (11b)

v̂∗ = Rp∗ +Xq∗ + a, (11c)
v ≤ v̂∗ ≤ v, (11d)
(v̂∗ − v)ᵀµ∗ = 0, µ∗ ≥ 0, (11e)
(v − v̂∗)ᵀµ∗ = 0, µ∗ ≥ 0. (11f)
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Combining (11a)–(11c) results in:(
∇p
∑
i∈N

Ci(p
∗
i , q
∗
i ) + γR∇v̂D(v̂∗)

)ᵀ
(p− p∗)

+
(
∇q
∑
i∈N

Ci(p
∗
i , q
∗
i ) + γX∇v̂D(v̂∗)

)ᵀ
(q − q∗)

+(µ∗ − µ∗)ᵀ(v̂ − v̂∗) ≥ 0, ∀(p, q) ∈ Z, ∀v̂, (12)

where the first two terms on the left of the inequality are
bounded because of the bounded derivative of cost functions
and the bounded set Z . By the complementary slackness
conditions (11e)-(11f), µ∗i and µ∗

i
, i ∈ N cannot be nonzero at

the same time. If µ∗i →∞, then v̂∗i = vi and we can choose
a (p, q) and thus v̂i such that the third term on the left of (12)
goes to −∞ and (12) does not hold. So, µ∗i and thus µ∗ is
bounded. Similarly, we can show that µ∗ is bounded too. The
result follows.

By examining the optimality conditions of (P2) and (P3),
we have the following result.

Theorem 2 The solutions of problem (P3) along with the
signals (α∗, β∗) defined in (10) are global optimal solutions
of problem (P2); i.e., problem (P3) is an exact convex
relaxation of problem (P2). 2

Proof: By the signal design (10), (11a)–(11b) become(
∇p
∑
i∈N

Ci(p
∗
i , q
∗
i )− α∗

)ᵀ
(p− p∗) ≥ 0, ∀(p, q) ∈ Z, (13a)(

∇q
∑
i∈N

Ci(p
∗
i , q
∗
i )− β∗

)ᵀ
(q − q∗) ≥ 0, ∀(p, q) ∈ Z. (13b)

Notice that the above variational inequalities imply that
(p∗i , q

∗
i ) = bi(α

∗
i , β
∗
i ), i ∈ N . So, the solution of problem

(P3) along with (α∗, β∗) defined in (10) is feasible for
problem (P2). The result follows, as (P3) is a convex
relaxation of (P2).

From now on, we will use the optima of (P3) and (P2)
interchangeably depending on the context. Next, based on The-
orem 2, we will develop an iterative algorithm that achieves the
optimum of (P3) (and hence that of (P2)) without exposing
any private information of the end-customers to the network
operator.

Remark 2 Theorem 2 asserts that non-convex problem (P2)
can be solved through solving a convex problem (P3). At
first glance, it appears that the non-convexity of (P2) comes
from a non-convex representation of the feasible set that may
have a convex representation as implied by (P3). An ongoing
investigation is to identify the specific problem structure to
generalize the result in Theorem 2 to a larger class of
problems. 2

B. Distributed Algorithm

For notational simplicity, let si = [αi, βi]
ᵀ denote the

overall signals for end-customer i and define zi = [pi, qi]
ᵀ.

Further denote by z := [pᵀ, qᵀ]ᵀ ∈ R2N the vector of stacked
power injections, and by µ := [µᵀ, µᵀ]ᵀ ∈ R2N

+ the vector

of stacked dual variables. Consider the following Lagrangian
function associated with (P3):

L(z, µ) =
∑
i∈N

Ci(zi) + γD(z) + µᵀ(v −Rp−Xq − a)

+µᵀ(Rp+Xq + a− v), (14)

which is obtained by keeping the constraints z ∈ Z and µ ∈
R2N

+ implicit. Denote as (z∗, µ∗) a saddle-point of L(z, µ).
To facilitate the development of provably convergent online

algorithms (the subject of Section IV), consider the following
regularized Lagrangian function:

Lφ(z, µ) :=
∑
i∈N

Ci(zi) + γD(z) + µᵀ(v −Rp−Xq − a)

+µᵀ(Rp+Xq + a− v)− φ

2
‖µ‖2, (15)

where φ > 0 is a predefined parameter (see e.g., [7], [32]).
With the regularization term −φ2 ‖µ‖

2, the resultant function
Lφ(z, µ) is strongly concave in the dual variables. Based
on (15), we proceed with the following minimax problem:

max
µ∈R2N

+

min
z∈Z

Lφ(z, µ). (16)

In general, the unique optimizer of (16), denoted by (z∗φ, µ
∗
φ),

is not a saddle-point of the Lagrangian function (15) because
of the regularization term −φ2 ‖µ‖

2. However, the discrepancy
between the unique optimizer of (16) and the optimizers
of (15) can be bounded as shown next.

Notice first that the boundedness of µ∗ is shown in The-
orem 1; µ∗φ can be readily shown to be bounded too. For
ease of exposition, define f(z) :=

∑
i∈N Ci(zi) + γD(z) and

g(z) :=

[
v −Rp−Xq − a
Rp+Xq + a− v

]
; this way, the Lagrangian can be

re-expressed in a compact form as L(z, µ) = f(z) + µᵀg(z)
and the regularized counterpart reads Lφ(z, µ) = f(z) +
µᵀg(z) − φ

2 ‖µ‖
2. From Assumption 1–2, it follows that f

is strongly convex in z. Equivalently, ∇zf(z, µ) is strongly
monotone in z. Therefore, we have the following lemma:

Lemma 1 There exists a scalar c > 0 such that ∀z, z′ ∈ Z ,(
∇zf(z, µ)−∇zf(z′, µ)

)ᵀ
(z − z′) ≥ c‖z − z′‖2. (17)

2

Then, the discrepancy between z∗ and z∗φ due to the
regularization term can be bounded as follows (see also [32,
Proposition 3.1]).

Theorem 3 The difference between z∗φ and z∗ is bounded as:

‖z∗φ − z∗‖2 ≤
φ

2c

(
‖µ∗‖2 − ‖µ∗φ‖2

)
. (18)

2

Proof: As a saddle point of (16), (z∗φ, µ
∗
φ) satisfies the

following inequalities:

Lφ(z∗φ, µ) ≤ Lφ(z∗φ, µ
∗
φ) ≤ Lφ(z, µ∗φ), ∀z, µ .

The left inequality leads to

(µ∗φ − µ∗)ᵀg(z∗φ)− φ

2
‖µ∗φ‖2 +

φ

2
‖µ∗‖2 ≥ 0, (19)
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where we set µ = µ∗. We next characterize the term (µ∗φ −
µ∗)ᵀg(z∗φ).

(i) Leveraging the definition of convex functions, gj(z∗φ) can
be upper bounded as:

gj(z
∗
φ) ≤ gj(z

∗) +∇zgj(z∗φ)ᵀ(z∗φ − z∗)
≤ ∇zgj(z∗φ)ᵀ(z∗φ − z∗), (20)

where the second inequality is due to the fact that gj(z∗) ≤ 0.
Multiply both sides of (20) by µ∗φ,j (which is nonnegative)
and sum up for all j to have:

µ∗ᵀφ g(z∗φ) ≤
∑
j

µ∗φ,j · ∇zgj(z∗φ)ᵀ(z∗φ − z∗)

= ∇zLφ(z∗φ, µ
∗
φ)ᵀ(z∗φ − z∗)−∇zf(z∗φ)ᵀ(z∗φ − z∗)

≤ −∇zf(z∗φ)ᵀ(z∗φ − z∗), (21)

where the second inequality is due to the first-order optimality
condition ∇zLφ(z∗φ, µ

∗
φ)ᵀ(z∗φ − z∗) ≤ 0.

(ii) On the other hand, one has that:

gj(z
∗
φ) ≥ gj(z∗) +∇zgj(z∗)ᵀ(z∗φ − z∗). (22)

Multiply both sides of (22) by −µ∗j (which is nonpositive) and
sum up for all j to get:

−µ∗ᵀg(z∗φ) ≤−
∑
j

µ∗jgj(z
∗)−

∑
j

µ∗j · ∇zgj(z∗)ᵀ(z∗φ − z∗)

=
∑
j

µ∗j · ∇zgj(z∗)ᵀ(z∗ − z∗φ)

= ∇zL(z∗, µ∗)ᵀ(z∗ − z∗φ)−∇zf(z∗)ᵀ(z∗ − z∗φ)

≤ ∇zf(z∗)ᵀ(z∗φ − z∗), (23)

where the first equality is due to the complimentary slackness
condition and the second inequality is obtained from the first-
order optimality condition.

Substitute (21) and (23) into (19), and use (17) to obtain
(18).

The key advantage of utilizing the regularized Lagrangian is
that the primal-dual gradient methods applied to (16) exhibit
improved convergence properties [7] as explained next.

Hereafter, we omit the subscript φ from the optimization
variables for notational simplicity, with the understanding
that the updates of z(k) and µ(k) are designed to solve the
regularized saddle-point problem (16). Consider the following
primal-dual projected gradient method, where k denotes the
iteration index:[

z(k + 1)
µ(k + 1)

]
= T̂

([
z(k)
µ(k)

])
:=

[[
z(k)
µ(k)

]
−
[
ε1∇zLφ(z(k), µ(k))
−ε2∇µLφ(z(k), µ(k))

]]
Z×R2N

+

, (24)

where [ ]Z×R2N
+

denotes the projection operation onto the
set Z × R2N

+ , and ε1, ε2 > 0 are prescribed step sizes for
the primal and the dual updates. Notice that ∇zLφ(z, µ) and
∇µLφ(z, µ) are Lipschitz continuous and strongly monotone.
Therefore by virtue of [33, Sec. 3.5, Proposition 5.4], the
following result holds.

Theorem 4 There exist some ε̄1, ε̄2 > 0 such that for any
ε1 ∈ (0, ε̄1], ε2 ∈ (0, ε̄2], T̂ is a contraction mapping. For ε1 ∈

Algorithm 1 Incentive-based iterative algorithm
repeat

[S1] End-customer i ∈ N performs (25a) and sends
zi(k + 1) to network operator.
[S2] Network operator performs steps (25b)–(25f).
[S3] Network operator transmits signals si(k+1) to end-
customer i ∈ N .

until stopping criterion is met

(0, ε̄1], ε2 ∈ (0, ε̄2], the sequence {(z(k), µ(k))} generated by
(24) converges geometrically to the optimizer of (16). 2

The proof is referred to [33] and omitted here. We can
further provide analytical bound for such ε̄1, ε̄2 for com-
pleteness. The results put as Theorem 6 are presented in the
Appendix for better readability. We also refer to Section V-
B.1) for some numerical characterization of step sizes as
regards convergence.

Given Theorems 3–4, algorithm (24) converges to within a
small neighborhood of problem (P3) (problem (P2)) whose
size can be controlled by choosing a proper weight φ for the
regularization term.

The decomposable structure of (24) naturally enables the
following iterative distributed algorithm:

zi(k + 1) =
[
zi(k)− ε1

(
∇zCi(zi(k))− si(k)

)]
Zi
, (25a)

µ(k + 1) =
[
µ(k) + ε2

(
v − v̂(k)− φµ(k)

)]
+
, (25b)

µ(k + 1) =
[
µ(k) + ε2

(
v̂(k)− v − φµ(k)

)]
+
, (25c)

α(k + 1) = R
(
µ(k + 1)−µ(k + 1)−γ∇v̂D(v̂(k))

)
, (25d)

β(k + 1) = X
(
µ(k + 1)−µ(k + 1)−γ∇v̂D(v̂(k))

)
, (25e)

v̂(k + 1) = Rp(k + 1) +Xq(k + 1) + a , (25f)

where the power setpoints of each device are computed locally
through (25a) and (25b)–(25f) are performed at the network
operator. The resultant scheme is tabulated as Algorithm 1.
Notice that each end-customer i does not share its cost
function Ci or its feasible set Zi with the network operator;
rather, the end-customer transmits to the network operator only
the resultant power injections zi(k). Indeed, the results of
Theorem 3–4 apply to (25) too.

Remark 3 In (25), α and β are utilized by the end-customers
to construct the primal gradient ∇zLφ. This strategy enables
a distributed implementation of the primal-dual projected
gradient method (24) without the end-customers knowing
information of the network. 2

IV. ONLINE ALGORITHM

Algorithm 1 involves an iterative procedure where (25) is
repeated until convergence to (within a small neighborhood
of) an optimum of problem (Pt

2) at each time t. This requires
considering a discrete-time model where time is divided into
slots of equal duration, indexed by tm ∈ N+ = {0, 1, 2 · · · },
where the timeslot duration is expected to be much longer than
the convergence time of Algorithm 1. However, in the case of
fast changing operational conditions and cost functions, it is
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desirable to use a small timeslot duration, i.e., to sample (Pt
2)

at a small sampling interval to track {pt∗, qt∗}t∈R+ [7]. In this
case, it may not be possible to solve (Ptm

2 ) to convergence
within the timeslot, and instead only K > 0 iterations may be
performed. Also, problem (Ptm

2 ) uses linear approximation
(2) of the power-flow model. In this section, we will develop
an online algorithm that continuously pursues the optima of
(Ptm

2 )tm∈N+
, and characterize the “loss” of optimality caused

by the finite iterations as well as the approximation error.

A. Online Algorithm

As in Section III-B, the voltage magnitudes vi, i ∈ N will
be measured, but they will follow the power-flow equations
(1) instead of its linear approximation (2). We assume that the
approximation error is bounded (see also [34], [35]).

Assumption 4 There exists a constant e > 0 such that
|vtmi (z) − v̂tmi (z)| ≤ e, i ∈ N for all z ∈ Z at any time
tm.

As the linearized power-flow model (2) is a very accurate
approximation under normal operating condition [9], [11],
[12], the bound e expects to be small.

With the measurement of the voltage magnitudes, the pro-
posed algorithm, formally described as Algorithm 2, executes
the following steps at time tm (k denotes the iteration index):

ztmi (k + 1) =
[
ztmi (k)− εtm1

(
∇zCtmi (ztmi (k))

− stmi (k)
)]
Ztm

i

, (26a)

µtm(k + 1) =
[
µtm(k) + εtm2

(
vtm − vtm(k)

− φµtm(k)
)]

+
, (26b)

µtm(k + 1) =
[
µtm(k) + εtm2

(
vtm(k)− vtm

− φµtm(k)
)]

+
, (26c)

αtm(k + 1) = R
(
µtm(k + 1)− µtm(k + 1)

− γtm∇vDtm(vtm(k))
)
, (26d)

βtm(k + 1) = X
(
µtm(k + 1)− µtm(k + 1)

− γtm∇vDtm(vtm(k))
)
, (26e)

vtm(k + 1) obey the nonlinear model (1). (26f)

Iterations (26) are performed K > 0 times during each
timeslot tm. When K = 1, only one iteration (26) is computed
per timeslot [7], [8], [27]–[29]. It is worth noticing that
a centralized implementation of (26) requires collecting the
time-varying Cti and Zti at the network operator at each
iteration; hence, a a centralized implementation would incur a
higher communication overhead.

In the next subsection, we will analyze the convergence and
tracking capability of the above online algorithm.

Remark 4 (local controller) The proposed algorithms pro-
duce setpoints (pti, q

t
i) ∈ Zti for the output powers of the

DERs. It is assumed that the DERs are endowed with local
controllers that are designed so that, upon receiving the
setpoint, the output powers are driven to the commanded
setpoints. Relevant dynamical models for the output powers of
inverters operating in a grid-connected mode are discussed in

Algorithm 2 Real-time incentive-based algorithm
At each timeslot tm:

[S0] Initialization: ztm(0) = ztm−1(K),
µtm(0) = µtm−1(K),
stm(0) = stm−1(K).

repeat
[S1] End-customer i ∈ N performs (26a).
[S2] End-customer i ∈ N implements ztmi (k + 1).
[S3] Network operator performs steps (26b)–(26e).
[S4] Network operator transmits signals stmi (k + 1) to
end-customer i ∈ N .
[S5] Network operator measures voltages vtm .

until k = K

e.g., [36], [37] and can be found in datasheets of commercially
available DERs. Assumption 4 accounts for both measurement
errors and bounds the discrepancy between the commanded
setpoint and the actual output powers; Assumption 4 is valid,
for example, when the DER’s response to a step-change in the
setpoint follows a first-order model [36], [37]. 2

Remark 5 (implementation) The proposed real-time algo-
rithms update the setpoints of the DERs on a second or
subsecond timescale to maximize the operational objectives
while coping with the variability of available renewable-based
generation and non-controllable energy assets. The algorithm
does not control any anti-islanding and ride-through parame-
ters. Considerations regarding the recloser-fuse coordination
problem (which affects anti-islanding and ride-through con-
figurations) pertain to the deployment of the DERs and given
interconnection agreements. In case of event where the DERs
are required to shut off, the algorithm will not produce any
setpoint; the algorithm will re-start producing setpoints once
the DERs are allowed to reconnect to the system. 2

B. Performance Analysis

In this subsection, the hatted symbols (e.g., α̂t(k), β̂t(k))
refer to the iterates produced by the algorithm (25) (i.e., under
the linear approximation (2)), while the non-hatted symbols
(e.g., αt(k), βt(k)) refer to those produced by (26) (i.e., under
the nonlinear model (1)).

By comparing (25) and (26), Assumption 4 leads to the
following bounds:

|µ̂tm
i
− µtm

i
| ≤ ε2e, |µ̂tmi − µ

tm
i | ≤ ε2e,

|α̂tmi − α
tm
i | ≤ R

ᵀ
i (γ∇2

vD(ṽtm)1n + ε2)e,

|β̂tmi − β
tm
i | ≤ X

ᵀ
i (γ∇2

vD(ṽtm)1n + ε2)e,

for some ṽtm and, therefore:

|p̂tmi − p
tm
i | ≤ ε1R

ᵀ
i (γ∇2

vD(ṽtm)1n + ε2)e := δ1,i,

|q̂tmi − q
tm
i | ≤ ε1X

ᵀ
i (γ∇2

vD(ṽtm)1n + ε2)e := δ2,i.

Let δ := [δ1,1, . . . , δ1,N , δ2,1, . . . , δ2,N ] ∈ R2N
+ , and collect

the primal and dual variables in the vector y := (z, µ) for
notational simplicity. Consequently, the following holds:

‖T̂ tm(y)− T tm(y)‖ ≤ ‖ρ‖, ∀y ∈ Ztm × R2N
+ , (27)
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where ρ := [ε2e ·11×2N , δ
ᵀ]ᵀ and T tm(·) is the counterpart of

T̂ tm(·) for the iterates (26) at time tm. Let ∆ ≤ ∆̄ < 1 be the
contraction modulus for T̂ tm(·); with appropriate step sizes
εtm1 and εtm2 chosen according to Theorem 4, by definition,
we have that:

‖T̂ tm(y)− T̂ tm(y′)‖ ≤ ∆‖y − y′‖, ∀y, y′ ∈ Ztm × R2N
+ . (28)

Recall that ŷtm∗ denotes an optimizer of Ltmφ . Since Ltmφ
is a time-varying problem, consider capturing the variation of
an optimizer over two consecutive time instants as:

‖ŷtm+1∗ − ŷtm∗‖ ≤ σ, (29)

where 0 < σ < +∞ [7].
Then, the following result characterizes the discrepancy

between the powers produced by (26) and an optimizer of
Ltmφ .

Theorem 5 Under Assumptions 1–4 and step sizes chosen
according to Theorem 4, the sequence {ytm} generated by
Algorithm 2 converges as

lim
m→∞

sup ‖ytm(K)− ŷtm∗‖ =
‖ρ‖

1−∆
+

σ∆K

1−∆K
. (30)

2

Proof: We can characterize the distance between the
operating point achieved by (26) in K iterations and the
optimizer of Ltmφ as follows:

‖ytm(K)− ŷtm∗‖
= ‖T tm(ytm(K − 1))− T̂ tm(ytm(K − 1))

+ T̂ tm(ytm(K − 1))− ŷtm∗‖ (31)
≤ ‖T tm(yt(K − 1))− T̂ tm(ytm(K − 1))‖

+ ‖T̂ tm(ytm(K − 1))− ŷtm∗‖ (32)
≤ ‖ρ‖+ ∆‖ytm(K − 1)− ŷtm∗‖ (33)

≤ ‖ρ‖(1−∆K)

1−∆
+ ∆K‖ytm(0)− ŷtm∗‖ (34)

=
‖ρ‖(1−∆K)

1−∆
+ ∆K‖ytm−1(K)− ŷtm−1∗

+ ŷtm−1∗ − ŷtm∗‖ (35)

≤ ‖ρ‖(1−∆K)

1−∆
+ ∆K‖ytm−1(K)− ŷtm−1∗‖

+ ∆K‖ytm−1∗ − ŷtm∗‖ (36)

≤ ‖ρ‖(1−∆K)

1−∆
+ ∆K‖ytm−1(K)− ytm−1∗‖

+ ∆Kσ, (37)

where: (33) follows from (27) and (28); (34) can be obtained
by repeating (31)–(33) for K times; and, (37) follows from
(29). We repeat steps (31)–(37) recursively over time instants
tm, . . . , t0 to obtain:

‖ytm(K)− ŷtm∗‖

≤ (
‖ρ‖(1−∆K)

1−∆
+ ∆Kσ)

1−∆Km

1−∆K
+ ∆Km‖yt0 − ŷt0∗‖.

When m→∞, (30) follows.

The result (30) bounds the maximum discrepancy between
the setpoints ytm(K) generated by Algorithm 2 and a time-
varying optimizer of (Pt

2). The bound (30) depends on:
i) The underlying dynamics of the distribution system; in fact,
we recall that the dynamics of non-controllable power assets,
constraints, and operational conditions translate into temporal
variations of the optimizers of (Pt

2) [7], which is characterized
by the parameter σ. When the variation of ŷtm∗ is smooth in
time, bound (30) becomes tighter.
ii) The approximation error introduced by the linearized
power-flow equation, which is implicitly captured by ρ.

The result (30) can also be interpreted as an input-to-state
stability, when one adopts the trajectory {ŷtm∗} as a reference
frame. Future research efforts will aim at characterizing the
discrepancy between ytm(K) and the optimal point of (Pt

2)
when the nonlinear AC power-flow equations are utilized.

Finally, when K = 1, (30) boils down to:

lim
m→∞

sup ‖ytm(1)− ŷtm∗‖ =
‖ρ‖+ σ∆

1−∆
. (38)

The bound in (38) is close in spirit to [8], and it can be further
simplified as ‖ρ‖

1−∆ for the case of time-invariant (i.e. static)
settings [7].

V. NUMERIC EXAMPLES

A. Simulation Setup

Consider a modified version of the IEEE 37-node test
feeder shown in Figure 1. The modified network is obtained
by considering the phase “c” of the original system and
by replacing the loads specified in the original dataset with
real load data measured from feeders in Anatolia, California,
during a week of August 2012 [38]. Particularly, the data
have a granularity of 1 second, and represent the loading of
secondary transformers. Line impedances, shunt admittances,
as well as active and reactive loads are adopted from the
respective data set. It is assumed that 18 PV systems are
located at nodes 4, 7, 10, 13, 17, 20, 22, 23, 26, 28, 29,
30, 31, 32, 33, 34, 35, and 36, and their generation profiles
are simulated based on the real solar irradiance data available
in [38]. The ratings of these inverters are 300 kVA for i = 3,
350 kVA for i = 15, 16, and 200 kVA for the remaining
inverters. Loads and the power available from a PV system
with capacity of 50 kW are reported in Fig. 2 for illustrative
purposes.

The voltage limits vi and vi are set to 1.05 p.u. and
0.95 p.u. respectively, for ∀i ∈ N . Various step sizes ε1

and ε2 are tested to provide examples of cases where the
algorithm converges as well as cases where it is not conver-
gent. The customers’ objective functions are set uniformly to
Cti (p

t
i, q

t
i) = cp(p

t
i,av − pti)2 + cqq

t2
i , in an effort to minimize

the amount of real power curtailed from the available power
pti,pv based on irradiance conditions at time t, and the amount
of reactive power injected or absorbed. The coefficients are set
to cp = 3 and cq = 1. The network-oriented objective is set
to D(vt) = 1

2‖v
t − vnom‖22 to penalize voltage deviation from

the nominal value vnom = 1 p.u. Without loss of generality,
we demonstrate our results with the trade-off parameter γ set
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Fig. 1. IEEE 37-node feeder. The boxes represent PV systems. The red
nodes are the ones analyzed in the numerical example.
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Fig. 2. Profiles of loads and power available from the PV systems. The
average load profile is marked in blue.

to either 0 or 1. For γ = 1, it is possible to trade off the
customer-oriented objectives for flatness of the voltage profile.
The regularization parameter φ is set to 10−4.

B. Iterative Algorithm

We first test Algorithm 1 and show how the algorithm can
address overvoltages in distribution systems [4]. To this end,
we focus on a single timeslot at 12 pm.

1) Convergence: Let γ = 0 for simplicity. Recall from
Theorem 4 that step sizes ε1 and ε2 both affect the convergence
properties. For simplicity, set ε2 = 0.01, and consider tuning
ε1 to achieve convergence. Similar results can be observed
by fixing ε1 and tuning ε2, or tuning both ε1 and ε2. As
shown in Figure 3, when ε1 is increased from 0.01 to 0.3,
we observe faster convergence. However, when we further
increase ε1 beyond 0.4, an oscillatory behavior is observed.

2) Voltage regulation: The results are plotted in Figure 4
corresponding to the case where ε1 = ε2 = 0.01. We show
voltage profiles in three scenarios: (i) uncontrolled setting,
where the PV systems operate at unity power factor and inject
the maximum available power without any curtailment (blue
dots), (ii) controlled voltages with γ = 0 (red dots), and (iii)
controlled voltages with γ = 1 (yellow dots). It is clear that
in the uncontrolled case (i) the voltage values exceed the limit
of 1.05 p.u. (black dashed line) due to large reverse power
flows, while the controlled scenarios (ii) and (iii) show voltage
within limits. Furthermore, voltage values achieved by (iii) are
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Fig. 3. Convergence of the distributed algorithm with increasing step size
ε1 and fixed step size ε2.
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Fig. 4. Controlled and uncontrolled voltages at all buses at noon.

closer to the nominal value than those by (ii), because (iii) also
penalizes voltage deviation from 1 p.u.

C. Online Algorithm

Next, Algorithm 2 is tested based on the irradiance and
load profiles shown in Figure 2. One iteration (i.e., K = 1)
is performed every second (i.e., h = 1 second). In the
following, the performance of the proposed online algorithm
are illustrated for both cases of γ = 0 and γ = 1. We will
provide the voltage profiles as well as the profiles of the
incentive signals. In addition, incentive signal profiles under
K = 5 are provided for comparative purpose.

1) γ = 0: In this case, the function D(v) is disregarded.
The voltage profiles obtained when the PV inverters operate
according to business-as-usual practices and when they im-
plement the proposed Algorithm 2 are provided for nodes 2,
28, and 35 in Fig. 5. In the uncontrolled case, voltage values
exceed the upper limit during the mid-day hours because of
the reverse power flows; in contrast, the proposed algorithm
enforces voltage regulation, even when only one iteration is
performed every second. Fig. 6 illustrates that the incentive
signals become nonzero when voltages would violate the
limits. The negative signals incentivize the customers to curtail
active power and produce negative reactive power.

2) γ = 1: The voltage profiles obtained when γ = 1 are
plotted in Fig. 8. In this case, the voltage magnitudes are driven
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Fig. 5. Controlled and uncontrolled voltages at nodes 2, 28, and 35 from
4:30 am to 7:00 pm with γ = 0 and K = 1.
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Fig. 6. The incentive signals at nodes 2, 28, and 35 from 4:30 am to 7:00 pm
with γ = 0 and K = 1.
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Fig. 7. The incentive signals at nodes 2, 28, and 35 from 4:30 am to 7:00 pm
with γ = 0 and K = 5.

closer to the nominal value, at the cost of curtailing more real
power and absorbing more reactive power. Voltages are clearly
within limits.

3) K = 5: We repeat the simulations with five iterations
per second (i.e., K = 5), and plot the signal profiles based on
the last iteration of each second. The results are presented in
Fig. 7 and Fig. 10. As expected, the incentive signals generated
with more iterations provide more accurate (see Fig. 6 vs
Fig. 7) and more steady (see Fig. 9 vs Fig. 10) tracking of
voltage changes. The resultant controlled voltage profiles with
K = 5 are omitted because they are not largely different from
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Fig. 8. Controlled and uncontrolled voltages at nodes 2, 28, and 35 from
4:30 am to 7:00 pm with γ = 1 and K = 1.
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Fig. 9. The incentive signals at nodes 2, 28, and 35 from 4:30 am to 7:00 pm
with γ = 1 and K = 1.
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Fig. 10. The incentive signals at nodes 2, 28, and 35 from 4:30 am to
7:00 pm with γ = 1 and K = 5.

Fig. 5 and Fig. 8 with K = 1; nevertheless, by examining
the results in details we have found that voltage profiles with
K = 5 commit less voltage violation when γ = 0, and enjoy
smaller (time) variance in general.

VI. CONCLUSION

This paper considers a time-varying social welfare max-
imization problem modeling network operator and DER-
owners operational objectives as well as voltage constraints.
The formulated problem is non-convex; however, we propose
a convex relaxation and we provide conditions under which
the optimal solutions of the relaxed problem coincide with
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the optimal points of the non-convex social-welfare problem.
We then design distributed algorithms to identify the solutions
of the time-varying social welfare maximization problem. An
online algorithm is proposed to enable tracking of the solutions
in the presence of fast time-varying operational conditions and
changing optimization objectives. Stability of the proposed
schemes is analytically established and numerically corrob-
orated. Future research directions include the extension of
the proposed framework to control DERs with discrete power
levels and devices involving discrete decision variables.

APPENDIX

Complementing the convergence results of Theorem 4, in
the following we provide sufficient conditions on the stepsizes
ε1 and ε2 that guarantee the operator T̂ in (24) to be a
contraction.

Theorem 6 If the stepsizes ε1 and ε2 satisfy the following
conditions for any i ∈ N :

ε2 <
1

2
∑
j∈N Rij

, ε1∇2
pi(Ci + γD) > 2ε2

∑
j∈N

Rij , (39a)

ε1∇2
pi(Ci + γD) + 2ε2

∑
j∈N

Rij < 2, (39b)

ε2 <
1

2
∑
j∈N Xij

, ε1∇2
qi(Ci + γD) > 2ε2

∑
j∈N

Xij , (39c)

ε1∇2
qi(Ck + γD) + 2ε2

∑
j∈N

Xij < 2, (39d)

ε1 <
1∑

j∈N (Rij +Xij)
, ε1

∑
j∈N

(Rij +Xij) > ε2φ, (39e)

ε1

∑
j∈N

(Rij +Xij) + ε2φ < 2, (39f)

then T̂ is a contraction. 2

Proof: Let ∇T̂ ∈ R4N×4N denote Jacobian matrix of T̂ ,
and let ∇T̂ij denote the element on row i and column j of
matrix ∇T̂ . To prove that T̂ is a contraction, it is sufficient to
have the following condition:∑

j

|∇T̂ij | < 1, ∀i,

which is satisfied if the following three inequalities hold:∣∣1− ε1(∇2
pi(Ci + γD))

∣∣+ 2ε2

∑
j∈N

Rij < 1, (40a)

∣∣1− ε1(∇2
qi(Ci + γD))

∣∣+ 2ε2

∑
j∈N

Xij < 1, (40b)

∣∣1− ε2φ
∣∣+ ε1

∑
j∈N

(Rij +Xij) < 1. (40c)

Conditions (39) and (40) are in fact equivalent. Therefore, (39)
are sufficient for T̂ to be a contraction.

Remark 6 Conditions (39) together with assumptions in this
paper guarantee the existence of small enough step sizes ε1

and ε2 to achieve convergence. This result is consistent with
Theorem 4. 2
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