```
$TITLE: M2-1.GMS introductory model using MCP
* simple supply and demand model (partial equilibrium)
```

PARAMETERS

A
B
C
D
TAX
intercept of supply on the P axis ($M C$ at $Q=0$) change in MC in response to Q - this is dP over dQ intercept of demand on the Q axis (demand at $P=0$) response of demand to changes in price - dQ over dP a tax rate used later for experiments;

A = 2;
C $=6$;
B = 1;
D = -1;

NONNEGATIVE VARIABLES

$P \quad$ price of good X
$X \quad$ quantity of good X;

EQUATIONS

SUPPLY supply relationship (marginal cost ge price)
DEMAND quantity demanded as a function of price;
SUPPLY.. $A+B^{*} X=G=P$;

```
DEMAND.. X =G= C + D*P;
```

MODEL EQUIL /SUPPLY.X, DEMAND.P/;
OPTION MCP = PATH;
SOLVE EQUIL USING MCP;

* counter factual 1: shift the supply curve (marginal cost) up/left
A = 7;
SOLVE EQUIL USING MCP;
* country factual 2: shift the supply curve (marginal cost) down/right
A = -7;
SOLVE EQUIL USING MCP;
* exercise 1: extract economic information from the solution
PARAMETERS
CONSPRICE consumer price
PRODPRICE producer price (equal to marginal cost)
TAXREV tax revenue (note tax base is producer price)

CONSURP1	consumer surplus with no tax
CONSURP2	consumer surplus with 25\% tax
PROSURP1	producer "surplus" with no tax
PROSURP2	producer "surplus" with 25\% tax
DWL	net loss from the tax;

EQUATIONS
 SUPPLY2;

SUPPLY2.. $\quad\left(A+B^{*} X\right)^{*}(1+T A X)=G=P$;
MODEL EQUIL2 /SUPPLY2.X, DEMAND.P/;
A = 2;
TAX = 0;
SOLVE EQUIL2 USING MCP;

```
CONSURP1 = (-C/D - P.L)*X.L/2;
PROSURP1 = (P.L/(1+TAX) - A)*X.L/2;
```

TAX = 0.25;
SOLVE EQUIL2 USING MCP;
CONSURP2 $=(-C / D-P . L) * X . L / 2$;
PROSURP2 $=(P . L /(1+T A X)-A) * X . L / 2 ;$

```
CONSPRICE = P.L;
PRODPRICE = P.L/(1+TAX);
TAXREV = PRODPRICE*TAX*X.L;
DISPLAY CONSPRICE, PRODPRICE, TAXREV;
DWL = CONSURP1 + PROSURP1 - (CONSURP2 + PROSURP2 + TAXREV);
DISPLAY CONSURP1, PROSURP1, CONSURP2, PROSURP2, TAXREV, DWL;
```

*exercise 2, mismatch the complementary variables
TAX = 0;
MODEL EQUIL3 /SUPPLY.P, DEMAND.X/;
SOLVE EQUIL3 USING MCP;
P.L = 0;
X.L = 6;
A = 7;
SOLVE EQUIL3 USING MCP;
A = -7;
SOLVE EQUIL3 USING MCP;

