\$TITLE: M2-1.GMS introductory model using MCP
* simple supply and demand model (partial equilibrium)

PARAMETERS

A	intercept of supply on the P axis (MC at Q = 0)
В	change in MC in response to Q - this is dP over dQ
С	intercept of demand on the Q axis (demand at $P = 0$)
D	response of demand to changes in price - dQ over dP
TAX	a tax rate used later for experiments;

- A = 2; C = 6;
- B = 1;
- D = -1;

NONNEGATIVE VARIABLES

P	price of	good X	
Х	quantity	of good	X ;

EQUATIONS

SUPPLY	supply re	elationshi	p	(ma	arginal	cost	ge price	:)
DEMAND	quantity	demanded	as	а	functio	n of	price;	

SUPPLY.. A + B*X = G = P;

DEMAND.. X = G = C + D*P;

```
MODEL EQUIL /SUPPLY.X, DEMAND.P/;
OPTION MCP = PATH;
SOLVE EQUIL USING MCP;
```

* counter factual 1: shift the supply curve (marginal cost) up/left

A = 7; SOLVE EQUIL USING MCP;

* country factual 2: shift the supply curve (marginal cost) down/right

A = -7; SOLVE EQUIL USING MCP;

* exercise 1: extract economic information from the solution

PARAMETERS

CONSPRICE	consumer price
PRODPRICE	producer price (equal to marginal cost)
TAXREV	<pre>tax revenue (note tax base is producer price)</pre>

CONSURP1	consumer	surplus with no tax
CONSURP2	consumer	surplus with 25% tax
PROSURP1	producer	"surplus" with no tax
PROSURP2	producer	"surplus" with 25% tax
DWL	net loss	from the tax;

EQUATIONS

SUPPLY2;

SUPPLY2.. (A + B*X)*(1+TAX) = G = P;

MODEL EQUIL2 /SUPPLY2.X, DEMAND.P/;

A = 2i

TAX = 0;**SOLVE** EQUIL2 USING MCP;

CONSURP1 = (-C/D - P.L) * X.L/2;PROSURP1 = (P.L/(1+TAX) - A)*X.L/2;

TAX = 0.25;**SOLVE** EQUIL2 USING MCP;

CONSURP2 = (-C/D - P.L) * X.L/2;PROSURP2 = (P.L/(1+TAX) - A)*X.L/2;

```
CONSPRICE = P.L;
PRODPRICE = P.L/(1+TAX);
TAXREV = PRODPRICE*TAX*X.L;
DISPLAY CONSPRICE, PRODPRICE, TAXREV;
```

```
DWL = CONSURP1 + PROSURP1 - (CONSURP2 + PROSURP2 + TAXREV);
DISPLAY CONSURP1, PROSURP1, CONSURP2, PROSURP2, TAXREV, DWL;
```

*exercise 2, mismatch the complementary variables

TAX = 0;

```
MODEL EQUIL3 /SUPPLY.P, DEMAND.X/;
```

SOLVE EQUIL3 USING MCP;

P.L = 0; X.L = 6;

A = 7; SOLVE EQUIL3 USING MCP;

A = -7; SOLVE EQUIL3 USING MCP;