\$TITLE: M2-2.GMS: consumer choice, modeled as an NLP and a MCP

* maximize utility subject to a linear budget constraint

* two goods, Cobb-Douglas preferences

\$ONTEXT

This program introduces economic students to GAMS and GAMS solvers. The problem itself is known and loved by all econ students from undergraduate intermediate micro economics on up: Maximizing utility with two goods and a linear budget constraint.

Four versions are considered

- OPTIMIZE: direct constrained optimization using the NLP (non-linear programming) solver
- COMPLEM: uses the first-order conditions (FOC) to create a square system of n inequalities in n unknowns, solved using the MCP (mixed complementarity problem) solver
- COMPLEM2: instead of the utility function and FOC, uses the expenditure function and Marshallian demand functions, solved as an MCP
- COMPLEM3: instead of the utility function and FOC, uses the expenditure function and Hicksian demand functions, solved as an MCP

\$OFFTEXT

PARAMETERS

М		Income
P1,	P2	prices of goods X1 and X2
S1,	S2	utility shares of X1 and X2;

M = 100; P1 = 1; P2 = 1;

- S1 = 0.5;
- S2 = 0.5;

NONNEGATIVE VARIABLES

X1, X2	Commodity demands				
LAMBDA	Lagrangean multiplier	(marginal	utility	of	income);

VARIABLES

U Welfare;

EQUATIONS

UTILITY	Utility						
INCOME	Income-expenditure constraint						
FOC1, FOC2	First-order conditions for X1 and X2;						
UTILITY U	=E= 2*(X1**S1)*(X2**S2);						

INCOME.. M = G = P1 * X1 + P2 * X2;

FOC1.. LAMBDA*P1 =G= 2*S1*X1**(S1-1)*(X2**S2);

FOC2.. LAMBDA*P2 =G= 2*S2*X2**(S2-1)*(X1**S1);

* set starting values U.L = 100; X1.L = 50; X2.L = 50; LAMBDA.L = 1;

* modeled as a non-linear programming problem

MODEL OPTIMIZE /UTILITY, INCOME/;
SOLVE OPTIMIZE USING NLP MAXIMIZING U;

* modeled as a complementarity problem

MODEL COMPLEM /UTILITY.U, INCOME.LAMBDA, FOC1.X1, FOC2.X2/; SOLVE COMPLEM USING MCP;

* counterfactuals

P1 = 2;

SOLVE OPTIMIZE USING NLP MAXIMZING U;

SOLVE COMPLEM USING MCP;

P1 = 1;M = 200;

SOLVE OPTIMIZE USING NLP MAXIMZING U; **SOLVE** COMPLEM USING MCP;

* now use the expenditure function, giving the minimum cost of buying * one unit of utility: COSTU = P1**S1 * P2**S2 = PU * where PU is the "price" of utility: the inverse of lambda * two versions are presented: * one using Marshallian (uncompensated) demand: X_i = F_i(P1, P2, M) * one using Hicksian (compensated) demand: X_i = F_i(P1, P2, U)

```
P1 = 1;
M = 100;
```

NONNEGATIVE VARIABLES

PU price of utility;

EQUATIONS

COSTU	expenditure	functio	on:	cost	of	producing	utility	=	PU
DEMANDM1	Marshallian	demand	for	good	l 1				
DEMANDM2	Marshallian	demand	for	good	l 2				

DEMANDH1	Hicksian demand for good 1
DEMANDH2	Hicksian demand for good 2
DEMANDU	Demand for utility (indirect utility function);

COSTU.. P1**S1 * P2**S2 =G= PU;

DEMANDM1.. X1 =G= S1*M/P1;

DEMANDM2.. X2 =G= S2*M/P2;

DEMANDH1.. X1 =G= S1*PU*U/P1;

DEMANDH2.. X2 =G= S2*PU*U/P2;

DEMANDU.. U =E= M/PU;

PU.L = 1;

MODEL COMPLEM2 marshall /COSTU.U, DEMANDM1.X1, DEMANDM2.X2, DEMANDU.PU/; MODEL COMPLEM3 hicks /COSTU.U, DEMANDH1.X1, DEMANDH2.X2, DEMANDU.PU/;

```
SOLVE COMPLEM2 USING MCP;
SOLVE COMPLEM3 USING MCP;
```

* counterfactuals

P1 = 2;

SOLVE COMPLEM2 USING MCP; SOLVE COMPLEM3 USING MCP;

P1 = 1; M = 200;

SOLVE COMPLEM2 USING MCP; **SOLVE** COMPLEM3 USING MCP;