\$TITLE: M2-3.GMS add a rationing constraint to model M2-2

- * MAXIMIZE UTILITY SUBJECT TO A LINEAR BUDGET CONSTRAINT
- * PLUS RATIONING CONSTRAINT ON X1
- * two goods, Cobb-Douglas preferences

PARAMETERS

М	Income
P1, P2	prices of goods X1 and X2
S1, S2	util shares of X1 and X2
RATION	rationing constraint on the quantity of X1;

M = 100; P1 = 1; P2 = 1; S1 = 0.5; S2 = 0.5; RATION = 100.;

NONNEGATIVE VARIABLES

- X1, X2 Commodity demands
- LAMBDAI Lagrangean multiplier (marginal utility of income)
- LAMBDAR Lagrangean mulitplier on rationing constraint;

VARIABLES

U Welfare;

EQUATIONS

UTILITY INCOME RATION1 FOC1, FOC2	Utility Income-expenditure constraint Rationing contraint on good X1 2 First-order conditions for X1 and X2;					
UTILITY	U =E= 2*(X1**S1)*(X2**S2);					
INCOME	M =G= P1*X1 + P2*X2;					
RATION1	RATION =G= X1;					
FOC1	LAMBDAI*P1 + LAMBDAR =G= 2*S1*X1**(S1-1)*(X2**S2);					
FOC2	LAMBDAI*P2 =G= 2*S2*X2**(S2-1)*(X1**S1);					
<pre>* modeled as a non-linear programming problem * set starting values</pre>						
U.L = 100; X1.L = 50; X2.L = 50; LAMBDAI.L = 1 LAMBDAR.L = 0	L;);					

MODEL OPTIMIZE /UTILITY, INCOME, RATION1/;

SOLVE OPTIMIZE USING NLP MAXIMIZING U;

* modeled as a complementarity problem

MODEL COMPLEM /UTILITY.U, INCOME.LAMBDAI, RATION1.LAMBDAR, FOC1.X1, FOC2.X2/; SOLVE COMPLEM USING MCP;

* try binding rationing constraint at X1 <= RATION = 25;

RATION = 25; SOLVE OPTIMIZE USING NLP MAXIMIZING U; SOLVE COMPLEM USING MCP;

* show that shadow price of rationing constraint increases with income* could lead to a black market in rationing coupons, "scalping" tickets

M = 200; SOLVE OPTIMIZE USING NLP MAXIMIZING U; SOLVE COMPLEM USING MCP;

* illustrate the mpec solver

* suppose we want to enforce the rationing contraint via licenses for X1
* consumers are given an allocation of licenses which is RATION

* PLIC is an endogenous variables whose value is the license price
* the value of the rationing license allocation should be treated as
* part of income

NONNEGATIVE VARIABLES

PLIC;

EQUATIONS

INCOMEa FOC1a;

M = 100; RATION = 25; U.L = 100; X1.L = 25; X2.L = 75; PLIC.L = 0.1;

INCOMEa.. M + (PLIC*RATION) = E = (P1 + PLIC)*X1 + P2*X2;

FOC1a.. LAMBDAI*(P1 + PLIC) =G= 2*S1*X1**(S1-1)*(X2**S2);

MODEL MPEC /UTILITY, INCOMEA.LAMBDAI, FOC1a.X1, FOC2.X2, RATION1.PLIC/;

MODEL COMPLEM2 /UTILITY.U, INCOMEa.LAMBDAI, FOC1a.X1, FOC2.X2,

RATION1.PLIC/;

OPTION MPEC = nlpec;

SOLVE MPEC USING MPEC MAXIMIZING U; SOLVE COMPLEM2 USING MCP;

M = 200;

SOLVE MPEC USING MPEC MAXIMIZING U; SOLVE COMPLEM2 USING MCP;

```
* now use the expenditure function, giving the minimum cost of buying
* one unit of utility: COSTU = P1**S1 * P2**S2 = PU
* where PU is the "price" of utility: the inverse of lambda
* two versions are presented:
* one using Marshallian (uncompensated) demand: Xi = F(P1, P2, M)
* one using Hicksian (compensated) demand: Xi = F(P1, P2, U)
RATION = 100;
M = 100;
```

NONNEGATIVE VARIABLES

PU	price o	of utility						
M1	income	inclusive	of	the	value	of	rationing	allocation;

EQUATIONS expenditure function: cost of producing utility = PU COSTU DEMANDM1 Marshallian demand for good 1 DEMANDM2 Marshallian demand for good 2 DEMANDH1 Hicksian demand for good 1 DEMANDH2 Hicksian demand for good 2 DEMANDU Demand for utility (indirect utility function) RATION1b Rationing constraint (same as before) INCOMED Income balance equation; COSTU.. (PLIC+P1)**S1 * P2**S2 =G= PU; DEMANDM1.. X1 =G= S1*M1/(P1+PLIC); DEMANDM2.. X2 = G = S2*M1/P2;DEMANDH1.. X1 =G= S1*PU*U/(P1+PLIC); DEMANDH2.. X2 =G= S2*PU*U/P2; DEMANDU.. U = E = M1/PU;RATION1b.. RATION =G= X1; INCOMEb.. M1 =E= M + PLIC*RATION;

PU.L = 1;

MODEL COMPLEM3 /COSTU.U, DEMANDM1.X1, DEMANDM2.X2, DEMANDU.PU, RATION1b.PLIC, INCOMEb.M1/; MODEL COMPLEM4 /COSTU.U, DEMANDH1.X1, DEMANDH2.X2, DEMANDU.PU,

RATION1b.PLIC, INCOMEb.M1/;

SOLVE COMPLEM3 USING MCP; **SOLVE** COMPLEM4 USING MCP;

* counterfactuals

RATION = 25;

SOLVE COMPLEM3 USING MCP; **SOLVE** COMPLEM4 USING MCP;

M = 200;

SOLVE COMPLEM3 USING MCP; **SOLVE** COMPLEM4 USING MCP;

```
* scenario generation
```

SETS I indexes different values of rationing constraint /I1*I10/ J indexes income levels /J1*J10/;

```
PARAMETERS
```

```
RLEVEL(I)
PCINCOME(J)
LICENSEP(I,J);
```

```
U.L = 50;
X1.L = 25;
X2.L = 25;
PLIC.L = 0.;
LAMBDAI.L = 1;
```

```
* the following is to prevent solver failure when evaluating X1**(S1-1)
* at X1 = 0 (given S1-1 < 0)
X1.LO = 0.01;
X2.LO = 0.01;
LOOP(I,
LOOP(I,
RATION = 110 - 10*ORD(I);</pre>
```

```
M = 25 + 25*ORD(J);
```

```
SOLVE MPEC USING MPEC MAXIMIZING U;
```

```
RLEVEL(I) = RATION;
PCINCOME(J) = M;
LICENSEP(I,J) = PLIC.L;
```

```
);
);
```

DISPLAY RLEVEL, PCINCOME, LICENSEP;

\$LIBINCLUDE XLDUMP LICENSEP M2-3.XLS SHEET1!B3