```
$TITLE: M2-3.GMS add a rationing constraint to model M2-2
* MAXIMIZE UTILITY SUBJECT TO A LINEAR BUDGET CONSTRAINT
* PLUS RATIONING CONSTRAINT ON X1
* two goods, Cobb-Douglas preferences
```


PARAMETERS

M	Income
P1, P2	prices of goods X1 and X2
S1, S2	util shares of X1 and X2
RATION	rationing constraint on the quantity of X1;

```
M = 100;
P1 = 1;
P2 = 1;
S1 = 0.5;
S2 = 0.5;
RATION = 100.;
```


NONNEGATIVE VARIABLES

X1, X2 Commodity demands
LAMBDAI Lagrangean multiplier (marginal utility of income)
LAMBDAR Lagrangean mulitplier on rationing constraint;

VARIABLES

U Welfare;

```
EQUATIONS
    UTILITY Utility
    INCOME Income-expenditure constraint
    RATION1 Rationing contraint on good X1
    FOC1, FOC2 First-order conditions for X1 and X2;
UTILITY.. U =E= 2*(X1**S1)*(X2**S2);
INCOME.. M =G= P1*X1 + P2*X2;
RATION1.. RATION =G= X1;
F0C1.. LAMBDAI*P1 + LAMBDAR =G= 2*S1*X1**(S1-1)*(X2**S2);
FOC2.. LAMBDAI*P2 =G= 2*S2*X2**(S2-1)*(X1**S1);
* modeled as a non-linear programming problem
* set starting values
U.L = 100;
X1.L = 50;
X2.L = 50;
LAMBDAI.L = 1;
LAMBDAR.L = 0;
MODEL OPTIMIZE /UTILITY, INCOME, RATION1/;
```


SOLVE OPTIMIZE USING NLP MAXIMIZING U;

* modeled as a complementarity problem

```
MODEL COMPLEM /UTILITY.U, INCOME.LAMBDAI, RATION1.LAMBDAR,
    F0C1.X1, F0C2.X2/;
```

SOLVE COMPLEM USING MCP;

* try binding rationing constraint at X1 <= RATION = 25;
RATION = 25;
SOLVE OPTIMIZE USING NLP MAXIMIZING U;
SOLVE COMPLEM USING MCP;
* show that shadow price of rationing constraint increases with income
* could lead to a black market in rationing coupons, "scalping" tickets
M = 200;
SOLVE OPTIMIZE USING NLP MAXIMIZING U;
SOLVE COMPLEM USING MCP;
* illustrate the mpec solver
* suppose we want to enforce the rationing contraint via licenses for X1
* consumers are given an allocation of licenses which is RATION
* PLIC is an endogenous variables whose value is the license price * the value of the rationing license allocation should be treated as * part of income

NONNEGATIVE VARIABLES
 PLIC;

EQUATIONS

INCOMEa
F0C1a;
M = 100;
RATION = 25;
U.L = 100;

X1.L = 25;
X2.L = 75;
PLIC.L = 0.1;
INCOMEa.. $\quad \mathrm{M}+(\mathrm{PLIC} * R A T I O N)=E=(P 1+P L I C) * X 1+P 2 * X 2$;
F0C1a.. LAMBDAI*(P1 + PLIC) =G= 2*S1*X1**(S1-1)*(X2**S2);
MODEL MPEC /UTILITY, INCOMEa.LAMBDAI, F0C1a.X1, F0C2.X2, RATION1.PLIC/;
MODEL COMPLEM2 /UTILITY.U, INCOMEa.LAMBDAI, FOC1a.X1, FOC2.X2,

RATION1.PLIC/;

OPTION MPEC = nlpec;
SOLVE MPEC USING MPEC MAXIMIZING U; SOLVE COMPLEM2 USING MCP;
$M=200 ;$

SOLVE MPEC USING MPEC MAXIMIZING U; SOLVE COMPLEM2 USING MCP;

* now use the expenditure function, giving the minimum cost of buying
* one unit of utility: COSTU = P1**S1 * P2**S2 = PU
* where PU is the "price" of utility: the inverse of lambda
* two versions are presented:
* one using Marshallian (uncompensated) demand: Xi = F(P1, P2, M)
* one using Hicksian (compensated) demand: Xi = F(P1, P2, U)

RATION = 100;
M = 100;
NONNEGATIVE VARIABLES
PU price of utility
M1
income inclusive of the value of rationing allocation;

```
EQUATIONS
    COSTU expenditure function: cost of producing utility = PU
    DEMANDM1 Marshallian demand for good 1
    DEMANDM2 Marshallian demand for good 2
    DEMANDH1 Hicksian demand for good 1
    DEMANDH2 Hicksian demand for good 2
    DEMANDU Demand for utility (indirect utility function)
    RATION1b Rationing constraint (same as before)
    INCOMEb Income balance equation;
COSTU.. (PLIC+P1)**S1 * P2**S2 =G= PU;
DEMANDM1.. X1 =G= S1*M1/(P1+PLIC);
DEMANDM2.. X2 =G= S2*M1/P2;
DEMANDH1.. X1 =G= S1*PU*U/(P1+PLIC);
DEMANDH2.. X2 =G= S2*PU*U/P2;
DEMANDU.. U =E= M1/PU;
RATION1b.. RATION =G= X1;
INCOMEb.. M1 =E= M + PLIC*RATION;
```

```
PU.L = 1;
```

```
MODEL COMPLEM3 /COSTU.U, DEMANDM1.X1, DEMANDM2.X2, DEMANDU.PU,
    RATION1b.PLIC, INCOMEb.M1/;
MODEL COMPLEM4 /COSTU.U, DEMANDH1.X1, DEMANDH2.X2, DEMANDU.PU,
    RATION1b.PLIC, INCOMEb.M1/;
```

SOLVE COMPLEM3 USING MCP;
SOLVE COMPLEM4 USING MCP;

* counterfactuals
RATION = 25;
SOLVE COMPLEM3 USING MCP;
SOLVE COMPLEM4 USING MCP;
M = 200;
SOLVE COMPLEM3 USING MCP;
SOLVE COMPLEM4 USING MCP;
*\$exit
* scenario generation

SETS I indexes different values of rationing constraint /I1*I10/
J indexes income levels /J1*J10/;
PARAMETERS
RLEVEL (I)
PCINCOME (J)
LICENSEP(I, J);
U.L = 50;

X1.L = 25;
X2.L = 25;
PLIC.L = 0.;
LAMBDAI.L = 1;

* the following is to prevent solver failure when evaluating X1**(S1-1)
* at X1 $=0$ (given S1-1 < 0)

X1.LO = 0.01;
X2.LO = 0.01;
LOOP (I,
LOOP (J,
RATION = 110 - 10*ORD(I);
$\mathrm{M}=25+25 * \operatorname{RD}(\mathrm{~J})$;

SOLVE MPEC USING MPEC MAXIMIZING U;

```
    RLEVEL(I) = RATION;
```

 PCINCOME(J) = M;
 LICENSEP(I,J) = PLIC.L;
);
);

DISPLAY RLEVEL, PCINCOME, LICENSEP;
\$LIBINCLUDE XLDUMP LICENSEP M2-3.XLS SHEET1!B3

