```
$TITLE: M2-4.GMS quick introduction to sets and scenarios using M2-2
* MAXIMIZE UTILITY SUBJECT TO A LINEAR BUDGET CONSTRAINT
* same as UTIL-OPT1.GMS but introduces set notation
```

SET I Prices and Goods / X1, X2 /;
ALIAS (I, II);

PARAMETER

M	Income RATION
ration of X1 prices	
S(I) (constraint on max consumption of X1)	
util shares;	

NONNEGATIVE VARIABLES

```
X(I) Commodity demands
LAMBDAI Marginal utility of income (Lagrangean multiplier)
LAMBDAR Marginal effect of ration constraint;
```


VARIABLES

U Welfare;

EQUATIONS

UTILITY
INCOME
RATION1
FOC(I);
UTILITY.. U =E= 2*PROD(I, X(I)**S(I));
INCOME.. $\quad M=G=\operatorname{SUM}(I, P(I) * X(I))$;
RATION1.. RATION =G= X("X1");
FOC(I).. LAMBDAI*P(I) + LAMBDAR\$(ORD(I) EQ 1) =G= $S(I) * X(I) * *(-1) * 2 * P R O D(I I, X(I I) * * S(I I)) ;$
U.L = 100;
X.L(I) = 50;

RATION = 100;

* first, solve the model as an nlp, max U subject to income * rationing constraint in non-binding

MODEL UMAX /UTILITY, INCOME, RATION1/;
SOLVE UMAX USING NLP MAXIMIZING U;

* second, solve the model as an mcp, using the two FOC and income

LAMBDAI.L = 1;
LAMBDAR.L = 0;

MODEL COMPLEM /UTILITY.U, INCOME.LAMBDAI, RATION1.LAMBDAR, FOC.X/; SOLVE COMPLEM USING MCP;

```
* scenario generation
```

SETS J indexes different values of rationing constraint /J1*J10/;
PARAMETERS
RLEVEL (J)
WELFARE (J)
LAMRATION(J)
RESULTS(J, *);

```
LOOP(J,
    RATION = 110 - 10*ORD(J);
```

SOLVE COMPLEM USING MCP;

```
    RLEVEL(J) = RATION;
```

 WELFARE(J) = U.L;
 LAMRATION(J) = LAMBDAR.L;
);
RESULTS(J, "RLEVEL") = RLEVEL(J);
RESULTS(J, "WELFARE") = WELFARE(J);
RESULTS(J, "LAMRATION") = LAMRATION(J);

DISPLAY RLEVEL, WELFARE, LAMRATION, RESULTS;
\$LIBINCLUDE XLDUMP RESULTS M2-3.XLS SHEET2!B3

