\$TITLE: M1-5, Structure of a general-equilibrium model
* simple (almost trivial) example of a one-good, one-factor,
* one-consumer economy

PARAMETERS

LBAR	labor supply (fixed and inelastic)
ALPHA	<pre>productivity parameter X = ALPHA*L;</pre>

LBAR = 100;ALPHA = 2;

NONNEGATIVE VARIABLES

P	price of X
Х	quantity of X
W	wage rate
INCOME	income from labor supply;

EQUATIONS

ZPROFIT	zeroprofits in X production
CMKTCLEAR	commodity (X) market clearing
LMKTCLEAR	labor market clearing
CONSINCOME	consumer income balance;

ZPROFIT.. W/ALPHA =G= P;

CMKTCLEAR.. X =G= INCOME/P;

LMKTCLEAR.. LBAR =G= X/ALPHA;

CONSINCOME.. INCOME =G= W*LBAR;

MODEL GE / ZPROFIT.X, CMKTCLEAR.P, LMKTCLEAR.W, CONSINCOME.INCOME/;

```
* set some starting values
```

P.L = 1; W.L = 1; X.L = 200; INCOME.L = 100;

* choose a numeraire

W.FX = 1;

OPTION MCP = PATH; **SOLVE** GE USING MCP;

* double labor productivity

ALPHA = 4;

SOLVE GE USING MCP;

* change numeraire

W.UP = +**INF**; W.LO = 0; P.FX = 1;

ALPHA = 2;

SOLVE GE USING MCP;

* double labor productivity

ALPHA = 4;

SOLVE GE USING MCP;

\$ontext

formulated as an NLP the first theorem of welfare economics says that a competitive equilibrium is Pareto optimal in some very simple situation, such as with a single consumer this means that equilibrium can also be found as the solution to a simple NLP: maximizing utility subject to constraints. \$offtext

ALPHA = 2; LBAR = 100;

VARIABLE

U;

EQUATIONS

OBJECTIVE;

OBJECTIVE.. U =E= X**0.5;

MODEL GE_NLP / OBJECTIVE, ZPROFIT, CMKTCLEAR, LMKTCLEAR, CONSINCOME/;

SOLVE GE_NLP USING NLP MAXIMIZING U;