\$TITLE: Model M3-4a: TWOxTWOxONE Economy - Basics

\$ONTEXT

```
This model is a closed economy version of the classic
Heckscher-Ohlin model: two goods and two factors, one consumer
Utility is treated as a produced good: quantity W, price PW
```

	Production Sectors			$\begin{aligned} & \text { Consumers } \\ & \text { CONS } \end{aligned}$
Markets	X	Y	W	
PX	100		-100	
PY		100	-100	
PW			200	-200
PL	-25	- 75		100
PK	-75	-25		100

\$OFFTEXT

PARAMETERS

LENDOW labor endowment multiplier
KENDOW capital endowment multiplier;
LENDOW = 1;
KENDOW = 1;

NONNEGATIVE VARIABLES

X	activity level for X production
Y	activity level for Y production
W	activity level for the "production" of welfare from $X Y$
PX	price of good X
PY	price of good Y
PW	price of a unit of welfare (real consumer-price index)
PL	price of labor
PK	price of capital
CONS	income of the representative consumer;

EQUATIONS

PRF_X	zero profit for sector X
PRF_Y	zero profit for sector Y
PRF_W	zero profit for sector W (Hicksian welfare index)
MKT_X	supply-demand balance for commodity X
MKT_Y	supply-demand balance for commodity Y
MKT_L	supply-demand balance for primary factor L
MKT_K	supply-demand balance for primary factor L
MKT_W	supply-demand balance for aggregate demand

I_CONS income definition for CONS;

```
Zero profit inequalities
```

PRF_X..	$100^{*}\left(\mathrm{PL}^{* *} 0.25 * P K^{* *} 0.75\right)=\mathrm{G}=100^{*} \mathrm{PX} ;$
PRF_Y..	$100^{*}\left(\mathrm{PL}^{* *} 0.75 * \mathrm{PK}^{* *} 0.25\right)=\mathrm{G}=100^{*} \mathrm{PY} ;$
PRF_W..	$200^{*}\left(\mathrm{PX}^{* *} 0.50 * P Y^{* *} 0.50\right)=\mathrm{G}=200^{*} \mathrm{PW} ;$

* Market clearance inequalities


```
* Income balance equations (don't forget tax revenue)
I_CONS.. CONS =E= 100*LENDOW*PL + 100*KENDOW*PK;
MODEL TWOXTWO /PRF_X.X, PRF_Y.Y, PRF_W.W,
                            MKT_X.PX, MKT_Y.PY, MKT_L.PL,MKT_K.PK,
                        MKT_W.PW,I_CONS.CONS /;
* Chose a numeraire: real consumer price index
PW.FX = 1;
*
    Set initial values of variables:
X.L=1; Y.L=1; W.L=1;
PX.L=1; PY.L=1; PK.L=1; PL.L=1;
CONS.L=200;
SOLVE TWOXTWO USING MCP;
* counterfactual 1: double the endowment of labor
LENDOW = 2;
SOLVE TWOXTWO USING MCP;
```

* counterfactual 2: double both endowments from the benchmark

```
LENDOW = 1;
KENDOW = 2;
SOLVE TWOXTWO USING MCP;
```

* counterfactual 3: double the endowment of both factors
LENDOW = 2;
KENDOW = 2;
SOLVE TWOXTWO USING MCP;

\$ontext

```
We emphasize that the above formulation uses a simplifying trick:
```

the marginal costs of X, Y, and W can be replaced by the producer
prices PX, PY, and PW. This should "always" work
because when marginal cost and price are not equal in equilbrium,
the quantity is zero: marginal cost times quantity = producer
price times quantity ($M C _X^{*} X=P X^{*} X$ regardless of $X>0$ or $X=0$).
But below is the model done "properly" with Shepard's lemma
\$offtext

EQUATIONS

MKT_X2
MKT_Y2
MKT_L2
MKT_K2

I_CONS2;

MKT_X2..	100*X =G= 100 * W * (PX**0.5 * PY**0.5) / PX;
MKT_Y2..	100*Y =G= 100 * W * (PX**0.5 * PY**0.5) / PY;
MKT_L2..	$\text { 100*LENDOW =G= } 25 \text { * } \begin{aligned} & \text { * PL** } 0.25 * \mathrm{PK}^{* *} 0.75 / \mathrm{PL}+ \\ & 75 * Y * P L * 0.75 * \mathrm{PK}^{* *} 0.25 / \mathrm{PL} \text {; } \end{aligned}$
MKT_K2. .	$\text { 100*KENDOW =G= } 75 \text { * } \begin{aligned} & \text { * } \mathrm{PL} * * 0.25 * \mathrm{PK}^{* *} 0.75 / \mathrm{PK}+ \\ & 25 * Y * P L * 0.75 * \mathrm{PK}^{* *} 0.25 / \mathrm{PK} ; \end{aligned}$
* Income	balance equations (don't forget tax revenue)
I_CONS2..	CONS $=\mathrm{E}=100^{*}$ LENDOW*PL + 100*KENDOW*PK;
MODEL TWOXTWOa	```/PRF_X.X, PRF_Y.Y, PRF_W.W, MKT_X2.PX, MKT_Y2.PY, MKT_L2.PL,MKT_K2.PK, MKT_W.PW,I_CONS2.CONS /;```

LENDOW = 1; KENDOW = 1;
SOLVE TWOXTWOa USING MCP;
LENDOW = 2;
SOLVE TWOXTWOa USING MCP;

\$ontext

Exercise: declare a parameter alpha, which is a productivity shift param» eter
producting X. Higher alpha, more output per input.
Code this up. Hint: alpha will appear more than in the program. Change alpha and interpret results.

\$offtext

