\$TITLE M3-6.GMS: Introduces a labor supply or labor/leisure activity

## \$ONTEXT

Activity $T$ transforms leisure into labor supply
Initially, the consumer has 200 units of leisure and
supplies 100 to the market, retaining 100 as leisure

```
X, Y and Leisure are all Cobb-Douglas substitutes
```

|  | Production Sectors |  |  | $T$ | ConsumerCONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Markets | A | B | W |  |  |
| $P X$ | 100 |  | -100 |  |  |
| PY |  | 100 | -100 |  |  |
| PW |  |  | 300 |  | -300 |
| PLS | -40 | -60 |  | 100 |  |
| PL |  |  | -100 | -100 | 200 |
| PK | -60 | -40 |  |  | 100 |

PL will denote the CONSUMER (HOUSEHOLD) price of labor PLS will denote the PRODUCER price or COST of labor to the firms \$OFFTEXT

## PARAMETERS

TL
ad-valorem tax rate on labor

```
WELFARE true welfare - including the value of leisure
REALCONS observed market value of consumption of X and Y;
```

TL = 0;

## POSITIVE VARIABLES

| $X$ | Activity level for sector $X$ |
| :--- | :--- |
| $Y$ | Activity level for sector $Y$ |

T Labor supply (transforms leisure to labor)
W Activity level for sector W
PX Price index for commodity X
PY Price index for commodity $Y$
PL Price index for primary factor L (household price)
PLS Price index for labor supply (producer cost)
PK Price index for primary factor K
PW Price index for welfare (expenditure function)
CONS Income definition for CONS;

## EQUATIONS

| PRF_X | Zero profit for sector $X$ |
| :--- | :--- |
| PRF_Y | Zero profit for sector $Y$ |
| PRF_T | Zero profit for sector $T$ |
| PRF_W | Zero profit for sector $W$ |

MKT_X Supply-demand balance for commodity X
MKT_Y Supply-demand balance for commodity Y

```
    MKT_L Supply-demand balance for primary factor L
    MKT_LS Supply-demand balance for Leisure
    MKT_K Supply-demand balance for primary factor K
    MKT_W Supply-demand balance for aggregate demand
    I_CONS Income definition for CONS;
                    Zero profit conditions:
PRF_X.. 100*(PLS**0.4 * PK**0.6) =G= 100*PX;
PRF_Y.. 100*(PLS**0.6 * PK**0.4) =G= 100*PY;
PRF_T.. 100*(PL *(1+TL)) =G= 100 * PLS;
PRF_W.. 300*(PY**(1/3) * PX**(1/3)) * PL**(1/3)
    =G= 300 * PW;
        Market clearing conditions:
MKT_X.. 100*X =G= 300*W*(1/3)*PW /PX;
MKT_Y.. 100*Y =G= 300*W*(1/3)*PW /PY;
MKT_W.. 300*W =G= CONS/PW;
```

```
MKT_L.. 200 =G= 100*T + 300*W*(1/3)*PW/PL;
MKT_LS.. 100*T =G= 40*X*PX/PLS + 60*Y*PY/PLS;
MKT_K.. 100 =G= 60*X*PX/PK + 40*Y*PY/PK;
* Income constraints:
I_CONS.. CONS =E= 200*PL + 100*PK + TL*100*T*PL;
MODEL LABLEIS /PRF_X.X, PRF_Y.Y, PRF_T.T, PRF_W.W,
MKT_X.PX, MKT_Y.PY, MKT_L.PL,
MKT_LS.PLS, MKT_K.PK, MKT_W.PW, I_CONS.CONS /;
X.L =1;
Y.L =1;
W.L =1;
T.L =1;
PL.L =1;
PLS.L =1;
PX.L =1;
PY.L =1;
PK.L =1;
PW.FX =1;
```

```
CONS.L =300;
```

TL = 0;
LABLEIS.ITERLIM = 0;
SOLVE LABLEIS USING MCP;
LABLEIS.ITERLIM = 1000;
SOLVE LABLEIS USING MCP;
WELFARE = W.L;
REALCONS $=(P X . L * X . L * 100 ~+~ P Y . L * Y . L * 100) / ~$
(PX.L**0.5*PY.L**0.5*200);
DISPLAY WELFARE, REALCONS;
TL = 0.5;
SOLVE LABLEIS USING MCP;

```
WELFARE = W.L;
REALCONS = (PX.L*X.L*100 + PY.L*Y.L*100)/
    (PX.L**0.5*PY.L**0.5*200);
DISPLAY WELFARE, REALCONS;
```

