\$TITLE TWOHOUSE.GMS: two households with different preferences
* and different endowments endowments

\$ONTEXT

Two household: differ in preferences and in endowments Household A: well endowed with labor, preference for labor-int good Y

Household B: well endowed with capital,

preference for capital-int good X

Allows for tax to be redistributed unevenly between households

		Production Sectors				Consumers	
Markets	/	X 	Y	WA	WB	/ A	В
PX	/	100		-40	-60	/	
PY	/		100	-60	-40	/	
PWA	/			100		-100	
PWB	/				100	/	-100
PL	/	-25	-75			90	10
PK	/	-75	-25			10	90

The tax redistribution or sharing rule can also be interpreted as the relative number of households in each group, with all households getting an equal share of tax receipts \$OFFTEXT

PARAMETERS

TX	Ad-valorem tax rate for X sector inputs
SHA	Share of tax revenue given back to household A
SHB	share of tax revenue given back to household B;

TX = 0;

- SHA = 0.5;
- SHB = 0.5;

NONNEGATIVE VARIABLES

- X Activity level for sector X
- Y Activity level for sector Y
- WA Activity level for sector WA
- WB Activity level for sector WB
- PX Price index for commodity X
- PY Price index for commodity Y
- PK Price index for primary factor K
- PL Price index for primary factor L
- **PWA** Price index for welfare A(expenditure function)
- **PWB** Price index for welfare B(expenditure function)
- CONSA Income definition for CONSA
- CONSB Income definition for CONSB;

EQUATIONS

- PRF_X Zero profit for sector X
- PRF_Y Zero profit for sector Y
- PRF_WA Zero profit for sector WA
- PRF_WB Zero profit for sector WB
- MKT_X Supply-demand balance for commodity X MKT_Y Supply-demand balance for commodity Y MKT_L Supply-demand balance for primary factor L MKT_K Supply-demand balance for primary factor K MKT_WA Supply-demand balance for consumer A MKT_WB Supply-demand balance for consumer B
- I_CONSA Income definition for CONSA I CONSB Income definition for CONSB;
- * Zero profit conditions:
- PRF_X.. 100*(PL**0.25 * PK**0.75) * (1+TX) =G= 100*PX;
- PRF_Y.. 100*(PL**0.75 * PK**0.25) =G= 100*PY;
- PRF_WA.. 100*(PX**0.4 * PY**0.6) =G= 100*PWA;
- PRF WB.. 100*(PX**0.6 * PY**0.4) =G= 100*PWB;

- * Market clearing conditions:
- MKT X.. 100*X = G = 40*WA*PWA/PX + 60*WB*PWB/PX;
- MKT Y.. 100*Y = G = 60*WA*PWA/PY + 40*WB*PWB/PY;
- MKT_WA.. 100*WA =G= CONSA/PWA;
- MKT WB.. 100*WB =G= CONSB/PWB;
- MKT L.. 90 + 10 =G= 25*X*(PX/(1+TX))/PL + 75*Y*PY/PL;
- MKT K.. $10 + 90 = G = 75 \times (PX/(1+TX))/PK + 25 \times Y \times PY/PK;$
- * Income constraints:
- I CONSA.. CONSA = E = 90*PL + 10*PK + SHA*TX*100*X*PX/(1+TX);
- I CONSB.. CONSB = E = 10*PL + 90*PK + SHB*TX*100*X*PX/(1+TX);

MODEL TWOHOUSE /PRF_X.X, PRF_Y.Y, PRF_WA.WA, PRF_WB.WB, MKT_X.PX, MKT_Y.PY, MKT_L.PL, MKT_K.PK, MKT_WA.PWA, MKT_WB.PWB, I_CONSA.CONSA, I_CONSB.CONSB /; * Check the benchmark:

X.L	=1;				
Y.L	=1;				
WA.L	=1;				
WB.L	=1;				
PL.FX	=1;				
PX.L	=1;				
PY.L	=1;				
PK.L	=1;				
PWA.L	=1;				
PWB.L	=1;				
CONSA.L	=100;				
CONSB.L	=100;				
TX	=0;				
TWOHOUSE.ITERLIM = $0;$					
SOLVE TWOHOUSE USING MCP;					
TWOHOUSE.ITERLIM = 1000;					
SOLVE T	WOHOUSE USING MCP;				

TX = 0.50; SOLVE TWOHOUSE USING MCP; * counterfactual: give a larger share of tax to household B
* illustrates impossibility of making both types better off

TX = 0.50; SHA = 0.25; SHB = 0.75;

SOLVE TWOHOUSE USING MCP;

* suppose that 80% of households are type A, 20% type B
* and all individual households get an equal share
* of tax receipts

TX = 0.50; SHA = 0.80; SHB = 0.20;

SOLVE TWOHOUSE USING MCP;