\$TITLE: M4-1.GMS: Cournot and Bertrand with continuous strategies

```
$ONTEXT
begin with Cournot doupoly
single unified market, constant marginal costs
goods XH and XF are imperfect substitutes
inverse demand functions PH = ALPHA - BETA*XH - GAMMA*XF BETA > GAMMA
maximizing profits gives FOC (implicity reaction functions)
PROFIT = PH*XH - CH*XH = (ALPHA - BETA*XH - GAMMA*XF)*XH - CH*XH
first order condition: ALPHA - 2*BETA*XH - GAMMA*XF - CH = 0
```


\$OFFTEXT

PARAMETERS

ALPHA intercept of demand curve
BETA slope of inverse demand curve wrt own quantity
GAMMA slope of inverse demand curve wrt rival's quantity
$\mathrm{CH} \quad$ marginal cost of home firm
CF marginal cost of foreign firm
WELHC0 welfare in country h before policy under Cournot
WELHB0 welfare in country h before policy under Bertrand;
ALPHA $=12$;
BETA = 2;
GAMMA = 1;
CH $=2$;

```
CF = 2;
```

NONNEGATIVE VARIABLES

PH	price of XH
PF	price of XF
XH	quantity of XH
XF	quantity of XF
PROFH	profit of firm h
PROFF	profit of firm f;

EQUATIONS

PRICEH inverse demand curve facing firm h
PRICEF inverse demand curve facing firm f
HCOURNOT cournot FOC for firm h (reaction function)
FCOURNOT cournot FOC for firm f (reaction function)
PROFITH profit of firm h
PROFITF profit of firm f;
PRICEH.. $P H=E=A L P H A ~-~ B E T A * X H ~-~ G A M M A * X F ; ~$
PRICEF.. PF =E= ALPHA - BETA*XF - GAMMA*XH;
HCOURNOT.. $\mathrm{CH}=\mathrm{G}=\mathrm{ALPHA}-2 * B E T A * X H$ - GAMMA*XF;
FCOURNOT.. CF =G= ALPHA - 2*BETA*XF - GAMMA*XH;

```
PROFITH.. PROFH =E= PH*XH - CH*XH;
PROFITF.. PROFF =E= PF*XF - CF*XF;
MODEL COURNOT /PRICEH.PH, PRICEF.PF, HCOURNOT.XH, FCOURNOT.XF,
                PROFITH.PROFH, PROFITF.PROFF/;
```

SOLVE COURNOT USING MCP;

```
WELHC0 = PROFH.L;
```


\$ONTEXT

```
now assume Bertrand price competition
requires you to invert the inverse demand functions
XH = INTERB - SLOPEB1*PH + SLOPEB2*PF
$OFFTEXT
```


PARAMETERS

```
INTERB intercept of the (direct) demand function
SLOPEB1 slope of the demand function wrt own price
SLOPEB2 slope of the demand function wrt rival's price;
INTERB = (ALPHA*BETA - ALPHA*GAMMA)/(BETA**2 - GAMMA**2);
SLOPEB1 = BETA/(BETA**2 - GAMMA**2);
```

```
SLOPEB2 = GAMMA/(BETA**2 - GAMMA**2);
```

EQUATIONS
XBERTH demand for $X H$

XBERTF demand for XF
HBERTRAND bertrand FOC for PH
FBERTRAND bertrand FOC for PF;

```
XBERTH.. XH =E= INTERB - SLOPEB1*PH + SLOPEB2*PF;
XBERTF.. XF =E= INTERB - SLOPEB1*PF + SLOPEB2*PH;
HBERTRAND.. -SLOPEB1*CH =E= INTERB - 2*SLOPEB1*PH + SLOPEB2*PF;
FBERTRAND.. -SLOPEB1*CF =E= INTERB - 2*SLOPEB1*PF + SLOPEB2*PH;
MODEL BERTRAND /XBERTH.XH, XBERTF.XF, HBERTRAND.PH, FBERTRAND.PF,
                        PROFITH.PROFH, PROFITF.PROFF/;
```

SOLVE BERTRAND USING MCP;
WELHB0 = PROFH.L;
*now analyze a production subsidy by h (strategic trade policy)

PARAMETER

S subsidy on H's output
WELFAREHC country h's welfare under Cournot
WELFAREHB country h's welfare under Bertrand;

S = 0.4;
$\mathrm{CH}=\mathrm{CH}-\mathrm{S}$;

SOLVE COURNOT USING MCP;
WELFAREHC = PROFH.L - S*XH.L;
DISPLAY WELHC0, WELFAREHC;

SOLVE BERTRAND USING MCP;
WELFAREHB = PROFH.L - S*XH.L;
DISPLAY WELHC0, WELFAREHC,WELHB0, WELFAREHB;

\$ONTEXT

```
now let's use nlp to find the OPTIMAL subsidies under Cournot and
Bertrand keep in mind that the optimal subsidy may be NEGATIVE, meaning
a tax let's play the goofy Brander-Spencer gams that all output is sold
to a third country. Then welfare = profits minus subsidy payments
or plus tax payments. PROFF will give the welfare of country f
$OFFTEXT
```

$$
\begin{aligned}
& C H=2 ; \\
& S=0 ;
\end{aligned}
$$

VARIABLES

WELFJ joint welfare
SUBH subsidy on XH is now a (free) variable: it can be negative
WELHS welfare of country h: objective to maximize
SUBF subsidy on XF is now a (free) variable: it can be negative
WELFS welfare of country F: objective to maximize;

EQUATIONS

```
    WELJ joint welfare - Cobb-Douglas
```

 WELH welfare of country h is WELH = PROFH - SUBH*XH
 PROFITHS new equation for profits of firm h - replaces PROFITH
 WELF welfare of country f is WELF = PROFF - SUBF*XF
 PROFITFS new equation for profits of firm f - replaces PROFITF
 HCOURNOTS new Cournot reaction function firm h - replaces HCOURNOT
 HBERTRANDS new Bertrand reaction function firm h - replaces HBERTRAND
 FCOURNOTS new Cournot reaction function firm f - replaces FCOURNOT
 fBERTRANDS new Bertrand reaction function firm f - replaces fBERTRAND;
 WELJ.. WELFJ =E= WELHS**0.5*WELFS**0.5;
WELH.. WELHS =E= PROFH - SUBH*XH;

```
PROFITHS.. PROFH =E= PH*XH - (CH - SUBH)*XH;
HCOURNOTS.. (CH - SUBH) =E= ALPHA - 2*BETA*XH - GAMMA*XF;
HBERTRANDS.. -SLOPEB1*(CH-SUBH) =E= INTERB - 2*SLOPEB1*PH + SLOPEB2*PF;
WELF.. WELFS =E= PROFF - SUBF*XF;
PROFITFS.. PROFF =E= PF*XF - (CF - SUBF)*XF;
FCOURNOTS.. (CF - SUBF) =E= ALPHA - 2*BETA*XF - GAMMA*XH;
FBERTRANDS.. -SLOPEB1*(CF-SUBF) =E= INTERB - 2*SLOPEB1*PF + SLOPEB2*PH;
SUBH.L = 0.4;
WELHS.L = 8;
* first, a unilateral action by the government of country h
SUBF.FX = 0;
MODEL COURNOTS /WELH, HCOURNOTS, FCOURNOT, PRICEH, PRICEF,
    PROFITHS, PROFITF/;
SOLVE COURNOTS USING NLP MAXIMIZING WELHS;
```

```
MODEL BERTRANDS /WELH, HBERTRANDS, FBERTRAND, XBERTH, XBERTF,
    PROFITHS, PROFITF/;
SOLVE BERTRANDS USING NLP MAXIMIZING WELHS;
SUBF.UP = +INF;
SUBF.LO = -INF;
* compute cooperative and non-cooperative outcomes between governments
SETS I /I1*I10/
    J /COOP, NONCOOP/;
PARAMETER
    RESULTSC(*, J);
* compute a cooperative Nash eq between the governments
MODEL WELFJOINT /WELJ, WELH, WELF, HCOURNOTS, FCOURNOTS, PRICEH, PRICEF,
        PROFITHS, PROFITFS/;
SOLVE WELFJOINT USING NLP MAXIMIZING WELFJ;
```

RESULTSC("WELJ", "COOP") = WELFJ.L;
RESULTSC("WELH", "COOP") = WELHS.L;
RESULTSC("WELF", "COOP") = WELFS.L;

```
RESULTSC("PROFITH", "COOP") = PROFH.L;
RESULTSC("PROFITF", "COOP") = PROFF.L;
RESULTSC("SUBH", "COOP") = SUBH.L;
RESULTSC("SUBF", "COOP") = SUBF.L;
DISPLAY RESULTSC;
* compute a non-cooperative outcome in subsidy rates
* iterative procedure:
* max WELHS subject to SUBF fixed
* hold SUBH at it's solution level and free up SUBF
* max WELFS solve model for fixed SUBH
* repeat 10 time
SUBH.L = 0;
SUBF.L = 0;
LOOP(I,
SUBH.LO = -INF;
SUBH.UP = +INF;
SUBF.FX = SUBF.L;
```

SOLVE WELFJOINT USING NLP MAXIMIZING WELHS;

```
SUBF.LO = -INF;
SUBF.UP = +INF;
SUBH.FX = SUBH.L;
```

SOLVE WELFJOINT USING NLP MAXIMIZING WELFS;
);
RESULTSC("WELJ", "NONCOOP") = WELFJ.L;
RESULTSC("WELH", "NONCOOP") = WELHS.L;
RESULTSC("WELF", "NONCOOP") = WELFS.L;
RESULTSC("PROFITH", "NONCOOP") = PROFH.L;
RESULTSC("PROFITF", "NONCOOP") = PROFF.L;
RESULTSC("SUBH", "NONCOOP") = SUBH.L;
RESULTSC("SUBF", "NONCOOP") = SUBF.L;

DISPLAY RESULTSC;

