\$TITLE: M5-4.GMS Balance a matrix (micro-consistent data) as an NLP
* Simple micro-consistency example: least squares to balance matrix
* Minimize sum of squared errors in adjusting data to get zero row and
* column sums

```
SETS R /PX, PY, PL/
C /X, Y, CONS/;
```

PARAMETERS

Z0(R,C)	original unbalanced	data				
BENCHC(R,C)	new balanced matrix					
BENCH3(R,C)	further constraints	- no	intermediates	or	joint	outputs;

TABLE BENCH(*,*)

	Х	Y	CONS		
PX	10	0	-11		
ΡY	0	11	-12		
PL	-8	-12	21 ;		

ZO(R,C) = BENCH(R,C);

DISPLAY Z0;

VARIABLES

- Z(R,C) new adjusted data
- DEV sum of squared errors from original data;

EQUATIONS SUMSQ ROWSUM(R) COLSUM(C)	objective function: sse sum of elements in row R sum of elements in column C;			
*SUMSQ	DEV = E = SUM(R, SUM(C, (Z(R, C) - ZO(R, C)) * * 2));			
SUMSQ	DEV =E= $SUM(R, SUM(C, (Z(R,C)-Z0(R,C))*(Z(R,C)-Z0(R,C)));$			
ROWSUM(R)	SUM (C, Z(R,C)) = E = 0.;			
COLSUM(C)	SUM (R, Z(R,C)) = E = 0.;			
MODEL MCONS	/ALL/;			
DEV.L = 20;				
* set some starting values Z.L(R,C) = ZO(R,C) + 1;				
SOLVE MCONS USING NLP MINIMIZING DEV;				
BENCHC(R,C)	= Z.L(R,C);			

Page 2

DISPLAY BENCH, BENCHC;

*suppose that we with to rule out intermediate inputs and joint outputs

EQUATIONS

CONST1

CONST2;

```
CONST1.. Z("PY", "X") =E= 0;
CONST2.. Z("PX", "Y") =E= 0;
```

MODEL MCONS2 /ALL/;

DEV.L = 20;

Z.L(R,C) = ZO(R,C) + 1;

SOLVE MCONS2 USING NLP MINIMIZING DEV;

BENCH3(R,C) = Z.L(R,C);

DISPLAY BENCH, BENCHC, BENCH3;