\$TITLE: M5-5.GMS: invert a matrix using mcp;

\$ontext

```
Interestingly, inverting a matrix can be converted into an MCP problem.
An the method is extremely sparse in coding and very fast: a 500x500
matrix can be inverted in a couple of second.
But first, we show a simple 2x2 problem written out in full to show
the key to the majic. Then we illustrate the efficient version on
a 3x3. Thanks to Tom Rutherford and Edward Balistreri for the latter.
$offtext
SETS R /R1*R2/
    C /C1*C2/;
```

TABLE $M(R, C)$
C1 C2

R1	2	1
R2	1	$2 ;$

VARIABLES

MINV11 element 11 of the inverse of M
MINV21 element 21 of the inverse of M
MINV12 element 12 of the inverse of M
MINV22 element 22 of the inverse of M;

EQUATIONS

EL11
EL21
EL12
EL22;

* note: first two equations solve for two unknowns: MINV11, MINV21

EL11.. M("R1","C1")*MINV11 + M("R1", "C2")*MINV21 =E= 1; EL21.. M("R2","C1")*MINV11 + M("R2","C2")*MINV21 =E= 0;

* note: second two equations for for two unknowns: MINV12, MINV22

EL12.. M("R1", "C1")*MINV12 + M("R1", "C2")*MINV22 =E= 0;
EL22.. M("R2","C1")*MINV12 + M("R2","C2")*MINV22 =E= 1;
MODEL INVERSE /EL11.MINV11, EL21.MINV21, EL12.MINV12, EL22.MINV22/; SOLVE INVERSE USING MCP;

```
* this specific example is useful in understanding the following general
* method: solve nxn sub-problems for each column of the inverse matrix
```

```
\begin{tabular}{|c|c|c|c|}
\hline SETS & I & row index & /1*3/ \\
\hline & N(I) & active row; & \\
\hline
\end{tabular}
ALIAS (I, J,K);
TABLE A(I,J) matrix to be inverted
\begin{tabular}{rrrr} 
& 1 & 2 & 3 \\
1 & 4 & 1 & -1 \\
2 & 0 & 3 & 2 \\
3 & 3 & 0 & \(7 ;\)
\end{tabular}
```


PARAMETERS

```
IM(I, J) identity matrix \(B(I, J)\) inverse of \(A\);
\(\operatorname{IM}(I, I)=1 ;\)
```


VARIABLE

```
X(I) current solution column of B;
```


EQUATION

```
INV(I) definition of inverse on column i of B;
INV(I).. SUM(K, A(I,K)*X(K)) - 1\$N(I) =E= 0;
MODEL INVERT /INV.X/;
```

LOOP (J ,

```
N(I) = YES$(ORD(I) eq ORD(J));
```

SOLVE INVERT USING MCP;

```
B(I,J) = X.L(I);
);
* check that we have the inverse
* also shows how to do matrix multiplication
```

PARAMETER
VERIFY(I,J) A times B: should be a matrix of zeros;
VERIFY(I,J) = SUM(K, A(I,K)*B(K,J)) - IM(I,J);
DISPLAY A, B, VERIFY;

