\$TITLE: M5-5.GMS: invert a matrix using mcp;

\$ontext

Interestingly, inverting a matrix can be converted into an MCP problem. An the method is extremely sparse in coding and very fast: a 500x500 matrix can be inverted in a couple of second.

But first, we show a simple 2x2 problem written out in full to show the key to the majic. Then we illustrate the efficient version on a 3x3. Thanks to Tom Rutherford and Edward Balistreri for the latter. \$offtext

SETS R /R1*R2/ C /C1*C2/;

 TABLE M(R,C)

 C1
 C2

 R1
 2
 1

 R2
 1
 2;

VARIABLES

MINV11	element	11	of	the	inverse	of	М
MINV21	element	21	of	the	inverse	of	М
MINV12	element	12	of	the	inverse	of	М
MINV22	element	22	of	the	inverse	of	M;

EQUATIONS

EL11

EL21

EL12

EL22;

* note: first two equations solve for two unknowns: MINV11, MINV21

EL11.. M("R1", "C1")*MINV11 + M("R1", "C2")*MINV21 =E= 1; EL21.. M("R2", "C1")*MINV11 + M("R2", "C2")*MINV21 =E= 0;

* note: second two equations for for two unknowns: MINV12, MINV22

EL12.. M("R1", "C1")*MINV12 + M("R1", "C2")*MINV22 =E= 0; EL22.. M("R2", "C1")*MINV12 + M("R2", "C2")*MINV22 =E= 1;

MODEL INVERSE /EL11.MINV11, EL21.MINV21, EL12.MINV12, EL22.MINV22/;
SOLVE INVERSE USING MCP;

* this specific example is useful in understanding the following general * method: solve nxn sub-problems for each column of the inverse matrix SETS I row index /1*3/ N(I) active row;

ALIAS (I,J,K);

TABLE	A(I,J)	matrix	to be inverte	ed
	1	2	3	
1	4	1	-1	
2	0	3	2	
3	3	0	7;	

PARAMETERS

IM(I,J) identity matrix
B(I,J) inverse of A;

IM(I,I) = 1;

VARIABLE

X(I) current solution column of B;

EQUATION

INV(I) definition of inverse on column i of B;

INV(I).. SUM(K, A(I,K)*X(K)) - 1\$N(I) =E= 0;

MODEL INVERT / INV.X/;

LOOP(J,

N(I) = YES\$(ORD(I) eq ORD(J));

SOLVE INVERT USING MCP;

B(I,J) = X.L(I);

);

* check that we have the inverse * also shows how to do matrix multiplication

PARAMETER

VERIFY(I,J) A times B: should be a matrix of zeros;

VERIFY(I,J) = SUM(K, A(I,K)*B(K,J)) - IM(I,J);

DISPLAY A, B, VERIFY;