\$TITLE Model M6-2: 2x2 (two goods, two factors) benchmark taxes * Positive tax in the X sector in the benchmark
\$ONTEXT

> Production Sectors

Consumers

Assume that this is a 100% tax on labor in X : TLX $=1$.
Let the CONSUMER price (wage) of labor equal 1: $P L=1$.
The PRODUCER price (cost) of labor in X is equal to 2:
$P L *(1+T L X)=2$
\$OFFTEXT
SCALAR TX Proportional output tax on sector X, TY Proportional output tax on sector Y, TLX Ad-valorem tax on labor inputs to X,

```
TKX Ad-valorem tax on capital inputs to X
TAXREV Total tax revenue from all sources;
```


POSITIVE VARIABLES

```
X Activity level for sector X
Y Activity level for sector Y
W Activity level for sector W
PX Price index for commodity X
PY Price index for commodity Y
PL Price index for primary factor L
PK Price index for primary factor K
PW Price index for welfare (expenditure function)
CONS Income definition for CONS
PPLX Producer price for L in X
PPKX Producer price for K in X
PPX Producer price for X
PPY Producer price for Y;
```


EQUATIONS

```
PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_W Zero profit for sector W
MKT_X Supply-demand balance for commodity X
```

```
    MKT_Y Supply-demand balance for commodity Y
MKT_L Supply-demand balance for primary factor L
MKT_K Supply-demand balance for primary factor L
MKT_W Supply-demand balance for aggregate demand
I_CONS Income definition for CONS
RPPLX Relation between consumer and producer price L in X
RPPKX Relation between consumer and producer price K in X
RPPX Relationship between producer and consumer price of X
RPPY Relationship between producer and consumer price of Y;
Zero profit conditions:
PRF_X.. 100*(PPLX/2)**0.4 * (PPKX)**0.6 =G= 100*PPX;
PRF_Y.. 100*PL**0.6 * PK**0.4 =G= 100*PPY;
PRF_W.. 200*PX**0.5 * PY**0.5 =G= 200*PW;
Market clearing conditions:
MKT_X.. 100*X =G= 100*W*PW/PX;
MKT_Y.. 100*Y =G= 100*W*PW/PY;
```

MKT_W.. 200*W =G= CONS/PW;
MKT_L.. 80 =G= 20*X*PPX/(PPLX/2) + 60*Y*PPY/PL;
MKT_K.. 100 =G= 60*X*PPX/PPKX + 40*Y*PPY/PK;

* Income constraints:
$\begin{aligned} \text { I_CONS. . CONS }=E= & 80 * P L+100 * P K+100^{*} P X^{*} X^{*} T X+100^{*} \mathrm{PY}^{*} \mathrm{Y}^{*} \mathrm{TY}+ \\ & \mathrm{TLX}+\mathrm{PL} 20^{*} \mathrm{X}^{*} \mathrm{PPX} /(\mathrm{PPLX} / 2)+ \\ & \mathrm{TKX}{ }^{*} \mathrm{PK}^{*} 60^{*} \mathrm{X}^{*} \mathrm{PPX} /(\mathrm{PPKX}) ;\end{aligned}$
RPPLX.. PPLX =E= PL* (1+TLX);
RPPKX.. PPKX =E= PK*(1+TKX);
RPPX.. $P P X=E=P X^{*}(1-T X)$;
RPPY.. $P P Y=E=P Y^{*}(1-T Y)$;
MODEL BENCHTAX /PRF_X.X, PRF_Y.Y, PRF_W.W, MKT_X.PX, MKT_Y.PY, MKT_L.PL, MKT_K.PK, MKT_W.PW, I_CONS.CONS, RPPLX.PPLX, RPPKX.PPKX,RPPX.PPX, RPPY.PPY /;
X.L $=1$;
Y.L =1;
W.L =1;

PL. L	$=1 ;$
PX.L	$=1 ;$
PY.L	$=1 ;$
PK.L	$=1 ;$
PW.FX	$=1 ;$
PPLX.L	$=2 ;$
PPKX.L	$=1 ;$
PPX.L	$=1 ;$
PPY.L	$=1 ;$

CONS.L =200;

TX	$=0 ;$
TY	$=0 ;$
TLX	$=1 ;$
TKX	$=0 ;$

BENCHTAX.ITERLIM $=0$; SOLVE BENCHTAX USING MCP;

BENCHTAX.ITERLIM = 1000; SOLVE BENCHTAX USING MCP;

TAXREV $=100^{*} P X . L^{*} X . L^{*} T X+100 * P Y . L^{*} Y . L^{*} T Y+$ TLX*PL.L*20*X.L* PPX.L /(PPLX.L/2) + TKX*PK.L*60*X.L* PPX.L /(PPKX.L);

DISPLAY TAXREV;

```
* In the first counterfactual, we replace the tax on
* labor inputs by a uniform tax on both factors:
```

TLX = 0.25;
TKX $=0.25$;
TX = 0;
TY = 0;

SOLVE BENCHTAX USING MCP;

```
TAXREV = 100*PX.L*X.L*TX + 100*PY.L*Y.L*TY +
    TLX*PL.L*20*X.L* PPX.L /(PPLX.L/2) +
    TKX*PK.L*60*X.L* PPX.L /(PPKX.L);
DISPLAY TAXREV;
```

```
* Now demonstrate that a 25% tax on all inputs
* is equivalent to a
* 20% tax on the output (or all outputs if more than one)
```

TLX = 0;
TKX = 0;
TX = 0.2;
TY = 0;

SOLVE BENCHTAX USING MCP;

```
TAXREV = 100*PX.L*X.L*TX + 100*PY.L*Y.L*TY +
    TLX*PL.L*20*X.L* PPX.L /(PPLX.L/2) +
    TKX*PK.L*60*X.L* PPX.L /(PPKX.L);
DISPLAY TAXREV;
```

```
* Demonstrate that a 20% tax on the X sector output is
* equivalent to a 25% subsidy on Y sector output
* (assumes that the funds for the subsidy can be raised
* lump sum from the consumer!)
```

TKX = 0;
TLX = 0;
TX = 0;
TY = -0.25;
SOLVE BENCHTAX USING MCP;
TAXREV = 100*PX.L*X.L*TX + 100*PY.L*Y.L*TY +
TLX*PL.L*20*X.L* PPX.L /(PPLX.L/2) +
TKX*PK.L*60*X.L* PPX.L /(PPKX.L);
DISPLAY TAXREV;

* Show welfare under non-distortionary taxation
TX = 0.20;

```
TY = 0.20;
```

SOLVE BENCHTAX USING MCP;
TAXREV $=100 * P X . L^{*} X . L^{*} T X+100 * P Y . L^{*} Y . L^{*} T Y+$ TLX*PL.L*20*X.L* PPX.L /(PPLX.L/2) + TKX*PK.L*60*X.L* PPX.L /(PPKX.L);
DISPLAY TAXREV;

```
TX = 0.0;
TY = 0.0;
```

SOLVE BENCHTAX USING MCP;
TAXREV $=100 * P X . L^{*} X . L^{*} T X+100 * P Y . L * Y . L^{*} T Y+$
TLX*PL.L*20*X.L* PPX.L /(PPLX.L/2) +
TKX*PK.L*60*X.L* PPX.L /(PPKX.L);
DISPLAY TAXREV;

