\$TITLE M6-5.GMS: Public intermediate good with optimal provision \* technique for modeling infrastructure for example

## \$ONTEXT

| Markets | X   | Y<br> | <i>G</i> | W1   | CONS1 GOVT |  |
|---------|-----|-------|----------|------|------------|--|
| PX /    | 100 |       |          | -100 |            |  |
| PY /    |     | 100   |          | -100 |            |  |
| PG      |     |       | 50       |      | -50        |  |
| PL /    | -80 | -80   | -40      |      | 200        |  |
| TAX /   | -20 | -20   | -10      |      | 50         |  |
| PW /    |     |       |          | 200  | -200       |  |

Production Sectors Consumers

X = ALPHA\*F(L) ALPHA = F(G) ALPHA viewed as exogenous by firms

\$OFFTEXT

## **PARAMETERS**

SHX, SHY, shares of X and Y in consumer's utility INFPROD productivity parameter of the public good in X output;

```
SHX = 0.5;

SHY = 0.5;

INFPROD = 0;
```

## POSITIVE VARIABLES

```
Χ
       Activity level for sector X
Y
       Activity level for sector Y
       Activity level for sector W
W
G
       Activity level for government sector
PX
        Price index for commodity X
PY
       Price index for commodity Y
       Private valuation of the public good
PG
       Price index for primary factor L
PL
       Price index for welfare 1(expenditure function)
PW
        Budget restriction for government
GOVT
        Income definition for CONS
CONS
       Uniform value-added tax rate
TAX
       Public intermediary good multiplier on productivity;
ALPHA
```

## **EQUATIONS**

```
PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_W Zero profit for sector W1
PRF_G Zero profit in government sector

MKT X Supply-demand balance for commodity X
```

```
Supply-demand balance for commodity Y
  MKT Y
  MKT G Supply-demand balance for commodity G
          Supply-demand balance for primary factor L
  MKT L
  MKT_W Supply-demand balance for consumer 1
   I G Budget restriction for government
   I CONS Income definition for CONS
  A TAX Auxiliary for government provision
   INFRA Auxiliary for public intermediate good calculation;
       Zero profit conditions:
PRF X.. 80*PL * (1+TAX)/ALPHA =G= 100*PX;
PRF Y.. 80*PL * (1+TAX) =G= 100*PY;
PRF_W .. 200*PX**(SHX) * PY**(SHY) =E= 200*PW;
PRF G.. 40*PL*(1+TAX) = G = 50*PG;
       Market clearing conditions:
MKT X.. 100*X = G = 200*SHX*W*PW/PX;
MKT Y.. 100*Y = G = 200*SHY*W*PW/PY;
```

X.L = 1;

```
MKT G.. 50*G = G = GOVT/PG;
MKT_L.. 200 =G= (80*X/ALPHA + 80*Y + 40*G);
MKT W.. 200*W = G = CONS/PW;
*
       Income constraints:
I G.. GOVT =G= PL*(80*X/ALPHA + 80*Y + 40*G)*TAX;
I CONS.. CONS =E = 200*PL;
       Auxiliary constraints:
A TAX.. PG =E= PX*INFPROD;
INFRA.. ALPHA =E=1 + INFPROD*G;
MODEL PUBINT /PRF X.X, PRF Y.Y, PRF W.W, PRF G.G,
                MKT X.PX, MKT Y.PY, MKT L.PL, MKT W.PW, MKT G.PG,
                I G.GOVT, I CONS.CONS,
                A TAX.TAX, INFRA.ALPHA /;
```

```
Y.L = 1;
W.L = 1;
G.I. = 1;
PL.FX = 1;
PX.L = 1;
PY.L =1;
PG.L =1;
PW.L =1;
CONS.L = 200;
GOVT.L = 50;
ALPHA.L = 1;
TAX.L = .25;
PUBINT.ITERLIM = 0;
SOLVE PUBINT USING MCP;
* with INFPROD = 0 initially, the optimal tax should be zero
PUBLINT TTERLIM = 2000;
SOLVE PUBINT USING MCP;
* now set INFPROD = 2, optimal tax and provision should be positive
INFPROD = 2;
TAX.L = 0.25; G.L = 1;
SOLVE PUBINT USING MCP;
```