\$TITLE: M6-6b.GMS: Pollution modelled as an MPEC to solve for optimal TX

\$ONTEXT

Follows from M6-5a: two goods and one factor, one consumer Pollution is generated by the production of X, pollution reduces utility Pollution is modeled as a reduction in the endowment of CLEAN AIR Initial endowment of clear air is 200, with 100 reduced by X pollution and 100 entering utility.

Solves for the welfare maximizing level of the pollution tax

	Production Sectors			Sectors	Consumers		
Markets		X	Y	W	/	CONS	
PX PY PW	 	100	100	-100 -100 300	 	-300	
PL	/	-100	-100		/	200	
PCA				-100		(200 - 100)

\$OFFTEXT

PARAMETERS

POLINT polution intensity multiplier;

POLINT = 1;

VARIABLES

WELFARE	welfare				
ТХ	pollution	tax	on	X;	

POSITIVE VARIABLES

X	activity level for X production
Y	activity level for Y production
W	activity level for the "production" of welfare from X Y
PX	price of good X
PY	price of good Y
PCA	price of clean air
PW	price of a unit of welfare (real consumer-price index)
PL	price of labor
CONS POL	income of the representative consumer pollution;

EQUATIONS

OBJ	Objective function: maximize welfare
PRF_X	zero profit for sector X
PRF_Y	zero profit for sector Y

PRF_W zero profit for sector W (Hicksian welfare index)

MKT_X	supply-de	emand bal	lance foi	r commodity	γX
-------	-----------	-----------	-----------	-------------	----

- MKT_Y supply-demand balance for commodity Y
- MKT_CA market for clean air (determines shadow value PCA)
- MKT_L supply-demand balance for primary factor L

MKT_W supply-demand balance for aggregate demand

I_CONS income definition for CONS

PPOL pollution caused by production - consumption of X;

- * Zero profit inequalities
- OBJ.. WELFARE =E= W;
- PRF_X.. 100*PL*(1+TX) =G= 100*PX;
- PRF_Y.. 100*PL =G= 100*PY;
- PRF_W.. 200*(PX**(1/3) * PY**(1/3) * PCA**(1/3)) =G= 200*PW;
- * Market clearance inequalities
- MKT_X.. 100*X =G= 100 * W * PW / PX;
- MKT_Y.. 100*Y =G= 100 * W * PW / PY;

- MKT CA.. 200-100*POL =G= 100 * W * PW / PCA;
- MKT_W.. 300*W =E= CONS / PW;
- MKT_L.. 200 =G= 100*X + 100*Y;
- * Income balance equations (don't forget tax revenue)
- I_CONS.. CONS =E= 200*PL + (200-100*POL)*PCA + TX*100*X*PL;
- PPOL.. 100*POL =G= POLINT*100*X;
- MODEL POLLUTE / OBJ, PRF_X.X, PRF_Y.Y, PRF_W.W, MKT_X.PX, MKT_Y.PY, MKT_CA.PCA, MKT_L.PL, MKT W.PW,I CONS.CONS, PPOL.POL /;
- * Chose a numeraire: real consumer price index

PW.FX = 1;

* Set initial values of variables:

X.L=1; Y.L=1; W.L=1; PX.L=1; PY.L=1; PL.L=1; POL.L = 1; PCA.L = 1;

```
CONS.L=300; WELFARE.L = 1;
```

```
OPTION MPEC = nlpec;
POLLUTE.ITERLIM = 0;
SOLVE POLLUTE USING MPEC MAXIMIZING WELFARE;
```

```
TX.L = 0.3;
WELFARE.L = 1.2;
```

```
POLLUTE.ITERLIM = 1000;
SOLVE POLLUTE USING MPEC MAXMIZING WELFARE;
```

```
* make pollution worse
```

POLINT = 1.5;

SOLVE POLLUTE USING MPEC MAXMIZING WELFARE;