\$TITLE: M6-7.GMS: two households with different preferences, endowments
* adaptation of model M3-7:

* modeled as an MPEC: find the optimal tax maximizing social welfare

\$ONTEXT

Two household: differ in preferences and in endowments
Household A: well endowed with labor,
 preference for labor-int good Y
Household B: well endowed with capital,
 preference for capital-int good X
Allows for tax to be redistributed unevenly between households

		Production Sectors						Consumers			
Markets	/	X		Y		WA	WB	/	A		В
							 	·			
PX	/	100				-40	-60	/			
PY	/			100		-60	-40	/			
PWA	/					100		/	-100		
PWB	/						100	/		— .	100
PL	/	-25		-75				/	90		10
PK	/	-75		-25				/	10		90
	' 						 	·			

The tax redistribution or sharing rule can also be interpreted as the relative number of households in each group, with all households getting an equal share of tax receipts

\$OFFTEXT

PARAMETERS

WEIGHTA	weight of consumer A in social welfare
WEIGHTB	weight of consumer B in social welfere
SHA	share of tax redistributed to consumer A
SHB	share of tax redistributed to consumer B;

WEIGHTA = 0.5; WEIGHTB = 0.5; SHA = 0.5; SHB = 0.5;

VARIABLES

WS	social welf	are			
TAX	endogenous	tax	rate	on	X;

NONNEGATIVE VARIABLES

Х	Activity level for sector X,
Y	Activity level for sector Y,
WA	Activity level for weflare for consumer A
WB	Activity level for welfare for consumer B
PX	Price index for commodity X,
ΡY	Price index for commodity Y,
PK	Price index for primary factor K,

PL	<pre>Price index for primary factor L,</pre>
PWA	Price index for welfare A(expenditure function),
PWB	Price index for welfare B(expenditure function),
CONSA	Income definition for CONSA,
CONSB	Income definition for CONSB;

EQUATIONS

OBJ	Social welfare function
PRF_X	Zero profit for sector X
PRF_Y	Zero profit for sector Y
PRF_WA	Zero profit for sector WA (Hicksian welfare index)
PRF_WB	Zero profit for sector WB (Hicksian welfare index)
MKT_X	Supply-demand balance for commodity X
MKT_Y	Supply-demand balance for commodity Y
MKT_L	Supply-demand balance for primary factor L
MKT_K	Supply-demand balance for primary factor K
MKT_WA	Supply-demand balance for aggregate demand consumer A
MKT_WB	Supply-demand balance for aggregate demand consumer B
I_CONSA	Income definition for CONSA
I_CONSB	Income definition for CONSB;

Objective function (social weflare function) to be maxmized

OBJ	WS =E= (WA**WEIGHTA) * (WB**WEIGHTB);
* Zero pi	cofit conditions:
PRF_X	100 * (PL**0.25 * PK**0.75) * (1+TAX) =E= 100 * PX;
PRF_Y	100 * (PL**0.75 * PK**0.25) =E= 100 * PY;
PRF_WA	100 * PX**0.4 * PY**0.6 =E= 100 * PWA;
PRF_WB	100 * PX**0.6 * PY**0.4 =E= 100 * PWB;
* Market	clearing conditions:
MKT_X	100 * X =E= 40*WA*PWA/PX + 60*WB*PWB/PX;
MKT_Y	100 * Y =E= 60*WA*PWA/PY + 40*WB*PWB/PY;
MKT_WA	100 * WA =E= CONSA / PWA;
MKT_WB	100 * WB =E= CONSB / PWB;
MKT_L	90 + 10 =E= 25*X*(PX/(1+TAX))/PL + 75*Y*PY/PL;
MKT_K	10 + 90 =E= 75*X*(PX/(1+TAX))/PK + 25*Y*PY/PK;

* Income constraints:

I_CONSA.. CONSA = E = 90*PL + 10*PK + SHA*TAX*100*X*PX/(1+TAX);

I_CONSB.. CONSB =E= 10*PL + 90*PK + SHB*TAX*100*X*PX/(1+TAX);

*MODEL MPEC /ALL/;

OPTION MPEC = nlpec; MODEL MPEC /OBJ, PRF_X.X, PRF_Y.Y, PRF_WA.WA, PRF_WB.WB, MKT_X.PX, MKT_Y.PY, MKT_L.PL, MKT_K.PK, MKT_WA.PWA, MKT_WB.PWB, I_CONSA.CONSA, I_CONSB.CONSB /;

* Check the benchmark:

- WS.L =1;
- X.L =1;
- Y.L =1;
- WA.L =1;
- WB.L =1;
- PL.L =1;
- PX.L =1;
- PY.L =1;

```
PK L = 1i
PWB.L =1;
PWA.L =1;
CONSA.L = 100;
CONSB.L =100;
TAX.L =0.;
PWA.FX = 1;
SOLVE MPEC USING MPEC MAXIMIZING WS;
WEIGHTA = 0.7;
WEIGHTB = 0.3;
SOLVE MPEC USING MPEC MAXIMIZING WS;
WEIGHTA = 0.7;
WEIGHTB = 0.3;
SHA = 0.75; SHB = 0.25;
SOLVE MPEC USING MPEC MAXIMIZING WS;
WEIGHTA = 0.3;
```

WEIGHTB = 0.7;

SHA = 0.5; SHB = 0.5; TAX.L = -0.2;

SOLVE MPEC USING MPEC MAXIMIZING WS;

* this one is interesting: a subsidy is optimal but consumer B* must finance 75% of the subsidy. Result is a very small subsidy

WEIGHTA = 0.3; WEIGHTB = 0.7; SHA = 0.25; SHB = 0.75;

SOLVE MPEC USING MPEC MAXIMIZING WS;