```
\$TITLE: M6-7.GMS: two households with different preferences, endowments * adaptation of model M3-7:
* modeled as an MPEC: find the optimal tax maximizing social welfare
```


\$ONTEXT

```
Two household: differ in preferences and in endowments
Household A: well endowed with labor,
    preference for labor-int good Y
Household B: well endowed with capital,
    preference for capital-int good X
Allows for tax to be redistributed unevenly between households
```

Markets	Production Sectors				Consumers	
	X	Y	WA	WB	A	B
$P X$	100		-40	-60		
PY		100	-60	-40		
PWA			100		-100	
PWB				100		-100
PL	-25	- 75			90	10
PK	-75	-25			10	90

The tax redistribution or sharing rule can also be interpreted as the relative number of households in each group, with all households getting an equal share of tax receipts

\$0FFTEXT

PARAMETERS

WEIGHTA	weight of consumer A in social welfare
WEIGHTB	weight of consumer B in social welfere
SHA	share of tax redistributed to consumer A
SHB	share of tax redistributed to consumer B;

WEIGHTA $=0.5$;
WEIGHTB $=0.5$;
SHA = 0.5;
SHB $=0.5$;

VARIABLES

```
WS social welfare
TAX endogenous tax rate on X;
```

NONNEGATIVE VARIABLES

X	Activity level for sector X,
Y	Activity level for sector Y,
WA	Activity level for weflare for consumer A
WB	Activity level for welfare for consumer B
PX	Price index for commodity X,
PY	Price index for commodity Y,
PK	Price index for primary factor K,

PL	Price index for primary factor L,
PWA	Price index for welfare A(expenditure function),
PWB	Price index for welfare B (expenditure function),
CONSA	Income definition for CONSA,
CONSB	Income definition for CONSB;

EQUATIONS

```
OBJ Social welfare function
PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_WA Zero profit for sector WA (Hicksian welfare index)
PRF_WB Zero profit for sector WB (Hicksian welfare index)
MKT_X Supply-demand balance for commodity X
MKT_Y Supply-demand balance for commodity Y
MKT_L Supply-demand balance for primary factor L
MKT_K Supply-demand balance for primary factor K
MKT_WA Supply-demand balance for aggregate demand consumer A
MKT_WB Supply-demand balance for aggregate demand consumer B
I_CONSA Income definition for CONSA
I_CONSB Income definition for CONSB;
```

OBJ.. W WS $=E=(W A * * W E I G H T A)$ * (WB**WEIGHTB);
Zero profit conditions:

Income constraints:

I_CONSA.	$C O N S A=E=90^{*} P L+10^{*} P K+S H A * T A X * 100^{*} X^{*} P X /(1+T A X) ;$
$I _C O N S B .$.	$C O N S B=E=10^{*} P L+90^{*} P K+S H B * T A X * 100^{*} X^{*} P X /(1+T A X) ;$

*MODEL MPEC /ALL/;

OPTION MPEC = nlpec;
MODEL MPEC /OBJ, PRF_X.X, PRF_Y.Y, PRF_WA.WA, PRF_WB.WB, MKT_X.PX, MKT_Y.PY, MKT_L.PL, MKT_K.PK, MKT_WA.PWA, MKT_WB.PWB, I_CONSA.CONSA, I_CONSB.CONSB /;

* Check the benchmark:

WS.L =1;
X.L =1;
Y.L =1;

WA.L =1;
WB.L =1;

PL.L =1;
PX.L =1;
PY.L =1;

```
PK.L =1;
PWB.L =1;
PWA.L =1;
```

CONSA.L =100;
CONSB.L =100;
TAX.L =0.;
PWA.FX = 1;
SOLVE MPEC USING MPEC MAXIMIZING WS;
WEIGHTA = 0.7;
WEIGHTB $=0.3$;
SOLVE MPEC USING MPEC MAXIMIZING WS;
WEIGHTA = 0.7;
WEIGHTB $=0.3$;
SHA $=0.75 ;$ SHB $=0.25$;
SOLVE MPEC USING MPEC MAXIMIZING WS;
WEIGHTA $=0.3$;
WEIGHTB = 0.7;

```
SHA = 0.5; SHB = 0.5;
TAX.L = -0.2;
```

SOLVE MPEC USING MPEC MAXIMIZING WS;

```
* this one is interesting: a subsidy is optimal but consumer B
* must finance 75% of the subsidy. Result is a very small subsidy
```

WEIGHTA $=0.3$;
WEIGHTB = 0.7;
SHA $=0.25$; $\mathrm{SHB}=0.75$;

SOLVE MPEC USING MPEC MAXIMIZING WS;

