\$TITLE M7-3.GMS: Oligopoly with Free Entry, homogeneous good, Cournot * competition. Uses Cobb-Douglas demand
\$ONTEXT

	Production Sectors				Consumers	
Markets	X	N	Y	W	CONS	ENTRE
$P X$	100			-100		
PY			100	-100		
PN		20				-20
PW				200	-200	
PL	80	-20	-100		200	
MK	-20					20

\$OFFTEXT

PARAMETERS

SIGMA Elasticity of substitution
ENDOW Endowment scale multiplier
MODELSTAT statistic indicating model solved: $0=$ solved
XPF X output per firm;

SIGMA = 1;
ENDOW = 200;

POSITIVE VARIABLES

X	Aggregate X production by all firms
N	Number of X sector firms
Y	Activity level of Y output
W	Activity level for welfare
PX	Price of an individual X variety
PN	Price of fixed costs (price of entering)
PY	Price of Y
PL	Price of labor
PW	Price index for utility (consumer price index)

CONS	Income of the representative consumer
ENTRE	Inomce of the agent ENTRE $=$ markup revenue
MARKUP	Endogenous markup rate $=1$ over $N ;$

EQUATIONS

PRICEX	MR = MC in X
PRICEN	Zero profit condition for fixed costs
PRICEY	Zero profit condition for $Y(P Y=M C)$

PRICEW	Zero profit condition for W
DX	Supply-Demand for X
DN	Supply-Demand for fixed costs
DY	Supply-Demand for Y
DW	Supply-Demand for W
LAB	Supply-demand balance for labor
ICONS	Consumer (factor owners') income
IENTRE	Entrepreneur's profits
MK	Markup equation;

PRICEX. $\quad P L=G=P X *(1-M A R K U P) ;$
PRICEN.. $P L=G=P N ;$

PRICEY.. PL =G= PY;
PRICEW. ((PX/1.25)**0.5)*(PY**0.5) =G= PW;
DX. $\quad X^{*} 80=E=0.5^{*} C O N S / P X ;$

DN.. $\quad N^{*} 4=G=E N T R E / P N ;$

```
DY.. Y*100 =E= 0.5*CONS/PY;
DW.. W*200 =E= CONS/PW;
LAB.. ENDOW =E= Y*100 + X*80 + N*4;
ICONS.. CONS =E= PL*ENDOW;
IENTRE.. ENTRE =E= MARKUP*PX*X*80;
MK.. MARKUP*N =E= 1;
MODEL M52 /DX.PX, DY.PY, DW.PW, DN.PN, PRICEX.X, PRICEY.Y,
    PRICEW.W, PRICEN.N,LAB.PL,
    ICONS.CONS, IENTRE.ENTRE, MK.MARKUP/;
OPTION MCP=MILES;
OPTION LIMROW=0;
OPTION LIMCOL=0;
$OFFSYMLIST OFFSYMXREF OFFUELLIST OFFUELXREF
CONS.L = 200;
X.L = 1;
Y.L = 1;
W.L = 1;
```

```
N.L = 5;
PX.L = 1.25;
PY.L = 1;
PL.L = 1;
PW.L = 1;
PN.L = 1;
ENTRE.L = 20;
MARKUP.L = 0.20;
PY.FX = 1;
M52.ITERLIM = 0;
SOLVE M52 USING MCP;
MODELSTAT = M52.MODELSTAT - 1.;
M52.ITERLIM = 1000;
SOLVE M52 USING MCP;
MODELSTAT = M52.MODELSTAT - 1.;
XPF = 80*X.L/N.L;
DISPLAY XPF;
* counterfactual: double the size of the economy
ENDOW = 400;
```

SOLVE M52 USING MCP;

```
XPF = 80*X.L/N.L;
DISPLAY XPF;
```

* show welfare as a function of the economy's size
SETS I indexes 25 different size levels /I1*I25/;
PARAMETERS
SIZE(I)
WELFARE(I)
WELFCAP (I)
FIRMSIZE (I)
FIRMNUMB(I)
MARKUPO (I)
RESULTS(I, *);
LOOP (I,
SIZE(I) = $5.2-0.2^{*}$ ORD(I);
ENDOW = 200*SIZE(I);
SOLVE M52 USING MCP;

```
WELFARE(I) = W.L;
WELFCAP(I) = WELFARE(I)/SIZE(I);
FIRMSIZE(I) = X.L/N.L*5;
FIRMNUMB(I) = N.L/5;
MARKUPO(I) = MARKUP.L;
);
RESULTS(I, "SIZE") = SIZE(I);
RESULTS(I, "WELFARE") = WELFARE(I);
RESULTS(I, "WELFCAP") = WELFCAP(I);
RESULTS(I, "FIRMSIZE") = FIRMSIZE(I);
RESULTS(I, "FIRMNUMB") = FIRMNUMB(I);
RESULTS(I, "MARKUP") = MARKUPO(I);
```

DISPLAY RESULTS;

* Write parameter RESULTS to an Excel file M7.XLS,
* starting in Sheet1,
\$LIBINCLUDE XLDUMP RESULTS M7.XLS SHEET1!A3
Execute_Unload 'M7.gdx' RESULTS
execute 'gdxxrw.exe M7.gdx par=RESULTS rng=SHEET2!A3'

