\$TITLE: M7-5.GMS: Small-Group Monopolistic Competition

```
* markup formula is 1/(sigma - (1/(1+N))(sigma - 1)
* to calibrate to the same data, sigma = 5, N = 1, a fudge-factor
* of 0.6 is used in the markup formula to reproduce the benchmark
* markup = 0.6/(sigma - (1/(1+N))(sigma - 1) = 0.20
```

\$ONTEXT

		Production Sectors			Consumers	
Markets	XC	N	Y	W	CONS	ENTR
$P X$	100			-100		
$P Y$			100	-100		
PN		20				-20
PW				200	-200	
PL	-80	-20	-100		200	
MK	-20					20

\$OFFTEXT

PARAMETERS

SI
FC
ENDOWL
MODELSTAT statistic indicating model solved: $0=$ solved;

```
SI = 5;
FC = 20;
ENDOWL = 200;
```


NONNEGATIVE VARIABLES

X	Activity level for X (output per firm)
XC	Composite X (utility value of agg X sector output)
N	Number of X sector firms (variety measure)
Y	Activity level of Y output
W	Activity level for welfare
PX	Price of an individual X variety
PE	Price index (unit expenditure function): cost of XC = 1
PN	Price of fixed costs (price of entering)
PY	Price of Y
PL	Price of labor
PW	Price index for utility (consumer price index)
MK	Markup
CONS	Income of the representative consumer;

EQUATIONS

PRICEX	MR = MC in X (associated with X output per firm)
PINDEX	Price index for X sector goods
PRICEN	Zero profits - free entry in X (associated with N)
PRICEY	Zero profit condition for $Y(P Y=M C)$
PRICEW	Zero profit condition for W (PW = MC of utility)
DX	Supply-demand balance for X (individual variety)
DXC	Supply-demand balance for XC
DN	Supply-demand for firms $N:$ markup rev = fexed cost
DY	Supply-demand balance for Y
DW	Supply-demand balance for utility W (welfare)
LAB	Supply-demand balance for unskilled labor
MARKUP	Markup equation
INCOME	National income;

PRICEX. \quad PL =G= PX*(1 - MK);

PINDEX.. (N*PX**(1-SI))**(1/(1-SI)) =G= PE;
PRICEN.. $P L=G=P N ;$

```
PRICEY.. PL =G= PY;
PRICEW.. (PE**0.5)*(PY**0.5) =G= PW;
DX.. X*80 =G= PX**(-SI)*(PE**(SI-1))*CONS/2;
DXC.. XC =G= N**(SI/(SI-1))*X;
DN.. N*FC =G= (PX*MK)*X*80*N/PN;
DY.. Y*100 =G= CONS/(2*PY);
DW.. 200*W =G= (1.25**0.5)*CONS/PW;
LAB.. ENDOWL =E= Y*100 + N*X*80 + N*FC;
MARKUP.. MK =E= 0.6/(SI - 1/(N+1)*(SI - 1));
INCOME.. CONS =E= PL*ENDOWL;
```

MODEL M62 /PRICEX.X, PRICEY.Y, PRICEW.W, PRICEN.N, PINDEX.XC,
DX.PX, DXC.PE, DN.PN, DY.PY, DW.PW,
LAB.PL, MARKUP.MK, INCOME.CONS/;

```
* set benchmark values:
```

PE.L = 1.25;
CONS.L = 200;
X.L = 1;
XC.L = 1;
Y.L = 1;
N.L = 1;
W.L = 1;
PX.L = 1.25;
PN.L = 1;
PY.L = 1;
PL.L = 1;
PW.L $=1.25^{* *} 0.5$;
MK.L = 0.20;

* choose the price of good Y as numeraire
PY.FX = 1;
* check for calibration and starting-value errors
M62. ITERLIM $=0$;
SOLVE M62 USING MCP;
M62.ITERLIM = 1000;

```
SOLVE M62 USING MCP;
MODELSTAT = M62.MODELSTAT - 1.;
DISPLAY MODELSTAT;
* Counterfactual: expand the size of the economy
*ENDOWL = 400;
*SOLVE M62 USING MCP;
* show welfare as a function of the economy's size
SETS J scenario 1 = small-group mc 2 = large-group /J1*J2/;
SETS I indexes 25 different size levels /I1*I25/;
PARAMETERS
    SIZE(I)
    WELFARE(I,J)
    WELFCAP(I, J)
    MARKUPS(I, J)
    NUMBERF(I,J)
    RESULTS(I,*);
```

MK.L $=0.2$;

LOOP (I,

 LOOP (J,```
SIZE(I) = 5.2 - 0.2*ORD(I);
ENDOWL = 200*SIZE(I);
MK.UP = +INF;
MK.LO = 0;
MK.FX$(ORD(J) EQ 2) = 0.20;
```

SOLVE M62 USING MCP;
WELFARE (I, J) = W.L;
WELFCAP (I, J) = WELFARE(I, J)/SIZE(I);
$\operatorname{MARKUPS}(\mathrm{I}, \mathrm{J})=\mathrm{MK} . L ;$
NUMBERF(I, J) = N.L;
);
);
RESULTS(I, "SIZE") = SIZE(I);
RESULTS(I, "WELFCAP-L") = WELFCAP(I, "J2");
RESULTS(I, "WELFCAP-S") = WELFCAP(I, "J1");

```
RESULTS(I, "NUMBERF-L") = NUMBERF(I, "J2");
RESULTS(I, "NUMBERF-S") = NUMBERF(I, "J1");
RESULTS(I, "MARKUP-S") = MARKUPS(I,"J1");
```


## DISPLAY RESULTS;

```
* Write parameter RESULTS to an Excel file MCOMP2.XLS,
* starting in Sheet1, cell A3
```

Execute_Unload 'M7.gdx' RESULTS
execute 'gdxxrw.exe M7.gdx par=RESULTS rng=SHEET4!A3'

