
\$TITLE: M4-3b.GMS: modeling health insurance

with moral hazzard, adverse selection modeled as an MCP
COPYRIGHT JAMES R. MARKUSEN

\$ONTEXT

MODELING DEMAND FOR HEALTH INSURANCE

\$OFFTEXT

PARAMETERS

M0	income in the first time period
MH	income in the second time period when healthy
MS	income in the second time period when sick (before insurance)
ACUF	acutuarially fairness 1 = actuarily fair ACUF < 1 unfair
BETA	needed to make the consumption concave(diminishing returns)
TYPE1	low-risk type: probability of good health at effort = 0
TYPE2	high-risk type: probability of good health at effort = 0
RISKAV	average riskiness at effort = 0
EFFT1	effort of type 1

```
EFFT2 effort of type 2
PROFIT1 profit from insuring type 1
PROFIT2 profit from insuring type 2
PROFIT profit for insurance company from insuring person 1 and 2;
ACUF=1.0;
BETA = 0.5;
M0 = 10;
MH = 10;
MS = 4;
TYPE1 = 0.5; TYPE2 = 0.5;
RISKAV = ((1-TYPE1)+(1-TYPE2))/2;
*PROFIT = 0;
```

POSITIVE VARIABLES

- U1 expected utility type 1
- INS1 insurance purchased
- PNS1 payoff from insurance if sick
- ALPHA1 probability of good health
- EFFORT1 effort spent to insure good health: diet exercise and such
- LAMINS1 Lagrangean multiplier on constraint equation INSURANCE1
- LAMEFF1 Lagrangean multiplier on constraint equation MORALHAZ1

U2	expected utility type 2
INS2	insurance purchased
PNS2	compensation from purchasing insurance if sick
ALPHA2	probability of good health
EFFORT2	effort spent to insure good health: diet exercise and such
LAMINS2	Lagrangean multiplier on constraint equation INSURANCE2
LAMEFF2	Lagrangean multiplier on constraint equation MORALHAZ2;

EQUATIONS

UTILITY1	expected utility type 1
INSURANCE1	the amount of insurance puchased
MORALHAZ1	good health depends on effort but effort reduces U
FOCINS1	first-order condition for insurance purchased
FOCPNS1	first-order condition for payoff when sick
FOCEFF1	first-order condition for effort1
FOCALP1	first-order condition for alpha1
UTILITY2	expected utility type 2
-	
INSURANCE2	the amount of insurance puchased
MORALHAZ2	good health depends on effort but effort reduces U
FOCINS2	first-order condition for insurance purchased
FOCPNS2	first-order condition for payoff when sick
-	

- FOCEFF2 first-order condition for effort2
- FOCALP2 first-order condition for alpha2;

- UTILITY1.. U1 =E= (M0-INS1)**BETA + ALPHA1*MH**BETA + (1-ALPHA1)*(MS+PNS1)**BETA - 0.06*(EFFORT1 + EFFORT1**2);
- INSURANCE1.. INS1*ACUF =E= PNS1*RISKAV;
- MORALHAZ1.. TYPE1 + 0.15*EFFORT1 =G= ALPHA1;
- FOCINS1.. BETA*(M0-INS1)**(BETA-1) =G= LAMINS1*ACUF;
- FOCPNS1.. LAMINS1*RISKAV =G= (1-ALPHA1)*BETA*(MS+PNS1)**(BETA-1);
- FOCEFF1.. 0.06 + 0.12*EFFORT1 =G= 0.15*LAMEFF1;
- FOCALP1.. LAMEFF1 =G= MH**BETA (MS+PNS1)**BETA;

UTILITY2.. U2 =E= (M0-INS2)**BETA + ALPHA2*MH**BETA + (1-ALPHA2)*(MS+PNS2)**BETA - 0.06*(EFFORT2 + EFFORT2**2);

INSURANCE2.. INS2*ACUF =E= PNS2*RISKAV;

MORALHAZ2.. TYPE2 + 0.15*EFFORT2 =G= ALPHA2;

- FOCINS2.. BETA*(M0-INS2)**(BETA-1) =G= LAMINS2*ACUF;
- FOCPNS2.. LAMINS2*RISKAV =G= (1-ALPHA2)*BETA*(MS+PNS2)**(BETA-1);
- FOCEFF2.. 0.06 + 0.12*EFFORT2 =G= 0.15*LAMEFF2;
- FOCALP2.. LAMEFF2 =G= MH**BETA (MS+PNS2)**BETA;
- MODEL INSURE /UTILITY1.U1, INSURANCE1.LAMINS1, MORALHAZ1.LAMEFF1
 FOCINS1.INS1, FOCPNS1.PNS1, FOCEFF1.EFFORT1, FOCALP1.ALPHA1
 UTILITY2.U2, INSURANCE2.LAMINS2, MORALHAZ2.LAMEFF2
 FOCINS2.INS2, FOCPNS2.PNS2, FOCEFF2.EFFORT2, FOCALP2.ALPHA2/;

```
U1.L = 1;
INS1.L =2;
PNS1.L = 4;
ALPHA1.L = 0.5;
EFFORT1.L = 0;
U2.L = 1;
INS2.L =2;
PNS2.L = 4;
ALPHA2.L = 0.5;
EFFORT2.L = 0;
```

SOLVE INSURE USING MCP;

PROFIT1 = INS1.L - (1 - ALPHA1.L)*PNS1.L; PROFIT2 = INS2.L - (1 - ALPHA2.L)*PNS2.L; PROFIT = PROFIT1 + PROFIT2; EFFT1 = EFFORT1.L; EFFT2 = EFFORT2.L; DISPLAY TYPE1, TYPE2, EFFT1, EFFT2, PROFIT1, PROFIT2, PROFIT;

* counterfactual: two risk types

```
TYPE1 = 0.55;
TYPE2 = 0.45;
RISKAV = ((1-TYPE1)+(1-TYPE2))/2;
```

SOLVE INSURE USING MCP;

PROFIT1 = INS1.L - (1 - ALPHA1.L)*PNS1.L; PROFIT2 = INS2.L - (1 - ALPHA2.L)*PNS2.L; PROFIT = PROFIT1 + PROFIT2; EFFT1 = EFFORT1.L; EFFT2 = EFFORT2.L; DISPLAY TYPE1, TYPE2, EFFT1, EFFT2, PROFIT1, PROFIT2, PROFIT; * can the insurance companies make money by offering actuarily * unfair insurance?

ACUF = 0.9;

SOLVE INSURE USING MCP;

PROFIT1 = INS1.L - (1 - ALPHA1.L)*PNS1.L; PROFIT2 = INS2.L - (1 - ALPHA2.L)*PNS2.L; PROFIT = PROFIT1 + PROFIT2; EFFT1 = EFFORT1.L; EFFT2 = EFFORT2.L; DISPLAY TYPE1, TYPE2, EFFT1, EFFT2, PROFIT1, PROFIT2, PROFIT;