Economic equilibrium and optimization problems using GAMS Chapter 2

James R. Markusen, University of Colorado

Tools of Economic Analysis
(1) Analytical theory models
(2) Econometric estimation and testing.
(3) Simulation modeling - complement to (1) and (2)
(A) greatly extends the reach of theory to problems that are analytically intractable
(B) extends the economic usefulness of econometrics allowing counter-factuals using parameter estimates to calibrate simulation models
(4) Two ways of formulating economic models
(A) as an constrained optimization problem
(B) as an economic equilibrium problem: square system of equations/inequalities and unknowns
(5) Limitations of analytical theory
"Many branches of both pure and applied mathematics are in great need of computing instruments to break the present stalemate created by the failure of the purely analytical approach to nonlinear problems"
--- John Von Neumann, 1945

Analytical methods quickly become intractable
(1) functions or equation systems have no closed-form solution
(2) large dimensionality (\# of equations and unknowns)
(3) correct model consists of non-linear weak inequalities
(4) large changes in parameter values
(6) Responses to difficulties
(1) stick to analytics, eliminate difficulties by restrictive assumptions (can eliminate the most interesting parts of the problem)
(2) simulate the model you really want to solve
(3) make an analytical model-of-the-model (e.g., partial equilibrium) and then simulate the richer model

(7) Structure of a typical model

Economic models are based on the assumption of optimizing agents: consumers, firms, governments

But, generally the model itself cannot be written as a simple constrained optimization problem

Example 1: two households with different preferences/incomes Example 2: two-firm duopoly model

An economic model typically embodies optimization at the level of the agent, the model becomes an nxn equilibrium problem
(8) Dimensionality, inequalities, bounded variables

Dimensionality, non-linearity, and simultaneity make models hard to solve analytically past 2 equations in 2 unknowns

Example: 2 factor, 2 good, 2 country Heckscher-Ohlin model

Economics variables are typically bounded (e.g., prices and quantities are non-negative) and economic equilibrium conditions are weak inequalities.

Example: what goods produced, technologies used?
Example: what trade links are active in equilibrium?
Example: do emissions permits have positive or zero prices?

Economics is often sacrificed to ensure a strictly interior solution.
(9) Complementarity: analytically hard, computationally "easy"

Equilibrium conditions are weak inequalities

Each inequality is associated with a particular variable, called the complementary variable.

If the equation holds as an equality in equilibrium, then the complementary variable is generally strictly positive.

If the equation holds as a strict inequality in equilibrium, the complementary variable is zero.
(10) GAMS solvers: two ways of formulating economic models
(A) NLP: non-linear programming constrained optimization
(B) MCP: mixed complementarity problem square system of equations/inequalities and unknowns matched inequalities and variables
(C) MPEC: mathematical programming with equilibrium constraints: NLP + MCP constraint set

Matching of equations/inequalities and the direction of the inequalities must come from the modeler in accordance with economic theory.
(11) Simple supply-demand problem illustrating complementarity

Supply and demand model of a single market. Two equations: supply and demand. Two variables: price and quantity.

Economic equilibrium problems are represented as a system of n equations/inequalities in n matched unknowns.

Supply of good X with price P. The supply curve exploits the firm's optimization decision, $P=M C$.
$M C \geq P$ with the complementarity condition that $X \geq 0$

The price equation is complementary with a quantity variable.

Suppose that COST $=a X+(b / 2) X^{2}$.
Marginal cost is then given by $M C=a+b X$.
$a+b X \geq P$ complementary with $X \geq 0$.

Optimizing consumer utility for a given income and prices will yield a demand function of the form $X=D(P, M)$ where M is income.
$X \geq D(P, M)$ with the complementary condition that $P \geq 0$.

The quantity equation is complementary with a price variable.

We will suppress income and assume a simple function:

$$
\begin{aligned}
& D(P)=c-d P \quad \text { where } c>0, d>0 . .^{1} \\
& X \geq c-d P \quad \text { complementary with } P \geq 0 .
\end{aligned}
$$

How do we know which inequality is associate with which variable and the direction of the inequality?

Economic theory tells you which variable must be associated with which inequality and which way the inequality goes.

[^0]Figure 1: Three outcomes of partial equilibrium example

Case 1: interior solution

Case 2: X is too expensive, not produce in equilibrium ($X=0$)

(12) Coding an economic equilibrium problem in GAMS

First, comment statements can be used at the beginning of the code, preceded with a *, in the first column of a line.
\$TITLE: M2-1.GMS introductory model using MCP and MPEC * simple supply and demand model

Begin a series of declaration and assignment statements.

```
PARAMETERS
    A intercept of supply on the P axis (MC at Q = 0)
    B slope of supply: this is dP over dQ
    C demand on the Q axis (demand at P = 0)
    D (inverse) slope of demand, dQ over dP;
```

Parameters must be assigned values before the model is solved

$$
A=2 ; \quad C=6 ; \quad B=1 ; \quad D=1 ;
$$

Declare a list of variables. They are restricted to be positive to make any economic sense, so declaring them as "nonnegative variables" tells GAMS to set lower bounds of zero.

```
NONNEGATIVE VARIABLES
    P price of good X
    X quantity of good X;
```

Now we similarly declare a list of equations. Name not otherwise in use or, of course, a keyword.

EQUATIONS
SUPPLY
DEMAND

$$
\begin{aligned}
& \text { supply relationship (mc cost ge price) } \\
& \text { quantity demanded as a function of price; }
\end{aligned}
$$

Specify equations. Format: equation name followed by two periods The equation is written with $=\mathrm{G}=$ for "greater than or equal to".

SUPPLY.. $A+B^{*} X \quad=G=P ;$
DEMAND.. \quad X $=G=C+D * P ;$
Declare a model. Keyword model, followed by a model name.
Then a "/" followed by a list of the equation names, each ends with a period followed by the name of the complementary variable.

MODEL EQUIL /SUPPLY.X, DEMAND.P/;

Tell GAMS to solve the model and what solver is needed.
SOLVE EQUIL USING MCP;

This example uses parameter values which generate an "interior solution", meaning that both X and P are strictly positive.

Case 2: the good, or a particular way to produce or obtain a good (e.g., via imports) is too expensive relative to some alternative: production or trade activity is not used in equilibrium: $\mathrm{X}=0$.

A = 7;
SOLVE EQUIL USING MCP;

Case 3: The final possibility is that a good or factor of production may be so plentiful that it commands a zero price in equilibrium

```
A = -7;
```

SOLVE EQUIL USING MCP;
(13) Reading the output (file name G1.LST)

GAMS stores four values for a varlable. LOWER and UPPER are bounds on the variables. Declaring a NONNEGATIVE VARIABLE sets the lower bound at 0 (.) and upper bound at +inf.

The $L E V E L$ is the solution value of the variables.

MARGINAL indicates the degree to which the equation corresponding to the variable is out of equality.

For P (price), the equation is DEMAND and the value of the marginal is supply minus demand.

For X (quantity), the equation is $S U P P L Y$ and the value of the marginal is the excess of marginal cost over price.

Variables that have positive values in the solution should have zero marginals.

Variables that have zero values in the solution should have positive marginals.

Here is the benchmark case.

	LOWER	LEVEL	UPPER	MARGINAL
$\ldots-$ VAR P				
$\ldots-$ VAR X	.	4.000	+ INF	

Case 2: This is the zero-output case. The price equation holds, but the quantity equation is slack. The marginal of 1.0 indicates that, at the solution, marginal cost exceed price by 1.0.

LOWER	LEVEL	UPPER	MARGINAL
.	6.000	+ INF	.
.	.	+ INF	1.000

Case 3: This is the free-good case. Now the price equation is slack, and the marginal of 1.0 indicates that, at the solution, supply exceeds demand by 1.0.

LOWER LEVEL UPPER MARGINAL
---- VAR P
---- VAR X

.	+ INF
7.000	+ INF

1.000
(14) Example of the use of MPEC: set an endogenous tax rate that maximizes tax revenue.

Declare two (unbounded) variables and equations.

```
VARIABLES
    T tax rate on marginal cost
    TREV tax revenue = MC*T*X;
EQUATIONS
    SUPPLY2 new supply function incorporating endogenous tax
    OBJ objective function is tax revenue;
OBJ..
    TREV =E= (A + B*X)*T*X;
SUPPLY2.. (A + B*X)*(1+T) =G= P;
OPTION MPEC = NLPEC;
MODEL TREVENUE /OBJ, SUPPLY2.X, DEMAND.P/;
SOLVE TREVENUE USING MPEC MAXIMIZING TREV;
```

LOWER	LEVEL	UPPER	MARGINAL
.	5.000	+INF	EPS
- INF	1.000	+INF	.
-INF	0.667	+INF	.
	2.000	+INF	.

2.2 Maximization of utility subject to a linear budget constraint

Illustrates the use of the GAMS NLP and MCP solvers
NLP non-linear programming
MCP mixed complementarity problem

Cobb-Douglas utility function with linear budget constraint

$$
U=\left(\frac{X_{1}}{\alpha}\right)^{\alpha}\left(\frac{X_{2}}{1-\alpha}\right)^{1-\alpha} \quad M=p_{1} X_{1}+p_{2} X_{2}
$$

Result: C-D exponents are expenditure shares: $\quad \alpha=\frac{p_{1} X_{1}}{M}$
"Primal" formulation as an optimization problem

$$
\begin{array}{rlrl}
\max U & =X_{1}^{\alpha} X_{2}^{1-\alpha}+\lambda\left(M-p_{1} X_{1}-p_{2} X_{2}\right) & \\
\frac{\partial U}{\partial X_{1}} & =\alpha X_{1}^{\alpha-1} X_{2}^{1-\alpha}-\lambda p_{1} \leq 0 & & \perp \\
\frac{\partial U}{\partial X_{2}} & =(1-\alpha) X_{1}^{\alpha} X_{2}^{-\alpha}-\lambda p_{2} \leq 0 & & \perp \\
X_{1} \geq 0 \\
\frac{\partial U}{\partial \lambda} & =M-p_{1} X_{1}-p_{2} X_{2} \leq 0 & & \perp \\
\lambda \geq 0
\end{array}
$$

Can solve for "Marshallian" or "uncompensated" demand functions

$$
X_{i}=D_{i}\left(p_{1}, p_{2}, M\right)
$$

"Dual" formulation as a minimization problem

$$
\begin{array}{ll}
\min p_{1} X_{1}+p_{2} X_{2}+\mu\left(U-X_{1}^{\alpha} X_{2}^{1-\alpha}\right) & \\
\frac{\partial E}{\partial X_{1}}=p_{1}-\mu \alpha X_{1}^{\alpha-1} X_{2}^{1-\alpha} \leq 0 & \perp \\
\frac{\partial E}{\partial X_{2}}=p_{2}-\mu(1-\alpha) X_{1}^{\alpha} X_{2}^{-\alpha} \leq 0 & \perp \\
\frac{\partial E}{\partial \mu}=U-X_{1}^{\alpha} X_{2}^{1-\alpha} \leq 0 & \perp \\
\end{array}
$$

Can solve for "Hicksian" or "compensated" demand functions

$$
X_{i}=H_{i}\left(p_{1}, p_{2}, U\right)
$$

\$TITLE: M2-2.GMS: consumer choice, modeled as an NLP and a MCP * maximize utility subject to a linear budget constraint * two goods, Cobb-Douglas preferences

\$ONTEXT

This program introduces economic students to GAMS and GAMS solvers. The problem itself is known and loved by all econ students from
undergraduate intermediate micro economics on up:
Maximizing utility with two goods and a linear budget constraint.

```
Four versions are considered
    OPTIMIZE: direct constrained optimization using the NLP
    (non-linear programming) solver
    COMPLEM: uses the first-order conditions (FOC) to create a square
    system of n inequalities in n unknowns, solved using the MCP
    (mixed complementarity problem) solver
    COMPLEM2: instead of the utility function and FOC, uses the expenditure
    function and Marshallian demand functions, solved as an MCP
    COMPLEM3: instead of the utility function and FOC, uses the expenditure
    function and Hicksian demand functions, solved as an MCP
$OFFTEXT
```

PARAMETERS

M
P1, P2
S1, S2

Income
prices of goods X1 and X2
utility shares of X1 and X2;
$M=100 ;$
P1 = 1;
P2 = 1;
S1 = 0.5;
S2 = 0.5;

NONNEGATIVE VARIABLES

X1, X2 Commodity demands
LAMBDA Lagrangean multiplier (marginal utility of income);

VARIABLES

U Welfare;

EQUATIONS

```
    UTILITY Utility
    INCOME Income-expenditure constraint
    FOC1, FOC2 First-order conditions for X1 and X2;
```

UTILITY.. U =E= 2*(X1**S1)*(X2**S2);
INCOME. $\quad \mathrm{M}=\mathrm{G}=\mathrm{P} 1 * \mathrm{X} 1$ + P2*X2;

```
F0C1.. LAMBDA*P1 =G= 2*S1*X1**(S1-1)*(X2**S2);
FOC2.. LAMBDA*P2 =G= 2*S2*X2**(S2-1)*(X1**S1);
```

* set starting values
U.L = 100;
X1.L = 50;
X2.L = 50;
LAMBDA.L = 1;
* modeled as a non-linear programming problem
MODEL OPTIMIZE /UTILITY, INCOME/;
SOLVE OPTIMIZE USING NLP MAXIMIZING U;
* modeled as a complementarity problem
MODEL COMPLEM /UTILITY.U, INCOME.LAMBDA, FOC1.X1, FOC2.X2/;
SOLVE COMPLEM USING MCP;
* counterfactuals
P1 = 2;

SOLVE OPTIMIZE USING NLP MAXIMZING U;

SOLVE COMPLEM USING MCP;

P1 = 1;
M = 200;
SOLVE OPTIMIZE USING NLP MAXIMZING U; SOLVE COMPLEM USING MCP;

```
* now use the expenditure function, giving the minimum cost of buying
* one unit of utility: COSTU = P1**S1 * P2**S2 = PU
* where PU is the "price" of utility: the inverse of lambda
* two versions are presented:
* one using Marshallian (uncompensated) demand: X_i = F_i(P1, P2, M)
* one using Hicksian (compensated) demand: X_i = F_i(P1, P2, U)
P1 = 1;
M = 100;
```


NONNEGATIVE VARIABLES

PU price of utility;

EQUATIONS

COSTU expenditure function: cost of producing utility = PU
DEMANDM1 Marshallian demand for good 1
DEMANDM2 Marshallian demand for good 2

```
    DEMANDH1 Hicksian demand for good 1
    DEMANDH2 Hicksian demand for good 2
    DEMANDU Demand for utility (indirect utility function);
COSTU.. P1**S1 * P2**S2 =G= PU;
DEMANDM1.. X1 =G= S1*M/P1;
DEMANDM2.. X2 =G= S2*M/P2;
DEMANDH1.. X1 =G= S1*PU*U/P1;
DEMANDH2.. X2 =G= S2*PU*U/P2;
DEMANDU.. U =E= M/PU;
PU.L = 1;
MODEL COMPLEM2 marshall /COSTU.U, DEMANDM1.X1, DEMANDM2.X2, DEMANDU.PU/;
MODEL COMPLEM3 hicks /COSTU.U, DEMANDH1.X1, DEMANDH2.X2, DEMANDU.PU/;
SOLVE COMPLEM2 USING MCP;
SOLVE COMPLEM3 USING MCP;
* counterfactuals
```

```
P1 = 2;
```

SOLVE COMPLEM2 USING MCP; SOLVE COMPLEM3 USING MCP;

P1 = 1;
$M=200 ;$
SOLVE COMPLEM2 USING MCP; SOLVE COMPLEM3 USING MCP;

\$TITLE: EXERCISE 1 Markusen: ETH Zurich GAMS course

\$ONTEXT
Maximize profits for a competitive (price taking) firm with decreasing returns, or convex marginal costs:

$$
\begin{aligned}
& X=L^{* *} \text { ALPHA } \\
& 0<A L P H A<1 \quad X \text { is output, } L \text { is input labor }
\end{aligned}
$$

Exercise 1A: model profit max as an optimization (NLP) Exercise 1B: model profit max as a complementarity problem \$OFFTEXT

PARAMETERS

ALPHA	concavity parameter in the cost function
P	price of output X
W	wage rate of labor L
FC	fixed cost (set at zero for now);

ALPHA = 0.5;
P = 2;
W = 1;
FC = 0;
2.3 Extension of utility optimization: add a rationing constraint Illustrate slackness in equilibrium, illustrate "shadow" prices RATION $\geq X_{1}$ with Lagrangean multiplier λ_{r}
$\max U=X_{1}^{\alpha} X_{2}^{1-\alpha}+\lambda\left(M-p_{1} X_{1}-p_{2} X_{2}\right)+\lambda_{r}\left(\right.$ RATION $\left.-X_{1}\right)$

$$
\begin{aligned}
& \frac{\partial U}{\partial X_{1}}=\alpha X_{1}^{\alpha-1} X_{2}^{1-\alpha}-\lambda p_{1}-\lambda_{r} \leq 0 \\
& \frac{\partial U}{\partial X_{2}}=(1-\alpha) X_{1}^{\alpha} X_{2}^{-\alpha}-\lambda p_{2} \leq 0 \\
& \frac{\partial U}{\partial \lambda}=M-p_{1} X_{1}-p_{2} X_{2} \leq 0 \quad \frac{\partial U}{\partial \lambda_{r}}=\text { RATION }-X_{1} \leq 0
\end{aligned}
$$

```
$TITLE: M2-3.GMS add a rationing constraint to model M2-2
* MAXIMIZE UTILITY SUBJECT TO A LINEAR BUDGET CONSTRAINT
* PLUS RATIONING CONSTRAINT ON X1
* two goods, Cobb-Douglas preferences
```


PARAMETERS

M	Income
P1, P2	prices of goods X1 and X2
S1, S2	util shares of X1 and X2
RATION	rationing constraint on the quantity of X1;

```
M = 100;
P1 = 1;
P2 = 1;
S1 = 0.5;
S2 = 0.5;
RATION = 100.;
```


NONNEGATIVE VARIABLES

X1, X2 Commodity demands
LAMBDAI Lagrangean multiplier (marginal utility of income)
LAMBDAR Lagrangean mulitplier on rationing constraint;

VARIABLES

U Welfare;

```
EQUATIONS
    UTILITY Utility
    INCOME Income-expenditure constraint
    RATION1 Rationing contraint on good X1
    FOC1, FOC2 First-order conditions for X1 and X2;
UTILITY.. U =E= 2*(X1**S1)*(X2**S2);
INCOME.. M =G= P1*X1 + P2*X2;
RATION1.. RATION =G= X1;
F0C1.. LAMBDAI*P1 + LAMBDAR =G= 2*S1*X1**(S1-1)*(X2**S2);
FOC2.. LAMBDAI*P2 =G= 2*S2*X2**(S2-1)*(X1**S1);
* modeled as a non-linear programming problem
* set starting values
U.L = 100;
X1.L = 50;
X2.L = 50;
LAMBDAI.L = 1;
LAMBDAR.L = 0;
MODEL OPTIMIZE /UTILITY, INCOME, RATION1/;
```


SOLVE OPTIMIZE USING NLP MAXIMIZING U;

* modeled as a complementarity problem

```
MODEL COMPLEM /UTILITY.U, INCOME.LAMBDAI, RATION1.LAMBDAR,
    F0C1.X1, F0C2.X2/;
```

SOLVE COMPLEM USING MCP;

* try binding rationing constraint at X1 <= RATION = 25;
RATION = 25;
SOLVE OPTIMIZE USING NLP MAXIMIZING U;
SOLVE COMPLEM USING MCP;
* show that shadow price of rationing constraint increases with income
* could lead to a black market in rationing coupons, "scalping" tickets
M = 200;
SOLVE OPTIMIZE USING NLP MAXIMIZING U;
SOLVE COMPLEM USING MCP;
* illustrate the mpec solver
* suppose we want to enforce the rationing contraint via licenses for X1
* consumers are given an allocation of licenses which is RATION
* PLIC is an endogenous variables whose value is the license price * the value of the rationing license allocation should be treated as * part of income

NONNEGATIVE VARIABLES
 PLIC;

EQUATIONS

INCOMEa
F0C1a;
M = 100;
RATION = 25;
U.L = 100;

X1.L = 25;
X2.L = 75;
PLIC.L = 0.1;
INCOMEa.. $\quad \mathrm{M}+(\mathrm{PLIC} * R A T I O N)=E=(P 1+P L I C) * X 1+P 2 * X 2$;
F0C1a.. LAMBDAI*(P1 + PLIC) =G= 2*S1*X1**(S1-1)*(X2**S2);
MODEL MPEC /UTILITY, INCOMEa.LAMBDAI, F0C1a.X1, F0C2.X2, RATION1.PLIC/;
MODEL COMPLEM2 /UTILITY.U, INCOMEa.LAMBDAI, FOC1a.X1, FOC2.X2,

RATION1.PLIC/;

OPTION MPEC = nlpec;
SOLVE MPEC USING MPEC MAXIMIZING U; SOLVE COMPLEM2 USING MCP;
$M=200 ;$

SOLVE MPEC USING MPEC MAXIMIZING U; SOLVE COMPLEM2 USING MCP;

* now use the expenditure function, giving the minimum cost of buying
* one unit of utility: COSTU = P1**S1 * P2**S2 = PU
* where PU is the "price" of utility: the inverse of lambda
* two versions are presented:
* one using Marshallian (uncompensated) demand: Xi = F(P1, P2, M)
* one using Hicksian (compensated) demand: Xi = F(P1, P2, U)

RATION = 100;
M = 100;
NONNEGATIVE VARIABLES
PU price of utility
M1
income inclusive of the value of rationing allocation;

```
EQUATIONS
    COSTU expenditure function: cost of producing utility = PU
    DEMANDM1 Marshallian demand for good 1
    DEMANDM2 Marshallian demand for good 2
    DEMANDH1 Hicksian demand for good 1
    DEMANDH2 Hicksian demand for good 2
    DEMANDU Demand for utility (indirect utility function)
    RATION1b Rationing constraint (same as before)
    INCOMEb Income balance equation;
COSTU.. (PLIC+P1)**S1 * P2**S2 =G= PU;
DEMANDM1.. X1 =G= S1*M1/(P1+PLIC);
DEMANDM2.. X2 =G= S2*M1/P2;
DEMANDH1.. X1 =G= S1*PU*U/(P1+PLIC);
DEMANDH2.. X2 =G= S2*PU*U/P2;
DEMANDU.. U =E= M1/PU;
RATION1b.. RATION =G= X1;
INCOMEb.. M1 =E= M + PLIC*RATION;
```

```
PU.L = 1;
```

```
MODEL COMPLEM3 /COSTU.U, DEMANDM1.X1, DEMANDM2.X2, DEMANDU.PU,
    RATION1b.PLIC, INCOMEb.M1/;
MODEL COMPLEM4 /COSTU.U, DEMANDH1.X1, DEMANDH2.X2, DEMANDU.PU,
    RATION1b.PLIC, INCOMEb.M1/;
```

SOLVE COMPLEM3 USING MCP;
SOLVE COMPLEM4 USING MCP;

* counterfactuals
RATION = 25;
SOLVE COMPLEM3 USING MCP;
SOLVE COMPLEM4 USING MCP;
M = 200;
SOLVE COMPLEM3 USING MCP;
SOLVE COMPLEM4 USING MCP;
*\$exit
* scenario generation

SETS I indexes different values of rationing constraint /I1*I10/
J indexes income levels /J1*J10/;
PARAMETERS
RLEVEL (I)
PCINCOME (J)
LICENSEP(I, J);
U.L = 50;

X1.L = 25;
X2.L = 25;
PLIC.L = 0.;
LAMBDAI.L = 1;

* the following is to prevent solver failure when evaluating X1**(S1-1)
* at X1 $=0$ (given S1-1 < 0)

X1.LO = 0.01;
X2.LO = 0.01;
LOOP (I,
LOOP (J,
RATION = 110 - 10*ORD(I);
$\mathrm{M}=25+25 * \operatorname{RD}(\mathrm{~J})$;

SOLVE MPEC USING MPEC MAXIMIZING U;

```
    RLEVEL(I) = RATION;
```

 PCINCOME(J) = M;
 LICENSEP(I,J) = PLIC.L;
);
);

DISPLAY RLEVEL, PCINCOME, LICENSEP;
\$LIBINCLUDE XLDUMP LICENSEP M2-3.XLS SHEET1!B3

```
$TITLE: M2-4.GMS quick introduction to sets and scenarios using M2-2
* MAXIMIZE UTILITY SUBJECT TO A LINEAR BUDGET CONSTRAINT
* same as UTIL-OPT1.GMS but introduces set notation
```

SET I Prices and Goods / X1, X2 /;
ALIAS (I, II);

PARAMETER

M	Income RATION
ration of X1 prices	
S(I) (constraint on max consumption of X1)	
util shares;	

NONNEGATIVE VARIABLES

```
X(I) Commodity demands
LAMBDAI Marginal utility of income (Lagrangean multiplier)
LAMBDAR Marginal effect of ration constraint;
```


VARIABLES

U Welfare;

EQUATIONS

UTILITY
INCOME
RATION1
FOC(I);
UTILITY.. U =E= 2*PROD(I, X(I)**S(I));
INCOME.. $\quad M=G=\operatorname{SUM}(I, P(I) * X(I))$;
RATION1.. RATION =G= X("X1");
FOC(I).. LAMBDAI*P(I) + LAMBDAR\$(ORD(I) EQ 1) =G= $S(I) * X(I) * *(-1) * 2 * P R O D(I I, X(I I) * * S(I I)) ;$
U.L = 100;
X.L(I) = 50;

RATION = 100;

* first, solve the model as an nlp, max U subject to income * rationing constraint in non-binding

MODEL UMAX /UTILITY, INCOME, RATION1/;
SOLVE UMAX USING NLP MAXIMIZING U;

* second, solve the model as an mcp, using the two FOC and income

LAMBDAI.L = 1;
LAMBDAR.L = 0;

MODEL COMPLEM /UTILITY.U, INCOME.LAMBDAI, RATION1.LAMBDAR, FOC.X/; SOLVE COMPLEM USING MCP;

```
* scenario generation
```

SETS J indexes different values of rationing constraint /J1*J10/;
PARAMETERS
RLEVEL (J)
WELFARE (J)
LAMRATION(J)
RESULTS(J, *);

```
LOOP(J,
    RATION = 110 - 10*ORD(J);
```

SOLVE COMPLEM USING MCP;

```
    RLEVEL(J) = RATION;
```

 WELFARE(J) = U.L;
 LAMRATION(J) = LAMBDAR.L;
);
RESULTS(J, "RLEVEL") = RLEVEL(J);
RESULTS(J, "WELFARE") = WELFARE(J);
RESULTS(J, "LAMRATION") = LAMRATION(J);

DISPLAY RLEVEL, WELFARE, LAMRATION, RESULTS;
\$LIBINCLUDE XLDUMP RESULTS M2-3.XLS SHEET2!B3

Illustration of gradient method: find the zero of the excess supply function: $e\left(p^{*}\right)=s\left(p^{*}\right)-d\left(p^{*}\right)=0$

iteration rule:

$$
p^{i+1}=p^{i}-\left[e^{\prime}\left(p^{i}\right)\right]^{-1} e\left(p^{i}\right)
$$

(1) initial guess: p^{0}
(2) calculate $\mathrm{e}\left(\mathrm{p}^{0}\right)$ and $\mathrm{e}^{\prime}\left(\mathrm{p}^{0}\right)$ (exit if $\left|\mathrm{e}\left(\mathrm{p}^{0}\right)\right|<\varepsilon$)
(3) follow gradient path to $\mathrm{e}=0$
(4) new guess p1 implicitly given by $e\left(p^{0}\right) /\left(p^{0}-p^{1}\right)=e^{\prime}\left(p^{0}\right)$
$p^{i+1}=p^{i}-\left[e^{\prime}\left(p^{j}\right)\right]^{-1} e\left(p^{j}\right) \quad$ (generalizes to $n x n$)

[^0]: ${ }^{1}$ This demand function can be derived as the solution to a constrained optimization problem in which the consumer has a quasi-linear utility function of the form $U=\alpha X-\beta X^{2}+Y$ and budget constraint $M=p_{x} X+p_{y} Y$

