Part II: Bases for Trade - unotes4

The No-Trade Model

- 1. Identical production functions in all countries
- 2. Same relative factor endowments in all countries
- 3. Constant returns to scale
- 4. Identical, Homogeneous preferences in all countries
- 5. No Distortions (imperfect competition, externalities, taxes).

In this world, there would be no trade and no gains from trade.

Ricardian Models - Technology as a basis for Trade (text Ch 7)

- 1. A one-factor model of technology differences
- 2. Comparative versus absolute advantage

Existence of trading opportunities depends only on comparative Advantage.

- 3. Production frontier, closed-economy equilibrium
- 4. Comparative advantage and autarky price ratios

Pattern of comparative advantage reflected in autarky prices

6. Excess demand and international equilibrium

Constructing the excess demand curve Specialization

7. Real wage comparisons across countries

The role of equilibrium prices The role of absolute advantage

8. The distribution of gains between countries

Big versus small countries More productive versus less productive countries The following is sometimes referred to as the "Ricardian model" of trade, where the basis for trade is differences in technology across countries. It is generally assumed that:

- 1. There is only one factor of production so as to separate technology from relative factor-endowment effects.
- 2. There are constant returns to scale and perfect competition in production so as to separate technology from industrial-organization effects.

$$X_1 = F_1(L_1) \qquad \text{specifically} \quad X_1 = \alpha_1 L_1 \tag{7.1}$$

 $X_2 = F_2(L_2) \qquad \text{specifically} \qquad X_2 = \alpha_2 L_2 \qquad (7.2)$

$$\overline{L} = L_1 + L_2 \tag{7.3}$$

Absolute advantage refers to the comparison of the α 's for a *given industry across countries*.

$$\alpha_{h2} > \alpha_{f2} \tag{7.4}$$

defines country *h* as having an *absolute advantage* in good X_2

The term comparative advantage refers to the relative productivity in the two industries across countries

$$\frac{\alpha_{h2}}{\alpha_{h1}} > \frac{\alpha_{f2}}{\alpha_{f1}}$$
(7.5)

defines country h as having a comparative advantage in good X_2

Proposition: a pattern of comparative advantage (inequality of the productivity ratios is a *necessary* and a *sufficient* condition for gains from specialization.

Marginal Products of Labor

	Home	Foreign
X_{I}	$\alpha_{\rm h1} = 10$	$\alpha_{\rm f1} = 20$
1	111	11
X.	$\alpha_{\rm e} = 30$	$\alpha_{\rm m} - 20$
\mathbf{A}_2	$w_{h2} - 50$	$\mathbf{w}_{\mathrm{f2}} = 20$

Country *H* has a *comparative advantage* in the production of X_2 : $\alpha_{h2}/\alpha_{h1} > \alpha_{f2}/\alpha_{f1}$. Move 2 workers from X_1 to X_2 in Country h, 1 from X_2 to X_1 in Country f Changes in Outputs due to Labor Reallocation

	Home	Foreign	Total
X_{I}	-10	+20	+10
X_2	+30	-20	+10

There exist gains from specialization

This will always be true if and only if the α_2/α_1 are different in the two countries.

But what if one country has an absolute advantage in all goods?

Marginal Products of Labor

	Home	Foreign
X_{I}	$\alpha_{\rm h}=5$	$\alpha_{\rm f} = 20$
X_2	$\beta_{\rm h} = 15$	$\beta_{\rm f}=20$

Move 2 workers from X_1 to X_2 in Country h, 1 from X_2 to X_1 in Country f

Home Foreign Total	
X_1 -10 +20 +10	
X_2 +30 -20 +10	

Gains from specialization and trade are still possible even if one country has an absolute advantage in the production of all goods.

What is needed for the existence of gains from specialization is a pattern of *comparative advantage*.

More formal proof assuming $\alpha_{h2}/\alpha_{h1} > \alpha_{f2}/\alpha_{f1}$.

Reallocate labor in each country toward the comparative-advantage industry.

$$dL_{h2} = -dL_{h1} > 0 \qquad dL_{f1} = -dL_{f2} > 0 \tag{7.6}$$

Then the changes in the total world output of the two goods will be

$$dX_{1} = -\alpha_{h1}dL_{h2} - \alpha_{f1}dL_{f2} \qquad dX_{2} = \alpha_{h2}dL_{h2} + \alpha_{f2}dL_{f2}$$
(7.7)

Set the first equation to zero, reallocating labor within each country to hold world X_1 output constant, and solve for

$$dL_{f2} = -\frac{\alpha_{h1}}{\alpha_{f1}} dL_{h2} \quad \Leftrightarrow \quad dX_1 = dX_{h1} + dX_{f1} = 0$$
(7.8)

Substitute (7.8) into the right-hand equation of (7.7), replacing dL_{f2} with (7.8).

$$dX_2 = \left[\alpha_{h2} - \frac{\alpha_{h1}}{\alpha_{f1}}\alpha_{f2}\right] dL_{h2} = \alpha_{h1} \left[\frac{\alpha_{h2}}{\alpha_{h1}} - \frac{\alpha_{f2}}{\alpha_{f1}}\right] dL_{h2} > 0 \quad (7.9)$$

The slopes of the production frontiers reflect comparative advantage

$$dX_1 = \alpha_1 dL_1 \qquad dX_2 = \alpha_2 dL_2 = -\alpha_2 dL_1 \qquad \frac{dX_2}{dX_1} = -\frac{\alpha_2}{\alpha_1}$$

The differences in slopes between two countries reflects comparative advantage.

The distance from the origin of the fontier reflects absolute advangtage.

Figures 7.1, 7.2

1 77

Comparative advantage predicts the direction of trade and specialization.

The equilibrium autarky price ratio will be the slope of the production frontier = the comparative advantage ratio

This follows from our earlier proof about the efficiency of the competitive economy (tangency of the production frontier with the price ratio).

Recall that the efficiency of the competitive economy also applies to "corner solutions" where it is optimal to specialize and produce only one good.

Figure 7.3 - examples of specialization and trade at different price ratios Figure 7.4 - construction of the excess demand curve Figure 7.5 - international equilibrium

Figure 7.5

Trade and wages: what role then does absolute advantage play?

Absolute advantage does not determine the pattern of trade or the existence of gains from trade, but it does determine real income comparisons between countries.

We have established that the existence of mutual gains from trade depends only on comparative advantage, not absolute advantage.

One country may have an absolute advantage in everything, but it can still gain from specializing in what it does <u>relatively</u> well.

Suppose that both countries are specialized as in Figure 7.5, and so the wage rate in each country is determined by the competitive conditions that the value of the marginal product of labor equals the wage rate.

$$p_2^* \alpha_{h2} = w_h \quad p_1^* \alpha_{fl} = w_f \quad \text{thus} \quad \frac{w_h}{w_f} = \frac{p_2^* \alpha_{h2}}{p_1^* \alpha_{fl}} \quad (7.10)$$

14

Second, the world price ratio lies (weakly) between the autarky price ratios of the two countries.

$$\frac{\alpha_{h2}}{\alpha_{h1}} \geq \frac{p_1^*}{p_2^*} \geq \frac{\alpha_{f2}}{\alpha_{f1}}$$
(7.11)

Third, assume that country h is has an absolute advantage in both goods in addition to having a comparative advantage in good 2, as in Figure 7.2.

$$\alpha_{h1} > \alpha_{f1}$$
 and thus $\frac{\alpha_{h2}}{\alpha_{f1}} > \frac{\alpha_{h2}}{\alpha_{h1}}$ (7.12)

We can then add an element to the left-hand side of the change of 15 inequalities in (7.11) using (7.12)

$$\frac{\alpha_{h2}}{\alpha_{f1}} > \frac{\alpha_{h2}}{\alpha_{h1}} \ge \frac{p_1^*}{p_2^*} \ge \frac{\alpha_{f2}}{\alpha_{f1}} \Rightarrow \frac{p_2^*}{p_1^*} \frac{\alpha_{h2}}{\alpha_{f1}} > 1 \quad (7.13)$$

where the right-hand inequality comes from multiplying the whole chain in (7.13) through by p_2^*/p_1^* .

But the right-hand expression is, from (7.10), the ratio of the wage rates in the two countries.

$$\frac{p_2^*}{p_1^*} \frac{\alpha_{h2}}{\alpha_{fl}} = \frac{w_h}{w_f} > 1$$
(7.14)

Absolute advantage in all goods => higher real wage.

Absolute advantage shows up in *real wage comparisons* between countries.

The more productive country will have the higher real wage.

Should having a higher real wage deter the country from trading?

No. We have argued that gains from trade depend only on comparative advantage.

If wages are market determined, a high wage is the <u>result</u> of high productivity, and is not a deterrent to gains from trade.

Discuss the term "competitiveness".

Table 7.1 Inte	erna	tional Co	mpa	risons of	Productivity a	nd	Wages in i	Ma	n ufa ctu rin	g, 2004
		Marl	et Exchange Rates		PPP Exc			kchange Ra	change Rates	
			E	arnings	Average			F	Earnings	Average
Country	VA	per hour	p	er hour	Earnings	VA	per hour	p	er hour	Earnings
US	\$	47.47	\$	16.15	\$34,263.84	\$	47.47	\$	16.15	\$34,263.84
Sweden	\$	46.10	\$	17.16	\$33,459.65	\$	38.36	\$	14.28	\$27,847.19
Netherlands	\$	42.85	\$	22.66	\$41,238.26	\$	42.20	\$	22.32	\$40,613.83
Japan	\$	38.94	\$	14.37	\$32,506.47	\$	31.46	\$	11.61	\$26,263.97
Australia	\$	36.94	\$	16.78	\$33,247.49	\$	40.10	\$	18.22	\$36,090.21
UK	\$	34.89	\$	19.22	\$40,972.09	\$	32.34	\$	17.81	\$37,978.26
France	\$	34.60	\$	20.37	\$38,985.14	\$	33.62	\$	19.79	\$37,870.91
Canada	\$	33.38	\$	15.37	\$30,281.55	\$	36.05	\$	16.59	\$32,702.79
Spain	\$	30.34	\$	14.91	\$27,750.56	\$	35.86	\$	17.62	\$32,800.87
Rep. of Korea	\$	16.40	\$	9.39	\$23,145.03	\$	23.92	\$	13.70	\$33,773.86
Mexico	\$	8.76	\$	1.77	\$ 4,102.92	\$	12.40	\$	2.50	\$ 5,811.97
Costa Rica	\$	8.57	\$	1.75	\$ 4,325.54	\$	17.49	\$	3.58	\$ 8,827.07
Philippines	\$	3.78	\$	0.48	\$ 1,097.95	\$	15.81	\$	1.99	\$ 4,588.86
Egypt	\$	3.39	\$	0.47	\$ 1,374.00	\$	10.68	\$	1.48	\$ 4,321.29
India	\$	0.64	\$	0.19	\$ 458.55	\$	3.18	\$	0.95	\$ 2,292.76

So

by the authors from International Labor Organization, *Laborsta Database*; World Bank, *World Development Indicat* Monetary Fund, *International Financial Statistics*; and figures at <u>www.NationMaster.com</u>.

		Market Exchange Rates		PPP Exchange Rates		
Country Pair	Period	Slope (b)	\mathbb{R}^2	Slope (b)	\mathbb{R}^2	
US-Japan	1984-91	0.14	0.09	0.20	0.10	
US-Germany	1977-90	0.46	0.06	0.83	0.11	
US-UK	1979-90	-0.08	0.03	-0.02	0.02	
US-France	1978-90	-0.21	0.02	0.02	0.02	
US-Italy	1979-89	0.26	0.11	0.25	0.01	
US-Canada	1972-89	0.41	0.02	0.73	0.01	
US-Australia	1981-91	0.72	0.05	0.89	0.10	
US-Korea	1972-90	-0.64	0.02	0.93	0.18	
US-Mexico	1980-90	0.46	0.14	0.56	0.18	

 Table 7.2 Primary Results from Regressions of Bilateral Net Exports on Relative Labor Productivities

Source: Golub and Hsieh (2000). Coefficients in bold are significantly different from zero at the one-percent level (99-percent confidence level), based on standard errors that are consistently estimated in the presence of heteroskedasticity.

International equilibrium - Figure 7.5

Ricardian model provides an interesting an simple way analyzing the division of the gains from trade between countries.

Show that small countries are the bigger gainers.

(1) Begin with the equilibrium in Figure 7.5.

- (2) Let country f grow: it's production frontier shifts out, Figure 7.6
- (3) Country f desires to trade more at any given price ratio, Figure 7.7
- (4) But this cannot be an equilibrium because there is no change in h.
- (5) To re-establish equilibrium, the price of country f's export must fall, the price of its import must rise.

(6) Country h gains more, may get *all* gains, Figure 7.8

Figure 7.5

Summary Points

- (a) With international differences in production technology, there will exist gains from trade.
- (b) Countries should specialize according to comparative advantage, their relative ability to produce different goods.
- (c) If prices are determined in a competitive market, then the market ensures the correct pattern of specialization. Government intervention is not needed or helpful.
- (d) If a country is uniformly more productive (e.g., has an absolute advantage in everything), then it must have a higher real wage.Provided that wages are market determined, having a high wage should not be a deterrent to trade, is it just reflecting high productivity.

(e) It is important to note that in a competitive market economy, the real wage is *endogenous*. A high wage reflects high productivity. A high wage is not a reason not to trade.

The term "competitiveness" is frequently mis-used. The origin of gains from trade is to specialize in what you do relatively well.

Declining sectors are indeed relatively uncompetitive, but that should not be seen as a problem.

(f) Theory suggest that small countries are major gainers from trade: technically, they trade further away from their autarky prices than large countries.

Table 7.1		Value Added	Wage
	IIS	Audeu	1615
	03	4/4/	1015
	Sweden	3836	1428
	Netherlands	4220	2232
	Japan	3146	1161
	Australia	4010	1822
	UK	3234	1781
	France	3362	1979
	Canada	3605	1659
	Spain	3586	1762
	Rep. of Korea	2392	1370
	Mexico	1240	250
	Costa Rica	1749	358
	Philippines	1581	199
	Egypt	1068	148
	India	318	95

Regression StatisticsMultiple R0.908451R Square0.825282Adjusted R0.811843Standard E330.2961Observatio15

	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	lpper 95.0%
Intercept	-274.293	205.4737	-1.33493	0.204807	-718.192	169.6057	-718.192	169.6057
Value add	ed							
perworker	0.522008	0.066615	7.836183	2.8E-06	0.378095	0.665921	0.378095	0.665921

RESIDUAL OUTPUT

Observatior	Predicted Y	Residuals
1	2203.678	-588.678
2	1728.129	-300.129
3	1928.58	303.4201
4	1367.943	-206.943
5	1818.958	3.041724
6	1413.88	367.1198
7	1480.697	498.3028
8	1607.545	51.45491
9	1597.627	164.3731
10	974.3495	395.6505
11	372.9965	-122.996
12	638.6985	-280.698
13	551.0012	-352.001
14	283.2111	-135.211
15	-108.295	203.2948

