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1. Introduction 

From popular press reports to formal journal articles, much has been written about the changing nature of 

work both within and across countries.  A good deal of this effort focuses on the rise and fall of different 

sectors (industries), as changing technology, higher incomes, and foreign competition lead to a shift in 

production and demand across industries.  There is also much interest in changing demand for different 

skills and occupations.  These two are often closely linked: both within and across industry developments 

imply changes in the demand for different worker skills and occupations.  The third phenomenon 

attracting attention is the change in the geography of production and jobs.  Some regions grow and thrive, 

others stagnate or decline.  This third phenomenon is also linked to the first two, as growing areas are 

observed to specialize in the employment of workers needed in the expanding sectors, often drawing them 

from other regions.   

 The purpose of this paper is to develop both an empirical and a theoretical analysis which 

contributes to understanding the joint evolution of the spatial distribution of industries and occupations.  

Specifically, we analyze how industries (sectors) and occupations (functions) are becoming more 

regionally concentrated or more dispersed.  Our empirics document these changes for US states over time.  

Our theory presents a model that mimics these changes and allows us to draw out further general-

equilibrium changes to many variables of interest.  

We begin with an empirical investigation using US state level data on sectoral and occupational 

employment. States are relatively large geographical units for the questions we are addressing, but 

because of data limitations we believe it is better to operate at this level (discussed in the following 

section).  We calculate how employment concentration in industries and occupations across US regions 

has changed over time, and how regional specialization has changed.  First, we find declining sectoral 

concentration and increasing occupational concentration over time.  While the decline in sector 

concentration is perhaps widely acknowledged, we find that the decline has occurred within most sectors 

of activity, and is driven principally by this within sector change rather than by compositional changes in 

the relative size of different sectors.  Similarly, the spatial concentration of most occupational groups has 

increased over time.  These results are important as they suggest that modelling should capture changes 

occurring within sectors and occupations.  Second, regional specialization indices in sectors and 

occupations have the same properties as the concentration indices, showing decreasing specialisation by 

sector and increasing specialisation by occupation.  

 We develop a theoretical approach based on the core idea that regions’ comparative advantages 

have evolved from being based on sectors, to being based on productivity differences in “functions” 

(occupations in the data). Our approach draws on elements from a number of literatures.  In no particular 

order, these include international trade theory, new economic geography, multinational firms and 
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outsourcing, and urban/regional economics.  From each, we pick-and-chose certain features and discard 

others to try capture the correct combination of assumptions that seems consistent with the changing 

economic geography of industry, and occupational specialization and concentration within the country. 

We provide specific references to the literature below, as we introduce the various components of our 

model.   

  From international trade theory, we use the typical assumption that sectors (industries) differ in 

the intensity with which they use inputs.  These inputs are produced by a homogeneous primary factor - 

labor - and we refer to them as functions.  The key feature of our approach is that regions differ in the 

relative productivity of labor in performing different functions.  Crucially, regional comparative 

advantage therefore lies in region-function, not region-sector, productivity differentials, although in 

equilibrium these differentials will show up in patterns of both functional and sectoral specialization.  

What are the sources of region-function productivity differences? In developing the model, we start by 

assuming these are exogenous, as in Ricardian trade theory.  Then, drawing on the new economic 

geography literature, we assume that the productivity advantages of a region may arise due to 

agglomeration economies (spillovers) where a larger set of workers specializing in the same function 

leads to higher productivity.  This seems closely consistent with many of the examples in Moretti (2012).  

Regional productivity in functions such as software engineering, banking and finance, marketing, and 

biotechnology increases with the number of regional workers in those functions.    

 The extent to which productivity advantage in a function can be exploited by producers depends 

on the extent to which sectors can ‘fragment’, performing different functions in different regions.  We 

capture this by drawing on the literature on fragmentation, vertical multinational firms and outsourcing.  

We assume that a sector in a region may draw all of its functions from within the region, or source them 

from other regions.  While doing the latter brings the benefit of exploiting region-function specific 

productivity and wage differentials, it incurs a fragmentation cost.  When this cost is large, sectors are 

integrated and each region contains multiple functions.  With a lower fragmentation cost, sectors will 

outsource the region’s comparative disadvantage functions thus leading to functional specialization.   

A final ingredient in our approach is labor mobility between regions, a typical assumption in the 

urban/regional literature.  This endogenizes nominal wages (as faced by producers).  Migration equalizes 

real wages, but a larger population in a region, other things equal, implies higher land prices and (in an 

urban context) longer average commutes, thus creating regional variation in the cost of living and hence 

in nominal wages. 

 The model creates a distribution of fragmented and integrated sectors across industries and across 

regions and identifies the characteristics of industries that are fragmented versus integrated, and of the 

regions in which integrated sectors locate.  Falling fragmentation costs are then the key experiment 



3 
 

applied to the model.  The central result is that, as these costs fall, regions become more specialized 

across functions and less specialized in sectors.  At high fragmentation costs, general equilibrium 

resembles the archetype HO model of international trade theory.  At low fragmentation costs, comparative 

advantage lies in functions, with employment in a region dispersed across many sectors. 

Turning from regional specialization to sector and function concentration across regions, the 

model similarly predicts that sectors become less concentrated as some of their employment is spread 

across regions.  But functions become more concentrated as employment in a function occurs in fewer 

regions.  Here is a simple example to illustrate this result.  With high fragmentation costs, a region has 

lawyers, accountants, machinists, mechanics and many other occupations working in a small number of 

comparative-advantage sectors, like the historic auto industry in Detroit. With lower fragmentation costs, 

a region has a smaller range of occupations working in a larger number of sectors.  New York specializes 

in white-collar functions such as finance and marketing, but these individuals are working for many 

different sectors that employ functions drawn from many different places.  

Ideas in this paper are complementary to the influential paper by Duranton and Puga (2005, 

henceforth D&P) on sectoral and functional specialisation.  By design, the present paper is tailored to be 

simpler than D&P in a number of respects, having perfect competition (rather than monopolistically 

competitive input sectors), and a given set of places (rather than endogenous city formation).  D&P have a 

tight input-output structure of business services, headquarters, production plants, and intermediates to 

production, in contrast to our twofold classification of sectors and functions, with all sectors using a mix 

of functions in different proportions. The main advantage of our approach is that it gives a relatively 

flexible way of thinking about the interactions between the range of functions and range of sectors present 

in a region, as compared to the central proposition of D&P.1   

Our focus on functions is also distinct from the literature on trade in tasks (for example Grossman 

and Rossi-Hansberg, 2008). 2  We think of there as being relatively few functions (law, engineering, 

accountancy) most of them used by many sectors, as compared to the task approach of many tasks, each 

specific to a single sector. Fundamentally, the task literature asks questions about international trade 

 
1  D&P proposition 1 states that (depending on parameters) either all firms are fully integrated and all cities fully 
specialized; or all firms are fragmented (multi-locational) with each city fully specialized in either headquarters and 
business services, or in one sector’s production and intermediate suppliers. 
2 The Grossmann and Rossi-Hansberg (GRH, 2008, 2012), tasks are a narrow stage of production, similar to the 
earlier models of Feenstra and Hanson (1996) and Markusen (1989), while our concept is a broader professional 
concept.  In GRH, each worker resides in one country and is either a low-skilled or high skilled worker, and there is 
no endogenous switching of location or between high and low-skilled work.  We assume workers can move between 
regions or from a hinterland to one of the regions, shaping the comparative advantage of each region.  The ability to 
trade tasks in GRH allows for some of the continuum of low-skilled tasks to be offshored for example, to a low-
skilled-abundant country.  But this cannot change the occupational structure and functional specialization of a 
region’s workers nor (with only two final goods) does it change the sectoral specialization of regions.   
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between countries with fixed factor endowments, and the effect of such trade on factor returns.  

International aspects of fragmentation are also addressed in the literatures on multinational firms 

(Markusen, 1989, 2002) and on global value chains (Antràs and Chor, 2021), although these literatures do 

not address our central question of the interplay between functional and sectoral specialisation.   

As noted above, the questions we pose and the model we develop touch on many strands of 

international trade, economic geography, and urban economics. Some of our analysis builds on the large 

literature on economic geography, agglomeration, and multiple equilibria (see Henderson and Thisse  

(2004), and Duranton, Henderson and Thisse (2015)).   Relevant work includes Audretsch and Feldman 

(1996), Berhens, Duranton and Robert-Nicoud (2014), Brackman and van Marrewijk (2013), Courant and 

Deardorff (1992), Davis and Dingel (2018), Fujita, Krugman and Venables (1999) and Krugman (1991b).   

The empirical tools we use for measuring concentration and specialization are drawn from 

Krugman (1991b), Audretsch and Feldman (1996), and especially Ellison and Glaeser (1997). Evidence 

on urban specialization (sectoral and functional) includes Barbour and A. Markusen (2007), Duranton and 

Overman (2005), Ellison and Glaeser (1997), Gabe and Able (2012), Michaels, Rauch and Redding 

(2019), and the broad analysis of Moretti (2012).  Our empirical results are also related to recent studies 

in the urban economics literature. For instance, Berry and Glaeser (2005), Moretti (2013), and Diamond 

(2016) all documents skill divergence across cities. While these studies concentrate on dichotomous 

differences (i.e. skilled vs unskilled workers) across regions, our paper reports changes in concentration at 

much more disaggregated level. We find that even within relatively detailed occupation categories, 

workers are increasingly concentrated. Our empirical results also complement previous works on 

functional specialization, including Duranton and Puga (2005). Using data from the Decennial Census of 

Population and Housing, they find that the ratio of managers to production worker is diverging across 

U.S. cities: ratios were similar across cities in 1977, but ratios for larger cities were significantly higher 

compared to those of small cities in 1997. 

The remainder of the paper is as follows.  In section 2, we analyze the data using region-level 

information on production and employment by sector and occupation for US states for the period 1990-

2019 for industries, 2000-2019 for occupations.  In sections 3 and 4, we develop and provide analytical 

solutions for a partial equilibrium model with two symmetric regions.  Section 3 assumes exogenous 

Ricardian differences in productivity by function and region. In section 4, we endogenize productivity 

differences by adding external economies of scale in the form of spillovers. In section 5, we characterise 

the general equilibrium model and address these questions numerically in a non-linear complementarity 

formulation.  This also allows us to draw out further implications of fragmentation costs: relative and 

absolute employment levels and wage differentials across regions, relative output levels and prices across 
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sectors, and net trade flows across sectors with the rest-of-world. In section 6, we offer some concluding 

comments. 

 

2.  Concentration and specialization in the United States 

In this section we document time series changes in geographical concentration of sectors and functions 

and in regional specialization for the US. In section 2.1, we begin with a brief description of the methods 

we use to compute concentration and specialization indices. We then implement our measures in US data. 

In sections 2.2 and 2.3 we report declining sectoral concentration and increasing functional concentration 

over time, and that a large fraction of those changes is explained by within-sector and within-function 

changes in geographic concentration. Finally, in section 2.4, we report that the regions’ sectoral 

specialization is decreasing over time, whereas their functional specialization is increasing. These 

empirical regularities help delineate the theoretical framework we develop in subsequent sections of the 

paper. 

 

2.1 Measures of concentration and specialization 

Using information on employment for each sector s and function f in each of r geographic areas, which 

we denote 𝐿𝐿𝑠𝑠𝑠𝑠 and 𝐿𝐿𝑓𝑓𝑠𝑠, respectively, we can define the concentration of sector s as the sum over regions r 

of the share of sector s’s national employment that is in region r minus region r’s share of national 

employment, squared 

  𝐺𝐺𝑠𝑠 = ∑ (𝑚𝑚𝑠𝑠𝑠𝑠 − 𝑚𝑚𝑠𝑠)2𝑠𝑠 ,  where 𝑚𝑚𝑠𝑠𝑠𝑠 = 𝐿𝐿𝑠𝑠𝑠𝑠/∑ 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 , and 𝑚𝑚𝑠𝑠 = 𝐿𝐿𝑠𝑠/∑ 𝐿𝐿𝑠𝑠𝑠𝑠 .             (1) 

The concentration of function f employment across regions can be defined similarly as  

𝐺𝐺𝑓𝑓 = ∑ �𝑚𝑚𝑓𝑓𝑠𝑠 − 𝑚𝑚𝑠𝑠�
2

𝑠𝑠 ,  where  𝑚𝑚𝑓𝑓𝑠𝑠 = 𝐿𝐿𝑓𝑓𝑠𝑠/∑ 𝐿𝐿𝑓𝑓𝑠𝑠𝑠𝑠 , and  𝑚𝑚𝑠𝑠 = 𝐿𝐿𝑠𝑠/∑ 𝐿𝐿𝑠𝑠𝑠𝑠 .       (2) 

Indices such as 𝐺𝐺𝑠𝑠, and 𝐺𝐺𝑓𝑓 are often used to measure agglomeration across regions (e.g., Krugman 

(1991b) and Audretsch and Feldman (1996)). However, as explained by Ellison and Glaeser (1997, 

henceforth E&G), an important limitation of these measures is that they could suggest high levels of 

concentration in sectors comprised of a few large plants located in a dispersed, random pattern. To control 

for this possibility, E&G develop a more sophisticated index of concentration which, for sectors, is 

defined as 

 

            𝐸𝐸𝐺𝐺𝑠𝑠 =
𝐺𝐺𝑠𝑠 (1 − ∑ 𝑚𝑚𝑠𝑠

2
𝑠𝑠 )⁄ − 𝐻𝐻𝑠𝑠

1 − 𝐻𝐻𝑠𝑠
, (3) 
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where 𝐻𝐻𝑠𝑠 = ∑ 𝑧𝑧𝑗𝑗𝑠𝑠2𝑗𝑗  is the Herfindahl index of the sector’s plant size distribution and 𝑧𝑧𝑗𝑗𝑠𝑠 is the jth plant’s 

share of sectoral employment. E&G refer to 𝐺𝐺𝑠𝑠, defined in equation (1) above, as the “raw geographic 

concentration” of employment in a sector. The adjustments seen in equation (3), such as the subtraction of 

𝐻𝐻𝑠𝑠,  are corrections that account for the fact that 𝐺𝐺𝑠𝑠 is expected to be larger in sectors consisting of fewer 

larger plants.3  

To measure functional concentration, we use a modified version of the E&G index defined as  

𝐸𝐸𝐺𝐺𝑓𝑓 =
𝐺𝐺𝑓𝑓 �1 − ∑ 𝑚𝑚𝑓𝑓

2
𝑠𝑠 �⁄ − 𝐻𝐻𝑓𝑓

1 −𝐻𝐻𝑓𝑓
. (4) 

As for sectors, the index adjusts the raw measure of concentration 𝐺𝐺𝑓𝑓, defined in equation (2) above, to 

account for the fact that functions that are specific to a small number of plants will be more concentrated 

geographically compared to functions that are ubiquitous. Because we do not have information on plant-

level employment by function, we cannot control directly for the dispersion of functions across plants. 

Instead, we use the Herfindahl index 𝐻𝐻𝑓𝑓 = ∑ 𝑚𝑚𝑓𝑓𝑠𝑠
2

𝑠𝑠  , where 𝑚𝑚𝑓𝑓𝑠𝑠 is the share of employment in sector s 

performing function f. The intuition for the correction factor 𝐻𝐻𝑓𝑓, suggested by Gabe and Able (2010), is 

that when a function’s employment is concentrated in a few sectors, the measured geographic 

concentration of the function should be higher all else equal. 

The E&G indices of concentration defined in equations (3) and (4) have many useful properties.4  

First, they are easy to implement. Second, they are widely used which allows us to compare our results 

with previous studies. Third, they use employment shares, which implies that it does not confound 

features in time-series data such as the general decline in manufacturing. 

As explained in Aiginger and Rossi-Hansberg (2006), while regional specialization and 

geographic concentration are often considered almost identical economic phenomena (e.g. Krugman 

1991a), they do not always develop in parallel. So, in addition to examining sector and function 

concentration, we also compute indices of regional specialization. Each region is compared to the national 

 
3 In practice (see results in appendix 2 of the paper), we find that changes in the value of 𝐸𝐸𝐺𝐺𝑠𝑠 over time are well 
approximated by changes in 𝐺𝐺𝑠𝑠. This happens because plant size distributions tend to change fairly slowly over time, 
so the correction is less important in cross-time comparisons (within a short time period) than in cross-industry 
comparisons. Nevertheless, we use 𝐸𝐸𝐺𝐺𝑠𝑠 as our benchmark measure. 
4 The motivation for the E&G indices, defined in equations (3) and (4), is that it is an unbiased estimate of a sum of 
two parameters that reflect the strength of agglomeration forces (spillovers and unmeasured comparative advantage) 
in a model of location choice. At one extreme, the case of  𝐸𝐸𝐺𝐺 = 0, corresponds to a model in which location 
decisions are independent of region characteristics. In this case, the probability of choosing area r is 𝑚𝑚𝑠𝑠, the share of 
total employment in the region. At the other extreme, when 𝐸𝐸𝐺𝐺 = 1, region characteristics are so important that they 
completely overwhelm other factors, and the one region that offers the most favourable conditions will attract all the 
firms. In describing our results, we follow E&G and refer to those industries with EGs above 0.05 as being 
concentrated and to those with EGs below 0.02 as being dispersed. 
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distribution of employment across sectors and functions via specialization indices, 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝐷𝐷𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓. 

Similar to our measures of concentration, the specialization of region r is defined as the sum over sectors 

(functions) of the square of the difference between the share of region r’s employment in sector s 

(function f) and the share of national employment that is in sector s (function f) as follows 

 
𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ (𝑞𝑞𝑠𝑠𝑠𝑠 − 𝑞𝑞𝑠𝑠)2𝑠𝑠 , where  𝑞𝑞𝑠𝑠𝑠𝑠 = 𝐿𝐿𝑠𝑠𝑠𝑠/∑ 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 , and 𝑞𝑞𝑠𝑠 = 𝐿𝐿𝑠𝑠/∑ 𝐿𝐿𝑠𝑠𝑠𝑠 ,   (5) 

𝐷𝐷𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓 = ∑ �𝑞𝑞𝑠𝑠𝑓𝑓 − 𝑞𝑞𝑓𝑓�

2
𝑓𝑓 , where 𝑞𝑞𝑠𝑠𝑓𝑓 = 𝐿𝐿𝑓𝑓𝑠𝑠/∑ 𝐿𝐿𝑓𝑓𝑠𝑠𝑓𝑓 , and  𝑞𝑞𝑓𝑓 = 𝐿𝐿𝑓𝑓/∑ 𝐿𝐿𝑓𝑓𝑓𝑓 .  (6) 

This completes the description of the methods. In the next section, we implement the indices in US data. 

 

2.2 Sectoral concentration 

In this section we study the time-series in the geographic concentration of sectors. For this part of the 

empirical analysis we use a balanced panel derived from the Bureau of Labor and Statistics’ Quarterly 

Census of Employment and Wage dataset that contains state-level data on 626 six-digit NAICS industries 

(our empirical measure of sectors) for years 1990 to 2019. Data sources and measurement issues are 

discussed in appendix 1 at the end of the paper. In our sample, about 41 percent of the 18,780 

observations are in manufacturing industries, the remainder of the observations are distributed across 

business services (23%), personal services (20%), and wholesale, retail and transportation (15%) 

industries. In the interest of space, we present only the most relevant empirical findings in the main text, 

additional results are presented in appendix 2 at the end of the paper. 

We compute the index of geographical concentration defined in equation (3) for each sector s and 

year 𝜏𝜏 in the data, and denote it 𝐸𝐸𝐺𝐺𝑠𝑠𝑠𝑠. We find that for 362 of the 626 sectors (which together account for 

about 59% of US employment in our sample) the index of concentration is lower in 2019 than it was in 

1990. The simple average of the concentration index over sectors decreases about 12% between 1990 and 

2019 (going from 0.058 in 1990 to 0.051 in 2019, as reported in Table A2.1 of appendix 2 of the paper). 

Taking into account the relative size of sectors strengthens the finding that sectoral concentration is 

declining on average. The red line in Figure 1 depicts the employment-share weighted average over 

sectors for each year, defined as 

 
𝐸𝐸𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑚𝑚𝑠𝑠𝑠𝑠 𝐸𝐸𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 .          (7) 

 
As seen in the figure, the mean sectoral concentration decreases by about 44% over the period (going 

from 0.027 in 1990 to 0.015 in 2019).  

In appendix Table A2.2 we report estimated time series trend in geographic concentration for 

each broad economic sectors. All estimates are negative and statistically significant, but the estimated 
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decline in concentration is more important on average in wholesale, retail and transportation, and 

manufacturing sectors, then it was in business services and personal services sectors. The finding that 

sectoral concentration is decreasing over time is in line with previous studies, such as Dumais, Ellison, 

and Glaeser (2002) who study the geographic concentration of sectoral employment across US states from 

1972 to 1997.5 

 

 
Figure 1: Geographic concentration of sectors over time 

 
The results so far suggest that the average worker is employed in a more geographically dispersed 

sector in 2019 than he was in 1990. To gain additional insights, we decompose time series changes in the 

geographic concentration into two adjustments margins: within-industry changes in geographic 

concentration and across-industry reallocation of employment. While the theoretical model we develop in 

the next section produced across-sectors reallocation, we are particularly interested in explaining the 

within-sector component. For any given year 𝜏𝜏, we can decompose the mean sectoral concentration 

defined in equation (7) as follows 

 

 𝐸𝐸𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑚𝑚𝑠𝑠 𝐸𝐸𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 +  ∑ (𝑚𝑚𝑠𝑠𝑠𝑠 − 𝑚𝑚𝑠𝑠) 𝐸𝐸𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 ,       (8) 

  

 
5 First, the two sets of estimates are of the same magnitude. They report a (simple) mean 0.034 for 1992. As reported 
in appendix 2, our corresponding estimate is 0.056. The fact that our sectors are more concentrated on average can 
be explained by differences in scope and aggregation levels for sectors across studies. We include services and 
manufacturing sectors, whereas they focus on manufacturing, and we use six-digit NAICS industries as our 
definition of sectors, whereas they use three-digit NAICS. Second, they also find a decline in geographical 
concentration of sectors using US data. Both the simple and the employment weighted means of their index declines 
by more than 10% between 1972 and 1992. 
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where 𝑚𝑚𝑠𝑠𝑠𝑠 is industry-s’s share of national employment in year 𝜏𝜏 and 𝑚𝑚𝑠𝑠 is the industry’s share of 

employment in the sample (i.e., the mean over time of 𝑚𝑚𝑠𝑠𝑠𝑠). The first term of the decomposition holds 

employment shares constant at the sample mean and provides information on the contribution of the 

within-industry changes in concentration over time. The second term captures the remainder of the time 

series change. 

The results from decomposition (8) are depicted in Figure 1. The blue line represents the within-

sector component of the decomposition (i.e., the term ∑ 𝑚𝑚𝑠𝑠 𝐸𝐸𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 ). The second term on the right-hand-

side of equation (8) is represented implicitly by the difference between the blue line and the red line 

(recall that the red line represents the overall change in concentration, 𝐸𝐸𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , on the left-hand side of 

equation (8)). As seen in the figure, the rate of decline in concentration is lower when considering only 

the within-sector changes in concentration. We estimate that the within-sector component decreases by 

about 30% over the sample period (going from 0.023 in 1990 to 0.016 in 2019), whereas the average 

concentration decreases by 44% as reported earlier. While part of the observed decrease in sectoral 

concentration is due to labor movement from less concentrated industries towards more concentrated 

industries, our results suggest that the decline in the within-industry component of geographic 

concentration represents the majority of the time series change in geographic concentration.  

 

2.3 Functional concentration 

In this section, we study the times series properties of the geographic concentration of functional 

employment. For this part of the empirical analysis, we use a balanced panel that contains state-level data 

on 704 six-digit SOC occupations derived from the BLS’s Occupational and Employment Statistics for 

years 2000 to 2019.  Data sources and measurement issues are discussed in appendix 1 at the end of the 

paper.  

We begin by computing the index of geographical concentration defined in equation (4) for each 

function f and year 𝜏𝜏 in the data, 𝐸𝐸𝐺𝐺𝑓𝑓𝑠𝑠. We find that for 378 of the 704 functions (which together account 

for 55% of US employment in our sample), the difference between the 2019 and 2000 measures of 

concentration is positive, which implies an increase in the geographic concentration of functions over 

time. The simple average of the concentration index over functions increases about 10% between 1990 

and 2019 (going from 0.0223 in 2000 to 0.0246 in 2019). Taking into account the relative size of 

functions increases the estimated increase in concentration. The red line in Figure 2 depicts the 

employment-share weighted average over functions for each year, defined as 

 
𝐸𝐸𝐺𝐺𝑠𝑠

𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓 = ∑ 𝑚𝑚𝑓𝑓𝑠𝑠 𝐸𝐸𝐺𝐺𝑓𝑓𝑠𝑠𝑓𝑓 .         (9) 
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The weighted average concentration increases by about 19% over the period (going from 0.0053 in 2000 

to 0.0063 in 2019). 

 

 
Figure 2: Geographic concentration of functions over time 

 
Results from the decomposition defined in equation (8), but applied to functions, are also 

illustrated in Figure 2. The blue line represents the within-sector component of the decomposition 

(defined as  ∑ 𝑚𝑚𝑓𝑓  𝐸𝐸𝐺𝐺𝑓𝑓𝑠𝑠𝑓𝑓 ). The figure clearly shows that there is an increase in the geographic 

concentration of functions over time even when holding the employment weights constant. As was the 

case for sectors, most of the time series change in functional concentrations is explained by the within-

function component. Appendix Table A2.4 at the end of the paper sreport estimated time series trend in 

geographic concentration for each broad occupations categories. The results show that 17 out of 21 

estimated time trends are positive and 13 of those are statistically significant at conventional levels. 

The empirical results in this section complement those of previous studies, such as Berry and 

Glaeser 2005, Duranton and Puga (2005), Moretti (2013) and Diamond (2016), that document divergence 

in the skill-level of US cities over time. We provide evidence that functional concentration holds even 

within disaggregated definitions of occupations. 

 

2.4  Regional specialization over time 

We now turn to the sectoral and functional structure of regional employment. We use the region-sector 

and the region-function datasets described in the previous section to construct the two measures of 

regional specialization defined in equations (5) and (6) for each state-year in our datasets. In each case, 
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we aggregate state-level measures using a weighted average, where the weights are the states’ shares of 

national employment in the corresponding year 

 
𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑚𝑚𝑠𝑠𝑠𝑠𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , and 𝐷𝐷𝑠𝑠

𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓 = ∑ 𝑚𝑚𝑠𝑠𝑠𝑠𝐷𝐷𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓

𝑠𝑠 .        (10) 

 

The main results are reported in Figure 3 (appendix 2 presents additional results). The red line 

and the blue line depict, respectively, the time series of regional specialization in sectors (𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and 

functions (𝐷𝐷𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓). The decreasing trend in the red line indicates that the states’ employment is 

becoming more evenly distributed across sectors over time. Conversely, the upward trend in the blue line 

indicates that states’ distribution of employment across function is becoming increasingly uneven.  

 

 
Figure 3: Regional specialization over time 

 

This completes the empirical section of the paper. To summarize, the empirical results suggest 

that the average US worker is employed in a more geographically disperse sector in 2019 than in 1990, 

but performs a function that is more geographically concentrated in 2019 than in 2000. We also find that, 

over time, states’ employment is becoming more evenly distributed across sectors, but increasingly 

unevenly distributed across functions.  

 

3. Regions, sectors and functions   

The empirical findings reported in section 2 indicate the spatial deconcentration of a majority of sectors of 

activity, while at the same time the sectoral concentration of almost all occupations – or ‘functions’ – 

increased.  The pattern is mirrored in regional specialisation, with decreased specialisation in sectors, but 
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increased specialisation in functions.  These findings suggests that, during the period of study, the latent 

comparative advantage of places in particular functions became more influential in shaping the location of 

employment.  This in turn requires that firms became able to spatially fragment, performing different 

functions in different places.  In the remainder of this paper we set out a minimal model in which falling 

costs of fragmentation (due perhaps to technical progress in communication) enable regions to develop 

functional specialisations which then shape the location of employment in a manner consistent with the 

data.   

The ingredients of the model are locations, functions, and sectors.  For simplicity we focus on just 

two regions and two functions.  These functions can be used by multiple sectors, which we represent as a 

continuum.  The functions use a single primary factor, labour, and are used as inputs to production of 

final output in each sector. 6  To capture the regional aspect of the model we assume that labour is 

perfectly mobile, but its nominal wage may vary between places as the cost of living depends on 

employment in each place, as in the standard urban model.  In our base model comparative advantage is 

driven by region-function specific Ricardian productivity differences, and we extend the model to 

endogenize these productivity differences through agglomeration effects.  In this section and the next we 

keep the general equilibrium side of the model in the background and make sufficient assumptions to 

ensure that the two regions are symmetric. In section 5, we fully specify the general equilibrium side of 

the model, enabling analysis of a richer set of possibilities.  

The two regions are indexed 𝑟𝑟 = 1, 2, and the wage rate in region r is denoted 𝑤𝑤𝑠𝑠.  The single 

factor of production, labour, is perfectly mobile between regions but, since the cost of living may vary 

across regions, so may the nominal wage.  The two functions, labelled  f = A, B, are produced by labour 

with productivity that varies by region and function; production of one unit of function f in region  r 

requires 𝜆𝜆𝑓𝑓𝑠𝑠 > 0 units of labour.  Regions are labelled such that productivity differences give region 1 a 

comparative advantage in function A, i.e., 𝜆𝜆𝐴𝐴1 𝜆𝜆𝐵𝐵1⁄ ≤ 𝜆𝜆𝐴𝐴2 𝜆𝜆𝐵𝐵2⁄ .   

There is a continuum of sectors, indexed 𝑠𝑠 ∈ [0,1].   Production occurs with constant returns to 

scale and perfect competition, and the output of sector s is denoted 𝑛𝑛(𝑠𝑠).  This is freely traded at price 

𝑝𝑝(𝑠𝑠).  A unit of sector s output requires inputs of the two functions, and no other inputs.  Sector s uses 

𝑎𝑎(𝑠𝑠) units of function A per unit output, and 𝑏𝑏(𝑠𝑠) units of function B, technical coefficients which we 

 
6 Thus, workers can choose to become e.g. engineers or lawyers.  Comparative advantage comes from cross-region 
variation in the productivity of labour in these functions.  It would be possible to add a Heckscher-Ohlin flavour by 
assuming fixed endowments of engineers and lawyers, but this is inconsistent with the long-run perspective of the 
model.  
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refer to as the function intensity of the sector.7  These intensities vary with sector s but are the same in 

both regions; we assume that sectors can be ranked such that low s sectors are A-intensive and B-

intensive, i.e.  𝑎𝑎′(𝑠𝑠) < 0 and 𝑏𝑏′(𝑠𝑠) > 0.   

Producers in each sector can source functions from either region, but if the two functions come 

from different regions then a per unit fragmentation cost t is incurred.  Producers in each sector therefore 

operate in one of three modes, choosing to operate entirely in region 1, entirely in 2, or to purchase one 

function from region 1 and the other from region 2.  Producers in a single region are ‘integrated’ and will 

be labelled by subscript 1, 2 according to region of operation; those operating in both are ‘fragmented’ 

and will be labelled by subscript F. The unit profits in sector s for each of the three production modes are 

therefore  

 𝜋𝜋1(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − [𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1]𝑤𝑤1, 

𝜋𝜋𝐹𝐹(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − [𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1𝑤𝑤1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1𝑤𝑤2] − 𝑡𝑡,      (11) 

 𝜋𝜋2(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − [𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2]𝑤𝑤2. 

Unit costs are those of the functions purchased, sector s using 𝑎𝑎(𝑠𝑠) units of function A and 𝑏𝑏(𝑠𝑠) units of 

B.  The functions use labour, with region r productivity 𝜆𝜆𝑓𝑓𝑠𝑠,  f = A, B, and are costed at the region’s wage 

𝑤𝑤𝑠𝑠, r = 1, 2.  Since the technology with which functions are combined into final goods (𝑎𝑎(𝑠𝑠), 𝑏𝑏(𝑠𝑠)) is the 

same in both regions, urban comparative advantage is determined entirely by the efficiency with which 

regions use labour to produce functions, 𝜆𝜆𝑓𝑓𝑠𝑠.  

The endogenous choice of mode partitions the continuum of sectors into three groups.  First is a 

range of s in which production is integrated, sourcing both functions in region 1.  Since we have labelled 

regions such that region 1 has a comparative advantage in function A, and ranked sectors such that low s 

sectors are A-intensive, it follows that these will be low s sectors.  Second is a range of sectors in which 

production is fragmented, sourcing function A from region 1 and function B in region 2; if this range 

exists it will contain sectors with intermediate values of s (i.e. using both functions in similar 

proportions). Third are high s (B-intensive) sectors in which production is integrated in region 2, the 

region with comparative advantage in function B.   

The boundaries between these ranges are denoted 𝑠𝑠1, 𝑠𝑠2 and are the sectors for which different 

modes of operation are equi-profitable, i.e. 𝜋𝜋1(𝑠𝑠1) = 𝜋𝜋𝐹𝐹(𝑠𝑠1), and 𝜋𝜋2(𝑠𝑠2) = 𝜋𝜋𝐹𝐹(𝑠𝑠2). Using (11), these 

mode-boundaries are implicitly defined by 

 
7  𝑎𝑎(𝑠𝑠) and 𝑏𝑏(𝑠𝑠) can be thought of as rows of a matrix mapping sectors to functions, as in Timmer et al. (2019).  We 
show how the mapping only operates in circumstances where there is sufficient spatial variation in productivity or 
wages, and sufficiently low costs of fragmentation. 
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𝜋𝜋𝐹𝐹(𝑠𝑠1) − 𝜋𝜋1(𝑠𝑠1) = 𝑏𝑏(𝑠𝑠1)[𝜆𝜆𝐵𝐵1𝑤𝑤1 − 𝜆𝜆𝐵𝐵2𝑤𝑤2] − 𝑡𝑡 = 0,     (12) 

𝜋𝜋𝐹𝐹(𝑠𝑠2) − 𝜋𝜋2(𝑠𝑠2) = 𝑎𝑎(𝑠𝑠2)[𝜆𝜆𝐴𝐴2𝑤𝑤2 − 𝜆𝜆𝐴𝐴1𝑤𝑤1] − 𝑡𝑡 = 0.  

For a given level of output each sector, 𝑛𝑛(𝑠𝑠), the levels of employment by function, region, and sector, 

denoted 𝐿𝐿𝑓𝑓𝑠𝑠(𝑠𝑠), follow directly from eqn. (11) and are given in appendix Table A3.1.  The lower rows of 

the table give employment by function in each region, 𝐿𝐿𝑓𝑓𝑠𝑠 = ∫ 𝐿𝐿𝑓𝑓𝑠𝑠(𝑠𝑠)𝑑𝑑𝑠𝑠 
𝑠𝑠 , employment by sector in each 

region, 𝐿𝐿𝑠𝑠(𝑠𝑠) = ∑ 𝐿𝐿𝑓𝑓𝑠𝑠(𝑠𝑠)𝑓𝑓 , and total employment in each region, 𝐿𝐿𝑠𝑠 = ∑ ∫ 𝐿𝐿𝑓𝑓𝑠𝑠(𝑠𝑠)𝑑𝑑𝑠𝑠 
𝑠𝑠𝑓𝑓 .  

 

4. Sectoral and functional specialisation in symmetric equilibria 

We start by analysing the way in which modes of operation and the consequent location of sectors and 

functions depend on technology and fragmentation costs, looking first at the case where efficiency 

differences are exogenous (4.1) and then turning to economies of scale (4.2).  Full general equilibrium is 

set out in section 5. 

 

4.1  Functional productivity: Ricardian differences 

Throughout this section, we make strong assumptions which make regions and sectors symmetrical, 

enabling us to derive key results on the location of sectors of functions. We assume that output in each 

sector s is the same and constant, 𝑛𝑛(𝑠𝑠) = 𝑛𝑛.  Wages are the same in both regions taking common value w.  

Labour productivity in functions is assumed to be symmetric across regions, which we capture by 

denoting the labour input coefficient in each region’s high productivity function as 𝜆𝜆 ≡ 𝜆𝜆𝐴𝐴1 = 𝜆𝜆𝐵𝐵2, and 

that of the lower productivity function 𝜆𝜆𝐴𝐴2 = 𝜆𝜆𝐵𝐵1 = 𝜆𝜆 + ∆𝜆𝜆, with ∆𝜆𝜆 > 0.  Values for the mode-

boundaries come from eqns. (12), and are implicitly given by 

        𝑏𝑏(𝑠𝑠1)𝑤𝑤∆𝜆𝜆 = 𝑡𝑡,  and  𝑎𝑎(𝑠𝑠2)𝑤𝑤∆𝜆𝜆 = 𝑡𝑡.                                      (13) 

A simple case is where the function intensity of sectors as linear in s, taking the form 𝑎𝑎(𝑠𝑠) =

[1 + 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  and 𝑏𝑏(𝑠𝑠) = [1 − 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  with 1 ≥ 𝛾𝛾 > 0. This is symmetric, with middle 

sector, 𝑠𝑠 = 1 2⁄ , equally intensive in A and B.  The parameter γ measures the heterogeneity of function 

intensities across sectors and 1 ≥ 𝛾𝛾 means that both functions are used in all sectors.8  Appendix Table 

A3.2 gives employment levels by region, function, and sector, replicating Table A3.1 with explicit 

expressions derived from this functional form.  The unit profit functions of eqn. (11) become,  𝜋𝜋1(𝑠𝑠) =

 
8 Thus, for all 𝑠𝑠 ∈ [0,1] ,  𝑎𝑎(𝑠𝑠), 𝑏𝑏(𝑠𝑠) ≥ 0.  Figure 4 has Δ𝜆𝜆 = 0.4, w = 1, and  γ = 1.  This value of γ  is the special 
case in which all sectors become fragmented (s1 = 0 and s2 = 1) at t = 0.  If sectors are more similar in function 
intensity, γ < 1, then all become fragmented at some positive value of t; if γ > 1 then extreme sectors use only one 
function.  
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𝑝𝑝(𝑠𝑠) − {2𝜆𝜆 + ∆𝜆𝜆[1 − 𝛾𝛾(1 − 2𝑠𝑠)]}𝑤𝑤 2⁄ ,  𝜋𝜋𝐹𝐹(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − 𝜆𝜆𝑤𝑤 − 𝑡𝑡, and  𝜋𝜋2(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) −

{2𝜆𝜆 + ∆𝜆𝜆[1 + 𝛾𝛾(1 − 2𝑠𝑠)]}𝑤𝑤 2⁄ , from which explicit expressions for the mode boundaries are   

 

                              𝜋𝜋1(𝑠𝑠1) = 𝜋𝜋𝐹𝐹(𝑠𝑠1):       𝑠𝑠1 =
1
2
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� ,                                                             (14)    

 𝜋𝜋2(𝑠𝑠2) = 𝜋𝜋𝐹𝐹(𝑠𝑠2):      𝑠𝑠2 =
1
2
�1 + �1 −
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These relationships capture the way in which the sourcing of functions in each sector depends on 

fragmentation costs t relative to wages, the range of function intensities γ, and inter-regional differences 

in relative labour productivity, ∆𝜆𝜆. 

Sectoral mode choice is illustrated on Figure 4, which has sectors on the vertical axis and 

fragmentation costs, t, on the horizontal.  If t is high then all sectors are integrated, with an equal 

proportion of sectors in each region.  If t falls below value 𝑡𝑡∗ = 𝑤𝑤Δ𝜆𝜆 2⁄  then fragmentation becomes 

profitable, first in sectors that have similar use of both functions, i.e. s in an interval around ½ and of 

width 𝑠𝑠2 − 𝑠𝑠1 = (1 − 2𝑡𝑡 𝑤𝑤Δ𝜆𝜆⁄ )/𝛾𝛾, wider the smaller is t, and the larger are productivity differences, ∆𝜆𝜆.  

Intuitively, these are the sectors where both functions have a similar share of costs so it is worthwhile 

incurring cost t to source each from the lowest cost region.  Sectors with more extreme function 

intensities remain integrated in the region where the function with highest cost share is relatively cheap.  

Thus, at 𝑡𝑡 < 𝑡𝑡∗ the most A-intensive sectors operate with integrated production in region 1, the most B-

intensive are integrated in region 2, and those with intermediate function intensities are fragmented, 

locating their functions according to inter-region differences in the productivity of labour in each 

function.   

As fragmentation costs fall so more sectors become fragmented.  This means that the number of 

sectors with a presence in each region increases, and hence both the regional concentration of sectors and 

the sectoral specialisation of regions decline.  At the same time activity in each region becomes more 

skewed toward the function in which it has comparative advantage, so each function becomes more 

regionally concentrated, and each region more functionally specialised.  In simulation analysis of section 

5.3 specialisation and concentration indices are calculated for the distribution of both sectoral and 

functional employment across regions in a full general equilibrium context.   

 

4.2 Functional productivity: localisation economies 

Ricardian efficiency differences provide the simplest model framework, but we think it unlikely that 

regional differences in the productivity of functions are principally due to exogenous efficiency 
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differences.  A further mechanism is the presence of function and location specific agglomeration 

economies, creating endogenous variation in the productivity of labour across functions and regions.   

 

 

    Figure 4:  Modes of operation IN each sector s.  

 
We model this by assuming that labour input coefficients  𝜆𝜆𝑓𝑓𝑠𝑠 now contain an endogenous part 

deriving from productivity spillovers in the same function and region, as well as a possible Ricardian 

component.  The Ricardian component is as before, taking values λ and λ + Δλ.  Productivity spillovers 

generated by each function in each region are equal to output in the function-region pair, 𝑋𝑋𝑓𝑓𝑠𝑠 = 𝐿𝐿𝑓𝑓𝑠𝑠/𝜆𝜆𝑓𝑓𝑠𝑠 , 

𝑓𝑓 = 𝐴𝐴,𝐵𝐵, 𝑟𝑟 = 1, 2 with parameters σ𝐴𝐴 and σ𝐵𝐵 measuring the impact of spillovers on productivity. The 

Ricardian and endogenous components of labour input coefficients are additive, giving 

𝜆𝜆𝐴𝐴1 = λ − σ𝐴𝐴𝑋𝑋𝐴𝐴1,    𝜆𝜆𝐴𝐴2 = λ + Δλ − σ𝐴𝐴𝑋𝑋𝐴𝐴2,    (15) 

  𝜆𝜆𝐵𝐵1 = λ + Δλ − σ𝐵𝐵𝑋𝑋𝐵𝐵1,   𝜆𝜆𝐵𝐵2 = λ − σ𝐵𝐵𝑋𝑋𝐵𝐵2.  

Hence, productivity differentials are, using expressions from appendix Table A3.2, block IV, 

𝜆𝜆𝐵𝐵1 − 𝜆𝜆𝐵𝐵2 = Δλ − σ𝐵𝐵𝑛𝑛 �−
1
2

+ 𝑠𝑠1[1 − 𝛾𝛾(1 − 𝑠𝑠1)]�,     (16a)  

𝜆𝜆𝐴𝐴2 − 𝜆𝜆𝐴𝐴1 = Δλ − σ𝐴𝐴𝑛𝑛 �
1
2
− 𝑠𝑠2[1 + 𝛾𝛾(1 − 𝑠𝑠2)]�.          (16b) 

Thus, if 𝑠𝑠2 is large a relatively small range of sectors undertake function A in region 2, thereby reducing 

region 2’s productivity in A, i.e. raising 𝜆𝜆𝐴𝐴2 − 𝜆𝜆𝐴𝐴1. If these spillovers are equally powerful in both 
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functions (𝜎𝜎 ≡ 𝜎𝜎𝐴𝐴 = 𝜎𝜎𝐵𝐵 > 0) and wages are the same in both regions then the mode-boundaries defined 

in eqn. (2) become, 

𝜋𝜋𝐹𝐹(𝑠𝑠1) − 𝜋𝜋1(𝑠𝑠1) = {[1 − 𝛾𝛾(1 − 2𝑠𝑠1)](𝜆𝜆𝐵𝐵1 − 𝜆𝜆𝐵𝐵2)}𝑤𝑤 2⁄ − 𝑡𝑡 = 0,   (17a)   

𝜋𝜋𝐹𝐹(𝑠𝑠2) − 𝜋𝜋2(𝑠𝑠2) = {[1 + 𝛾𝛾(1 − 2𝑠𝑠2)](𝜆𝜆𝐴𝐴2 − 𝜆𝜆𝐴𝐴1)}𝑤𝑤 2⁄ − 𝑡𝑡 = 0.   (17b) 

To analyse these relationships, we focus on (16a) and (17a), the other pair, (16b) and (17b), being 

symmetric.  Substituting (16a) in (17a) gives 𝜋𝜋𝐹𝐹(𝑠𝑠1) − 𝜋𝜋1(𝑠𝑠1) as a function of 𝑠𝑠1.  This expression and 

full analysis is given in appendix 3.  Here we note the following facts and illustrate outcomes on Figure 5. 

 First, there is full integration if 𝜋𝜋𝐹𝐹(𝑠𝑠1) ≤ 𝜋𝜋1(𝑠𝑠1) at 𝑠𝑠1 = ½, and straightforward calculation gives 

value 𝑡𝑡∗∗ = [∆λ + 𝑛𝑛𝜎𝜎𝛾𝛾 4⁄ ]𝑤𝑤 2⁄   at which 𝜋𝜋𝐹𝐹(𝑠𝑠1) = 𝜋𝜋1(𝑠𝑠1).  Evidently, this reduces to the Ricardian 

equivalent 𝑡𝑡∗ if 𝜎𝜎 = 0, while 𝜎𝜎 > 0 implies a strictly higher critical point 𝑡𝑡∗∗.   At higher values of t, 

𝑡𝑡 ≥ 𝑡𝑡∗∗, there is an equilibrium with fully integrated production, illustrated by the solid horizontal line on 

Figure 5.  

Second, the expression for 𝜋𝜋𝐹𝐹(𝑠𝑠1) − 𝜋𝜋1(𝑠𝑠1) is cubic in 𝑠𝑠1 (see (16a) and (17a)) , and this 

generates curvature of the mode boundaries and a range of multiple equilibria.  In Figure 5 this 

multiplicity occurs in the interval (𝑡𝑡∗∗, �̃�𝑡).9  Integrated production is an equilibrium, because at this 

equilibrium productivity differences are small.  But so too is a fragmented equilibrium.  At such an 

equilibrium production of function A is relatively concentrated in region 1, and B in region 2; the presence 

of increasing returns means that the productivity differential is now large, justifying sectors’ choices to 

fragment production. Appendix 3 works this through in detail, deriving the critical value �̃�𝑡 below which 

fragmented production is an equilibrium and establishing that multiple equilibria arise if spillovers 𝜎𝜎 are 

large relative to any Ricardian productivity difference, ∆Λ. 

 Third, the qualitative effects of reducing fragmentation costs are as in the preceding case.  

Fragmentation reduces sectoral concentration and specialisation, and increases functional concentration 

and specialisation.  Importantly, these results do not depend on arbitrary Ricardian differences, but can 

also arise if places are ex ante identical and technology has location-function specific agglomeration 

economies.  Fragmentation allows these agglomeration forces to operate, and thereby concentrating the 

location of functions and allowing the process we see in the data to operate.  These arguments set out the 

driving mechanisms that we want to explore, and we now move to place them in a general equilibrium 

setting, endogenizing wages and the scale of activity (total output) in each sector. 

 
9 Figure 5 has the same parameters as Figure 4, except that Δλ = 0 and σ𝐴𝐴 = σ𝐵𝐵 =  1.5. 
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Figure 5:  Modes of operation in each sector s: with increasing returns  

 

5. General Equilibrium 

To this point we have assumed product prices are constant, wages are constant and equal in both regions, 

the total output of each sector is fixed and the same in all sectors, and there is no interaction with the rest-

of-world.  We now relax these assumptions and develop the general equilibrium of the model. The model 

does not admit analytical solutions, so the results are derived from numerical simulation.  

 The following diagram illustrates the spatial structure of the general-equilibrium model.  The 

country of analysis consists of two regions surrounded by a hinterland. The regions can draw labour from 

the hinterland.  Workers are homogeneous and move freely to equalize real wages.  Inter-regional cost of 

trading goods is constant, and we set this at zero.  The inter-regional cost of trading functions 

(fragmentation costs) are the variable of interest.  Final goods, which are costlessly assembled from 

functions can be traded at fixed world prices with the rest-of-world, but there is no international trade in 

functions.  

 

5.1 Region size, employment and wages 

In addition to the sectors and functions modelled above we now add an ‘outside good’ which we use as 

numeraire.  This good is produced in a hinterland region, using labour alone at constant productivity 

giving fixed hinterland wage w0.  The hinterland produces no other goods or functions, and this and all 

other final goods are perfectly freely traded.   
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Figure 6:  The spatial structure of the general-equilibrium model 

 
 

Labour is perfectly mobile, equating utilities across regions.  To prevent corner solutions – such 

as all population ending up in one region -- we require some sort of diminishing returns to regional 

population, and this is achieved by supposing the existence of a fixed factor in each region.  We take this 

to be the number of urban areas, each of which is described by the standard urban model (the Alonso-

Mills-Muth model, see for example Henderson and Thisse 2004).  Thus, region r contains 𝐾𝐾𝑠𝑠 cities, 

assumed to be identical. In each of these cities, workers face costs of commuting and land rent, costs 

which depend on city population.  Since the cost-of-living may vary across regions, labour mobility is 

consistent with equilibrium nominal wages in each region, 𝑤𝑤1, 𝑤𝑤2, differing from 𝑤𝑤0 and from each 

other.  The micro-foundations of the simplest possible urban model are that each urban household 

occupies one unit of land, all urban jobs are in the city centre and commuting costs are 𝑐𝑐𝑠𝑠  per unit 

distance.  A worker living at distance z from the centre has to pay commuting costs 𝑐𝑐𝑠𝑠𝑧𝑧, plus rent at 

distance z from the centre, denoted ℎ𝑠𝑠(𝑧𝑧). Workers choose residential location within and between cities 

and regions, and real wages are equalised when 𝑤𝑤𝑠𝑠 − 𝑐𝑐𝑠𝑠𝑧𝑧 − ℎ𝑠𝑠(𝑧𝑧) = 𝑤𝑤0 for all r and at all occupied 

distances z.  People in each city live and commute along a spoke from the centre, so city population is 𝑧𝑧𝑠𝑠∗, 

where 𝑧𝑧𝑠𝑠∗ is the edge of the city (length of the spoke).  At the city edge land rent is zero, so 𝑧𝑧𝑠𝑠∗ = (𝑤𝑤𝑠𝑠 −

 Rest of World (ROW)

Country of analysis

 Region 1  Region 2

Labor perfectly
       mobile 

   Hinterland labor and rural (numeraire) production

interregional goods trade cost constant - set to zero
interregional costly trade in functions - variable of interest

international costless trade in goods (can be relaxed)
no international trade in functions
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𝑤𝑤0)𝑐𝑐𝑠𝑠.  The total urban population living in region r cities is 𝐾𝐾𝑠𝑠𝑧𝑧𝑠𝑠∗, so the relationship between the region 

r wage and its total urban population, 𝐿𝐿𝑠𝑠 = 𝐾𝐾𝑠𝑠𝑧𝑧𝑠𝑠∗, is    

            𝐿𝐿𝑠𝑠 = 𝐾𝐾𝑠𝑠(𝑤𝑤𝑠𝑠 − 𝑤𝑤0) 𝑐𝑐𝑠𝑠⁄ ,   r = 1, 2.       (18) 

These equations imply that, given the number of cities and commuting costs, regions with a larger 

population and labour force have to pay higher wages in order to cover the commuting costs and rents 

incurred by workers.  Note that rent in each city can be expressed as, ℎ𝑠𝑠(𝑧𝑧) = 𝑤𝑤𝑠𝑠 − 𝑤𝑤0 − 𝑐𝑐𝑠𝑠𝑧𝑧 =

𝑐𝑐𝑠𝑠(𝐿𝐿𝑠𝑠/𝐾𝐾𝑠𝑠 − 𝑧𝑧), so integrating over z and adding over all cities, total rent in a region of size 𝐿𝐿𝑠𝑠 is  

𝐻𝐻𝑠𝑠 = 𝑐𝑐𝑠𝑠𝐿𝐿𝑠𝑠2 2𝐾𝐾𝑠𝑠⁄ .        (19) 

Thus, while workers’ utility is equalised across all locations, the productivity gap associated with 

𝑤𝑤1,𝑤𝑤2 > 𝑤𝑤0 is partly dissipated in commuting costs, with the rest going to recipients of land rents.  This 

is general enough to be a model of a single city, (𝐾𝐾𝑠𝑠 = 1), or a model of a state containing multiple cities. 

 

5.2 Production and demand 

Sectors are perfectly competitive and produce good by costlessly assembling them from functions.  Sector 

outputs and prices are endogenous, and the number of sectors s becomes a discrete (and exogenous) 

parameter.  The domestic country is assumed small as an importer, and so all foreign prices for the s 

sectors are given by an exogenous value, �̅�𝑝, common across all sectors.   

The agricultural good R is treated as a numeraire.  It is additively separable with a constant marginal 

utility and hence income does not appear in the demand functions for the Q goods (though we will introduce 

a demand shifter later).  Demand comes from domestic and foreign sales, respectively 𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠),   𝑄𝑄𝑑𝑑𝑓𝑓(𝑠𝑠) for 

sector s, and domestic and foreign goods are CES substitutes in each market with an elasticity of substitution 

𝜀𝜀 > 1.  Sectoral composites (domestic and foreign varieties) are Cobb-Douglas substitutes. The utility 

function and budget constraint that produces the demand functions are given in appendix 2 of the paper.   

 

5.3 General equilibrium as a non-linear complementarity problem 

Here we give the specification for the model with agglomeration economies, which has more equations 

and unknowns than the Ricardian model.  The latter is simpler because the 𝜆𝜆s are exogenous, and the 

model nests the Ricardian model as a special case with the σ parameters equal to zero.   

 

Non-negative variables: 

       𝐿𝐿𝑓𝑓  labor demand or employment in region i 

       𝑤𝑤𝑓𝑓  wages in region i 
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   𝑋𝑋𝑓𝑓𝑗𝑗  output of function j in region i 

  𝜆𝜆𝑓𝑓𝑗𝑗  labor requirements in function j in region j 

𝑄𝑄𝑑𝑑(𝑠𝑠)  total output of sector s (all firm types) 

𝑄𝑄𝑓𝑓𝑑𝑑(𝑠𝑠)   domestic demand for foreign goods 

𝑛𝑛𝑘𝑘(𝑠𝑠)  output of type 𝑘𝑘 = 1, 2,𝐹𝐹 in sector s 

𝑝𝑝(𝑠𝑠)  price of (domestic) good s 

 

With the dimension of s equal to 51, the model has 318 non-negative variables complementary to 

318 weak inequalities. A strict inequality corresponds to a zero value for the complementary variable. 

First, the supply-demand relationships for labor demand in the two regions are given as follows, where ⊥ 

denotes complementarity between the inequality and a variable.  Labor is used in variables costs for all 

firm types in all sectors, plus used in fragmentation costs for fragmented sectors.  We use a simple 

formulation of the fragmentation labor use, which divides it between the two regions, each using  𝑡𝑡 2⁄  per 

F type firm. 

 

 𝐿𝐿1  ≥ ∑ 𝑛𝑛1(𝑠𝑠)(𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1) + 𝑛𝑛𝐹𝐹(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1𝑠𝑠 +   𝑛𝑛𝐹𝐹(𝑠𝑠)𝑡𝑡 2⁄  ⊥  𝐿𝐿1  (20) 

 𝐿𝐿2  ≥ ∑ 𝑛𝑛2(𝑠𝑠)(𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2) + 𝑛𝑛𝐹𝐹(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 +  𝑛𝑛𝐹𝐹(𝑠𝑠)𝑡𝑡 2⁄𝑠𝑠  ⊥  𝐿𝐿2  (21) 

 

Second, from eqn. (11) wages are given by:  

 (𝑤𝑤1 − 𝑤𝑤0)𝐾𝐾 𝑐𝑐⁄ ≥ 𝐿𝐿1     ⊥ 𝑤𝑤1   (22) 

 (𝑤𝑤2 − 𝑤𝑤0)𝐾𝐾 𝑐𝑐⁄ ≥ 𝐿𝐿2     ⊥ 𝑤𝑤2   (23) 

 

Third, output levels of the two functions in the two regions are given by:   

 𝑋𝑋𝐴𝐴1  ≥ ∑ 𝑎𝑎(𝑠𝑠)�𝑛𝑛1(𝑠𝑠) + 𝑛𝑛𝐹𝐹(𝑠𝑠)�𝑠𝑠     ⊥ 𝑋𝑋𝐴𝐴1   (24) 

 𝑋𝑋𝐴𝐴2  ≥ ∑ 𝑎𝑎(𝑠𝑠)𝑛𝑛2(𝑠𝑠)𝑠𝑠      ⊥ 𝑋𝑋𝐴𝐴2   (25) 

 𝑋𝑋𝐵𝐵1  ≥ ∑ 𝑏𝑏(𝑠𝑠)𝑛𝑛1(𝑠𝑠)𝑠𝑠      ⊥ 𝑋𝑋𝐵𝐵1   (26) 

 𝑋𝑋𝐵𝐵2  ≥ ∑ 𝑏𝑏(𝑠𝑠)�𝑛𝑛2(𝑠𝑠) + 𝑛𝑛𝐹𝐹(𝑠𝑠)�𝑠𝑠     ⊥ 𝑋𝑋𝐵𝐵2   (27) 

 

Fourth, the labor input coefficients (inverse productivity) are given by: 

 𝜆𝜆𝐴𝐴1  ≥ Λ𝐴𝐴1 − 𝜎𝜎𝐴𝐴X𝐴𝐴1     ⊥ 𝜆𝜆𝐴𝐴1   (28) 

 𝜆𝜆𝐴𝐴2  ≥ Λ𝐴𝐴2 − 𝜎𝜎𝐴𝐴X𝐴𝐴2     ⊥ 𝜆𝜆𝐴𝐴2   (29) 

 𝜆𝜆𝐵𝐵1  ≥ Λ𝐵𝐵1 − 𝜎𝜎𝐵𝐵X𝐵𝐵1     ⊥ 𝜆𝜆𝐵𝐵1   (30) 

 𝜆𝜆𝐵𝐵2  ≥ Λ𝐵𝐵2 − 𝜎𝜎𝐵𝐵X𝐵𝐵2     ⊥ 𝜆𝜆𝐵𝐵2   (31) 
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The volume of output in each sector is complementary to a zero-profit condition, that unit cost is greater 

than or equal to price. Fragmentation costs are incurred with a half unit each of region 1 and 2’s urban 

labor: 𝑡𝑡( 𝑤𝑤1 + 𝑤𝑤2) 2⁄ . 9F

10  Therefore 

 𝑤𝑤1(𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1) ≥ 𝑝𝑝(𝑠𝑠)    ⊥ 𝑛𝑛1(𝑠𝑠)   (32) 

 𝑤𝑤2(𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2) ≥ 𝑝𝑝(𝑠𝑠)    ⊥ 𝑛𝑛2(𝑠𝑠)   (33) 

 𝑤𝑤1𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑤𝑤2𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1 +  𝑡𝑡(𝑤𝑤1 + 𝑤𝑤2) 2⁄ ≥ 𝑝𝑝(𝑠𝑠) ⊥ 𝑛𝑛𝐹𝐹(𝑠𝑠)   (34) 

 

Total output of good s is given by the sum the outputs across firm types: 

 𝑄𝑄𝑑𝑑(𝑠𝑠) ≥ 𝑛𝑛1(𝑠𝑠) + 𝑛𝑛2(𝑠𝑠) + 𝑛𝑛𝐹𝐹(𝑠𝑠)   ⊥ 𝑄𝑄𝑑𝑑(𝑠𝑠)   (35) 

 

The final element is to specify the demand size of the model, which links outputs, prices, and the 

external foreign market. The market clearing equation for the domestic good s is that supply equal the 

sum of domestic and foreign demand. αd and αf are “short-hand” scaling parameters for domestic and 

foreign, that could depend on the relative market sizes for example (see appendix). 𝜃𝜃𝑑𝑑 and 𝜃𝜃𝑓𝑓 are the 

weights on the domestic and foreign varieties in the nest for each sector s.  

 

 𝑄𝑄𝑑𝑑(𝑠𝑠) = 𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠) + 𝑄𝑄𝑓𝑓𝑑𝑑(𝑠𝑠) = 𝛼𝛼𝑑𝑑𝜃𝜃𝑑𝑑𝑝𝑝(𝑠𝑠)−𝜖𝜖

𝜃𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖+𝜃𝜃𝑓𝑓�̅�𝑝1−𝜖𝜖
+ 𝛼𝛼𝑓𝑓𝜃𝜃𝑑𝑑𝑝𝑝(𝑠𝑠)−𝜖𝜖

𝜃𝜃𝑓𝑓 𝑝𝑝(𝑠𝑠)1−𝜖𝜖+𝜃𝜃𝑓𝑓�̅�𝑝1−𝜖𝜖
 ⊥  𝑝𝑝(𝑠𝑠)  (36) 

 

Domestic demand for foreign goods is not needed to solve the core model, but it is needed for welfare 

calculations after solution. These are given by 

 𝑄𝑄𝑓𝑓𝑑𝑑(𝑠𝑠) = 𝛼𝛼𝑑𝑑𝜃𝜃𝑓𝑓�̅�𝑝−𝜖𝜖

𝜃𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖+𝜃𝜃𝑓𝑓�̅�𝑝1−𝜖𝜖
      ⊥  𝑄𝑄𝑓𝑓𝑑𝑑(𝑠𝑠)    (37) 

 

As noted above, the core model is then 318 weak inequalities complementary with 318 non-negative 

unknowns.  

 

5.4  Symmetric Ricardian and localization economies in general equilibrium 

Figures 7-11, present simulation results that develop economic implications of the model for the 

symmetric Ricardian case.  Spillovers and asymmetric cases are found in an appendix.  Figure 7 shows 

 
10 Note that this assumption makes (32)-(34) homogeneous of degree 0 in wages and prices. 
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results with fragmentation costs t on the horizontal axis. Each column of the figure is a solution to the 

model for that value of t, as will be the case in the following figures (the jagged line is a consequence of 

the discreteness of sectors). The results naturally qualitatively resemble Figure 1 earlier in the paper.  At 

high t , all production is integrated in either one country or the other – except for the middle sector (there 

is an odd number of sectors) where integrated sectors produce in both countries.   

 

 
Figure 7: Symmetric Ricardian Case (fragmentation cost t on horizontal axes) 

 

Figures 8 shows further results for the case in Figure 7 in two panels. The left panel of Figure 8 

show the G concentration indices for sectors and functions as defined in equation (1) above.  The right-

hand panel shows the D specialization indices for sectors and functions as defined in equation (2).  Falling 

fragmentation costs lower both sector concentration and regional sector specialization, and raise both 

regional function concentration and regional function specialization.  Falling fragmentation costs thus 

mimic the empirical trends in these indices that we documented in section 2.  The G and D indices seem 

to be conveying the same information in Figure 3, but this is not a general result.  It is due to the several 

symmetry assumptions in the model.  If the regions are of quite different size (e.g., one region has 

absolute advantage in both functions), then sectors may all be concentrated in the larger region but that 

region will also have a low sector specialization index.  But the key qualitative properties about falling 

sector concentration/specialization and rising function concentration/specialization will remain as shown.    

Figure 9 presents further economic implications of falling fragmentation costs.  The left panel of 

Figure 9 graphs the welfare, the “urban” population of both regions combined, and the producer (urban) 

wage (recall all workers earn a wage net of commuting costs and land rent equal to 𝑤𝑤0).  Note from 

equations (18) and (19) that the produce wage rises proportionally more slowly than the population. The 
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increase in welfare as fragmentation costs fall is larger.  The intuition behind all of these results is that 

falling fragmentation costs are analogous to an aggregate productivity improvement for the economy.  

More output can be produced for a lower cost in terms of the hinterland good, and so labor is reallocated 

to the two regions which due to the congestion effect raises the urban wage.  Welfare rises as the sector 

goods become cheaper, so the real wage, w0 divided by a price index for the s sectors, rises. 

 

 

Figure 8: Concentration (D) and specialization (G) indices 

The right panel of Figure 9 illustrates an effect which was not discussed in previous sections. The 

fall in fragmentation costs improves the competitiveness of the s (manufacturing and services) sectors 

relative to the hinterland good.  With rest-of-world prices for their varieties of these sectors held constant, 

net exports increase with trade balance by increased net imports of the hinterland good. The vertical axis 

gives the trade balance (exports minus imports) of urban goods as a proportion all domestic urban goods 

production.  The trade balance with the rest of the world is negatively related to fragmentation costs. Ease 

of internal transport and communications is a source of comparative advantage. 

 Figures 8 and 9 examine aggregate results from the simulation.  Now we turn to analyzing 

economic implications of fragmentation at a more disaggregated level across sectors in the remaining 

figures.  The left panel of Figure 10 is trying to quantify an idea expressed earlier in the paper, than 

fragmentation makes the regions look less like classic Heckscher-Ohlin economies.  The correlation 

shown in the left panel is as follows.  Take function A in region 1.  Form a vector across the s sectors for 

the share of employment of function A in total employment of each sector.  We could refer to this as the 

technology observed in each sector.  A second vector is the share of function A in total employment for 
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an integrated sector.  The calculate the correlation between the two vectors, with the result shown in the 

left-hand panel of Figure 10.   

 
Figure 9 : Welfare, wages and trade balance 

When fragmentation costs are high, the technology employed in each sector of a region is 

identical to production technology of an integrated sector.  Production specialization between the regions 

looks very Heckscher-Ohlin, with each region specializing in the sectors using intensively their 

comparative advantage function (as opposed to using intensively their abundant factor in HO).  As 

fragmentation costs fall, actual employment in sectors in a region spreads out across the sectors, to the 

point where all employment shares for function A in region 1 equal one, and the correlation goes to zero.  

We could say that, when fragmentation costs are high, comparative advantage is found or observed in 

sectors (even though that is indirectly derived as in HO), while when fragmentation costs are low, 

comparative advantage lies directly in functions.   

As noted earlier, we are primarily interested in the within-sector and occupation changes in 

concentration, since the results shown in Figures 1 and 2 (the decomposition in equation (8)) indicate that 

the within effect is generally dominate, especially for occupations.  But the general-equilibrium model of 

this section does feature an inter-sectoral reallocation as well.  Specifically, there is a reallocation of 

employment from concentrated sectors that are still not fragmented to dispersed sectors that are already 

fragmented as t continues to fall.  The right panel of Figure 10 shows the effect of employment 

reallocation from the integrated “fringe” sector 51 with the most extreme function intensity spread toward 
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the fragmented middle sector 26 which uses both functions in equal shares.  Between the dashed vertical 

lines, neither sector changes its status yet employment shifts.   

 
Figure 10: Intra and inter-sectoral shifts in technique and employment 

 

The intuition is fairly straightforward.  At high fragmentation costs, the middle sector is the most 

penalized, having to draw half its inputs from an expensive local source.  Conversely, that sector benefits 

the most as the cost t falls.  Falling t does not direct affect the fringe sectors until they fragment, but the 

falling t does indirectly affect the fringe sector.  The lower costs of production in the middles sectors 

leads them to expand output and draw labor into the region centers.  This raises the urban wage for the 

fringe sectors, leading to lower outputs and higher prices.  In general equilibrium, falling fragmentation 

costs also lead to an inter-sectoral shift of employment from concentrated to dispersed sectors.  This 

effect reinforces the within-sector effect of equation (8) such that the theory also produces a total effect 

curve (left-hand side of (8)) that is steeper that the within effect alone.11     

 Our final Figure 11 continue to illustrate the heterogeneous effects across sectors, with much the 

same intuition as the right-hand panel of Figure 10.  The left-hand panel shows the effect of falling 

fragmentation costs on sector outputs.  At high t, the smallest sectors are the middle sectors, due to their 

high costs.  As t falls, the middle sectors get a productivity boost and increase outputs, while the fringe 

sectors are harmed a little by rising urban wages.  At zero t, all sectors produce the same output. 

 
11 The left-hand panel of Figure 10 is the total effect, the left-hand side of equation (8).  We do not emphasize the 
inter-sectoral and occupation shifts in this paper, in part because there are many other candidates that contribute to 
this effect, such as technical change and import competition in manufacturing, and rising incomes that shift demand 
from goods to (likely) less-concentrated services. 
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Figure 11: Output and net sector exports 

 The right-and panel of Figure 11 presents the qualitative result on net trade balance in the s 

sectors with the rest-of-world (this figure depends on parameters values chose of course).  At high t, the 

costly middle sectors are net importers, while the fringe sectors are net exports.  As t falls, some fringe 

sectors actual switch signs due to the rising urban wage.  But all sectors become net exports at a 

sufficiently low value of t and the country is fully specialized in exporting the s goods and importing the 

hinterland good. 

 

6. Conclusions 

Our paper is motivated by what are widely seen as changes in scope of activities and occupations 

performed in our urban areas.  Our approach is necessarily circumscribed by the requirements of formal 

theory and data analysis, but many of the ideas here are consistent with the broad analysis and vision of 

Moretti (2012) for example.   

 We begin with an empirical exercise on US State data on employment by sector-occupation-state.  

Results show that a concentration index for industries and a regional specialization index in industries 

have both fallen over a thirty-year period.  Importantly, most of the fall is within industries and so the 

decrease is not primarily explained by employment moving from concentrated to less concentrated 
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sectors.  Second, result show that a concentration index for occupations and a regional specialization 

index for occupations have both rise over a twenty-year period.  As with (but opposite to) the indices for 

industries, this is not due to employment shifting from less concentrated to more concentrated 

occupations, but occurs within occupations. 

 Using these results as motivation, we construct a model can capture the features of the data.  The 

key and novel aspect of the model is that regions have comparative advantage in functions (occupations in 

the data) rather than sectors.   This comparative advantage may be Ricardian (exogenous) or due to 

agglomeration economies (arising endogenously between places that are ex ante identical).  We draw on 

both concepts and analyses from a number of fields of study including international trade, multinational 

corporations, urban economics and economic geography.  Industries (sectors) produce with a range of 

functions.  A sector in a region may produce with only locally sourced functions or may draw functions 

from other locations, the latter referred to as fragmentation.  Our model creates a distribution of 

fragmented and integrated production across industries and across regions and identifies the 

characteristics of industries that are fragmented versus integrated, and of the regions in which integrated 

production occurs.   

A key variable in our theory is a cost of geographically separating the sourcing of function inputs 

into a sector, referred to as the fragmentation cost.  Our principal result is that, at high costs, a region’s 

employment is concentrated in certain sectors, with each sector’s employees performing many different 

functions.  At low fragmentation costs, a region’s employment switches to being concentrated in certain 

functions, with employees in a particular function doing work for many different sectors.  Instead of a 

region having a range of production workers, managers, lawyers and accountants working in a few 

sectors, it comes to have a smaller range of functions, for example lawyers or accountants, working for 

many different sectors, often at a distance.   

 Second, we use the same data to calculate measures of regional specialization, more in line with a 

traditional international trade approach.  With the confines of our theory model, these measures of 

regional specialization in sectors and functions should be qualitatively similar to the concentration 

measures and indeed they are in our simulations.   Thus falling fragmentation costs in the model mimic 

the changes observed in the data over time. 

 The final section of the paper extracts added economic insights from the general-equilibrium 

simulation model.  Falling fragmentation costs are analogous to a productivity improvement, so at the 

national level the falling cost leads to higher welfare, urban population, producer (urban) wages and an 

improved trade balance in urban goods and services with the rest-of-world.  But this hides considerable 

heterogeneity across sectors.  Sectors that require large proportions of both functions benefit the most 

from falling fragmentation costs and may change from being net importing sectors to net exporters.   
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Appendix 1: Data 

To construct the indices of concentration and specialization, we need information on the geographic 

distribution of sectoral and functional economic activity, measured throughout by employment. The two 

sources from which we derive information are the BLS’s Quarterly Census of Employment and Wage 

dataset (QCEW) and Occupational Employment Statistics (OES). We discuss each in turn. 

The QCEW program publishes a quarterly count of employment reported by employers covering 

more than 95 percent of U.S. jobs available at the county, Metropolitan Statistical Area (MSA), state and 

national levels by detailed industry.12 For the analysis, we use employment by six-digit North-American 

Industrial Classification System (NAICS) industries for each US state for the period 1990-2019. We 

supplement this data with sector-level information on employment by firm size class, also from the 

QCEW, to compute the Herfindahl index, 𝐻𝐻𝑠𝑠, defined in (3).  

Using states as our unit of geography has three advantages. First, our results are comparable to 

previous studies on industry concentration such as Ellison, and Glaeser (1997, henceforth EG97) and 

Dumais, Ellison, and Glaeser (2002). Second, using states ensures a consistent geography over time. The 

delineations (i.e., the list of geographic components at a particular point in time) of states remains 

constant over our sample period. By contrast, between censuses, the delineations for MSAs are revised to 

reflect Census Bureau population estimates (even the number of counties changes over time).13 Third, 

using states increases the reliability of our estimates. In accordance with the BLS Confidentiality policy, 

data reported under a promise of confidentiality are published in a way so as to protect the identifiable 

information of respondents. Obviously, the share of observations suppressed is inversely related to the 

size of regions. We note that totals at the industry level for the states and the nation include the 

undisclosed data suppressed within the detailed tables without revealing those data. In some case, missing 

or undisclosed values (at the states-level) create significant gaps in otherwise continuous levels of 

employment. We fill in the gaps in the data using linear interpolation. About 15 percent of the 

observations in our sample are imputed using this procedure.  

A difficulty we face in developing our data is the frequent reclassification of sectors and 

functions over time. To minimize the impact of industry reclassification on our results, we restrict our 

attention to years 1990 to 2019. Information for years prior to 1990 is available only on a Standard 

Industrial Classification (SIC) basis. Over the period covered by our sample, the NAICS classification 

 
12 Additional information on the QCEW is available online at https://www.bls.gov/cew/overview.htm. 
13 In a recent paper, Eckert et al. (2021) describe a method to impute missing employment to counties in the County 
Business Patterns. They provide a very detailed description of the types of issues researchers face when trying to 
construct longitudinal dataset. In particular, their analysis brings to light the fact that undisclosed information along 
with changes in geographic units and industrial classification present almost unsurmountable obstacles to the 
creation of long panels at detailed levels of geography. 

https://www.bls.gov/cew/overview.htm
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introduced in 1997 is revised multiple times, first in 2002, and subsequently in 2007, 2012, and 2017.14 

We limit the sample to industries that we can track accurately across changes in classification. This 

reduces the size of the sample but ensures that our results are not driven by changes in the scope of our 

sample or changes in sector definitions.15 We also remove industries in the “Farming” (NAICS 11), 

“Mining, Quarrying, and Oil and Gas Extraction” (NAICS 21), Utilities (NAICS 22), and “Public 

Administration” (NAICS92) sectors because the mapping from sectors to functions is too direct (i.e., 

“miners” work in “mining”) so that the distinction between functional and sectoral specialisation is hard 

to establish. 

The OES program is the only comprehensive source of regularly produced occupational 

employment and wage rate information for the U.S. economy.16 It produces employment estimates 

annually for over 800 occupations. These estimates are available for the nation as a whole and for 

individual States; national occupational estimates for specific industries are also available. From the OES, 

we derive function-by-state data, specifically employment by six-digit Standard Occupational 

Classification (SOC) occupations by US states for the period 2000-2019. We also draw on national 

function-by-sector data from the OES to construct or to compute the Herfindahl index, 𝐻𝐻𝑓𝑓, defined in 

(16).  

As was the case with the QCEW, we face data limitations. Beginning in year 2000, the OES 

survey began using the Office of Management and Budget (OMB) Standard Occupational Classification 

(SOC) system, which was revised in 2010 and in 2018. To limit the impact of reclassification, we exclude 

years prior to 2000.17 For the analysis, we construct a longitudinal region-function datasets restricted to 

functions that we can defined consistency across changes in classification. We remove “Farming, Fishing, 

and Forestry Occupations” and occupations that contain the word “other” in their title. Finally, we fill in 

gaps in the data using interpolation. About 11 percent of the data in our sample is imputed. 

 

 

 

 

 

 
14 For years 1990 to 1996, the QCEW is available on a NAICS basis even if the NAICS was introduced only in 
1997. 
15 We remove the “Other Services” (NAICS 81) sectors and industries that contain the word “other” in their title, 
because by their nature these categories are likely to vary from year to year. 
16 Additional information on the OES can be found online at https://www.bls.gov/oes/oes_emp.htm. 
17 Before 1997, data is available only at the national level. For years 1997, 1998 and 1999 the information on 
employment was collected under a OES proprietary occupational classification system.  

https://www.bls.gov/oes/oes_emp.htm
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Appendix 2: Additional empirical results 

To get a sense of which component of the weighted mean drives the time series changes, Table A2.1 

reports the simple means of the EG97 index, EG, the raw geographic concentration, G, and the correction 

factor, H. As seen in the table, the simple average decreases by about 14% over the period. The time 

series changes in raw concentration closely mimic those of the EG97 index. This happens because 

changes in the plant-level Herfindahl are an order of magnitude smaller compared to the raw geographic 

concentration index. Comparing the simple and the weighted mean reveals that large sectors tend to be 

more dispersed on average compared to smaller ones. The simple mean suggests that the average sector is 

geographically concentrated (𝐸𝐸𝐺𝐺 > 0.05), whereas the weighted mean suggests that the average 

employee works in a geographically dispersed industry (𝐸𝐸𝐺𝐺 < 0.02) 

 

 
 

Overall, changes in the weighted averages are useful indicators of the time series behavior of 

geographic concentration. However, to provide a more formal assessment of the time series trend in 

geographic concentration, we estimate regressions of the sectoral indices on a time trend controlling for 

sector-level factors using fixed effects 

 
             ln𝐸𝐸𝐺𝐺𝑠𝑠𝑠𝑠 = 𝛽𝛽𝑠𝑠 + 𝛽𝛽 𝑇𝑇𝑟𝑟𝑇𝑇𝑛𝑛𝑑𝑑𝑠𝑠 + 𝜀𝜀𝑠𝑠𝑠𝑠 .         (A2.1) 
 
If concentration is declining over time the estimated time trend, 𝛽𝛽, will be negative. 

The results from estimating equation (A2.1) by OLS are reported in Table A2.2. The first row 

reports the results for the full sample of 626 six-digit NAICS sectors. The point estimate is negative and 

statistically significant and suggests that the within-sector geographic concentration of employment is 

declining over time. To evaluate if the results are driven by a specific set of sectors, we estimate equation 

(A2.1) separately for each broad group: manufacturing, business services, personal services, and 

wholesale, retail and transportation. As reported in Table A2.2, every point estimate is negative and 

statistically significant.  
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We produced similar results for occupation concentration. As seen in the table A2.3, the Herfindahl 

correction factor has little impact on the index because of its small magnitude, such that most of the 

changes in concentration over time is explained by the raw concentration index 𝐺𝐺𝑓𝑓, defined in equation 

(4). Comparing the simple and the weighted means reveals that occupations that represent a large shares 

of employment tend to be more dispersed on average compared to occupations that accounts for small 

shares. 

 

 
 

As we did for the concentration of sectoral employment, we estimate OLS regressions of the form  

 
        ln𝐸𝐸𝐺𝐺𝑓𝑓𝑠𝑠 = 𝛽𝛽𝑓𝑓 + 𝛽𝛽 𝑇𝑇𝑟𝑟𝑇𝑇𝑛𝑛𝑑𝑑𝑠𝑠 + 𝜀𝜀𝑓𝑓𝑠𝑠             (A2.2) 
 

to estimate the time trend of geographic concentration. The results are reported in Table A2.4 for the full 

sample and by broad function categories defined in the OCC. As seen in the first row of the table, the time 

trend is positive and statistically significant in the full sample. This is not surprising given that the 

estimated beta is the slope of the fitted value through the solid line in Figure 2. The remaining rows of 

Table A2.4 show that 17 out of 21 estimated time trends are positive and 13 of those are statistically 

significant at conventional levels.  
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Next, we evaluate the average time series changes in regional specialization using OLS 

regressions of the form  

 
        ln𝐷𝐷𝑠𝑠𝑠𝑠 = 𝛽𝛽𝑠𝑠 + 𝛽𝛽 𝑇𝑇𝑟𝑟𝑇𝑇𝑛𝑛𝑑𝑑𝑠𝑠 + 𝜀𝜀𝑠𝑠𝑠𝑠 ,            (A2.3) 
 

where 𝛽𝛽𝑠𝑠 represent region-level fixed effects. The results are reported in Table A2.5. As seen in the first 

row of the table, the time trend 𝛽𝛽 is negative and statistically significant for the sectoral specialization, 

and positive and statistically significant for the functional specialization.  
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Appendix 3: Theory 

3.1 Analytical expression for employment 

Table A3.1:   Employment by function f = A, B, in sector s and region r = 1, 2. 

 Region 1 Region 2 

Integrated in 1:  0 < 𝑠𝑠 < 𝑠𝑠1 

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1  𝐿𝐿𝐴𝐴2(𝑠𝑠) = 0 

Function B 𝐿𝐿𝐵𝐵1(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 0 

Fragmented:    𝑠𝑠1 < 𝑠𝑠 < 𝑠𝑠2 

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1  𝐿𝐿𝐴𝐴2(𝑠𝑠) = 0 

Function B     𝐿𝐿𝐵𝐵1(𝑠𝑠) = 0 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2 

Integrated in 2:    𝑠𝑠2 < 𝑠𝑠 < 1 

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 0 𝐿𝐿𝐴𝐴2(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 

Function B 𝐿𝐿𝐵𝐵1(𝑠𝑠) = 0 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2 

𝐿𝐿𝑓𝑓𝑠𝑠:   Employment in each function/region (all sectors) 

Function A 𝐿𝐿𝐴𝐴1 = � 𝐿𝐿𝐴𝐴1(𝑠𝑠)𝑑𝑑𝑠𝑠   
𝑠𝑠2

0
 𝐿𝐿𝐴𝐴2 = � 𝐿𝐿𝐴𝐴2(𝑠𝑠)𝑑𝑑𝑠𝑠      

1

𝑠𝑠2
 

Function B 𝐿𝐿𝐵𝐵1 = � 𝐿𝐿𝐵𝐵1(𝑠𝑠)𝑑𝑑𝑠𝑠  
𝑠𝑠1

0
 𝐿𝐿𝐵𝐵2 = � 𝐿𝐿𝐵𝐵1(𝑠𝑠)𝑑𝑑𝑠𝑠      

1

𝑠𝑠1
 

𝐿𝐿𝑠𝑠𝑠𝑠: Employment in each sector/region (all functions) 

 𝐿𝐿𝑠𝑠1 = 𝛴𝛴𝑓𝑓=𝐴𝐴,𝐵𝐵𝐿𝐿𝑓𝑓1(𝑠𝑠) 𝐿𝐿𝑠𝑠2 = 𝛴𝛴𝑓𝑓=𝐴𝐴,𝐵𝐵𝐿𝐿𝑓𝑓2(𝑠𝑠) 

𝐿𝐿𝑠𝑠:   Total employment in each region 

 𝐿𝐿1 = 𝐿𝐿𝐴𝐴1 + 𝐿𝐿𝐵𝐵1 = � 𝐿𝐿1(𝑠𝑠)𝑑𝑑𝑠𝑠   
1

0
 
𝐿𝐿2 = 𝐿𝐿𝐴𝐴2 + 𝐿𝐿𝐵𝐵2

= � 𝐿𝐿2(𝑠𝑠)𝑑𝑑𝑠𝑠   
1

0
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Table A3.2:   Employment by function f = A, B, in sector s and region r = 1, 2. 

 Region 1 Region 2 

I Integrated in 1:  0 < 𝑠𝑠 < 𝑠𝑠1     

Function 
A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐴𝐴1 [1 + 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄   𝐿𝐿𝐴𝐴2(𝑠𝑠) = 0 

Function 
B 𝐿𝐿𝐵𝐵1(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐵𝐵1 [1 − 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  𝐿𝐿𝐵𝐵2(𝑠𝑠) = 0 

II Fragmented:    𝑠𝑠1 < 𝑠𝑠 < 𝑠𝑠2 

Function 
A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐴𝐴1 [1 + 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄   𝐿𝐿𝐴𝐴2(𝑠𝑠) = 0 

Function 
B   𝐿𝐿𝐵𝐵1(𝑠𝑠) = 0 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐵𝐵2 [1 − 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  

III Integrated in 2:    𝑠𝑠2 < 𝑠𝑠 < 1 

Function 
A   𝐿𝐿𝐴𝐴1(𝑠𝑠) = 0 𝐿𝐿𝐴𝐴2(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐴𝐴2 [1 + 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  

Function 
B   𝐿𝐿𝐵𝐵1(𝑠𝑠) = 0 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐵𝐵2 [1 − 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  

IV 𝐿𝐿𝑓𝑓𝑠𝑠:   Employment in each function/region (all sectors) 

Function 
A 𝐿𝐿A1 = λA1𝑠𝑠2[1 + γ(1 − 𝑠𝑠2)]𝑛𝑛 2⁄  𝐿𝐿𝐴𝐴2 = 𝜆𝜆𝐴𝐴2 (1 − 𝑠𝑠2)(1 − 𝛾𝛾𝑠𝑠2)𝑛𝑛 2⁄  

Function 
B 𝐿𝐿𝐵𝐵1 = 𝜆𝜆𝐵𝐵1𝑠𝑠1[1 − 𝛾𝛾(1 − 𝑠𝑠1)]𝑛𝑛 2⁄  𝐿𝐿𝐵𝐵2 = 𝜆𝜆𝐵𝐵2(1 − 𝑠𝑠1)(1 + 𝛾𝛾𝑠𝑠1)𝑛𝑛 2⁄  

V 𝐿𝐿𝑠𝑠𝑠𝑠: Employment in each sector/region (all functions) 

 𝐿𝐿𝑠𝑠1 = 𝛴𝛴𝑓𝑓=𝐴𝐴,𝐵𝐵𝐿𝐿𝑓𝑓1(𝑠𝑠) 𝐿𝐿𝑠𝑠2 = 𝛴𝛴𝑓𝑓=𝐴𝐴,𝐵𝐵𝐿𝐿𝑓𝑓2(𝑠𝑠) 

VI 𝐿𝐿𝑠𝑠:   Total employment in each region 

 𝐿𝐿1 = 𝐿𝐿𝐴𝐴1 + 𝐿𝐿𝐵𝐵1 = � 𝐿𝐿1(𝑠𝑠)𝑑𝑑𝑠𝑠   
1

0
 𝐿𝐿2 = 𝐿𝐿𝐴𝐴2 + 𝐿𝐿𝐵𝐵2 = � 𝐿𝐿2(𝑠𝑠)𝑑𝑑𝑠𝑠   

1

0
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3.2 Localisation economies : analysis 

Using equation (16a) in (17a) gives the unit profit advantage from integration,   

𝛱𝛱(𝑠𝑠1, 𝑡𝑡) ≡ 𝜋𝜋1(𝑠𝑠1) − 𝜋𝜋𝐹𝐹(𝑠𝑠1) = 𝑡𝑡 − [1 − 𝛾𝛾(1 − 2𝑠𝑠1)] �∆Λ − 𝜎𝜎𝑛𝑛 �−
1
2

+ 𝑠𝑠1[1 − 𝛾𝛾(1 − 𝑠𝑠1)]��𝑤𝑤 2,   (A3.1)�  

There exists an integrated equilibrium if  𝑡𝑡 ≥ 𝑡𝑡∗∗, where 𝑡𝑡∗∗ is the minimum value at which 𝛱𝛱(𝑠𝑠1 =

1/2, 𝑡𝑡) ≥ 0, and its value is (from inspection of A3.1), 𝑡𝑡∗∗ = [∆Λ + 𝑛𝑛𝜎𝜎𝛾𝛾 4⁄ ]𝑤𝑤 2⁄ . 

The function 𝛱𝛱(𝑠𝑠1, 𝑡𝑡) is cubic in 𝑠𝑠1, and is illustrated in figure A1 over the interval 𝑠𝑠1 ∈ [0, 0.5], for three 

different values of t, higher values of t shifting the curve upwards.  At the lowest value of t illustrated, 

integration is profitable for sector 1 at 𝑠𝑠1 ≤ 0.22.  The middle curve is drawn for value 𝑡𝑡∗∗, i.e. is the 

value of t at which 𝛱𝛱(𝑠𝑠1 = 1 2⁄ , 𝑡𝑡∗∗) = 0.  There is an interval of values somewhat greater than 𝑡𝑡∗∗ at 

which there are two values of 𝑠𝑠1 at which 𝛱𝛱(𝑠𝑠1, 𝑡𝑡) = 0, the lower one of which is stable, the upper 

unstable.  The highest curve is the greatest value of t at which there is a fragmented equilibrium, this 

occurring at values {�̃�𝑠1, �̃�𝑡, } .  It is possible to derive the values {�̃�𝑠1, �̃�𝑡} from the pair of equations 

𝜕𝜕𝛱𝛱(�̃�𝑠1, �̃�𝑡) 𝜕𝜕𝑠𝑠1⁄ = 0,  𝛱𝛱(�̃�𝑠1, �̃�𝑡) = 0.  If ∆Λ = 0, the value is, �̃�𝑡 = 𝑛𝑛𝜎𝜎(1 + 𝛾𝛾2)3 2⁄ 31 2⁄ 𝑤𝑤/(36𝛾𝛾).  There is a 

positive interval (𝑡𝑡∗∗, �̃�𝑡) in which there are multiple equilibria if spillovers 𝑛𝑛𝜎𝜎 are large relative to 

Ricardian productivity difference, ∆Λ. 
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𝛱𝛱(𝑠𝑠1, 𝑡𝑡∗∗) 

𝛱𝛱(𝑠𝑠1, 𝑡𝑡�) 𝛱𝛱(𝑠𝑠1, 𝑡𝑡) 

Figure A3.1:  Expression A3.1 for different values 
f  
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Appendix 4: Specification of utility and income 

The specification of utility (welfare) is quite standard for trade models. The Q goods are a two-level CES 

nest. Domestic and foreign varieties for any z sector have an elasticity of substitution of ε > 1 whereas 

goods from different s sectors are Cobb-Douglas substitutes. R is the outside good, giving a standard 

quasi-linear utility function  

𝑈𝑈 = 𝛽𝛽 ln�∏ �𝜃𝜃𝑑𝑑 �
𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)
𝜃𝜃𝑑𝑑

�
𝜀𝜀−1
𝜀𝜀 + 𝜃𝜃𝑓𝑓 �

𝑄𝑄𝑓𝑓𝑑𝑑(𝑠𝑠)
𝜃𝜃𝑓𝑓

�
𝜀𝜀−1
𝜀𝜀
�

𝜀𝜀
𝜀𝜀−1

𝑠𝑠 � + 𝑅𝑅     (A4.1) 

where 𝛽𝛽 is a scaling parameter. Income (Y) is given the sum of wages (net of commuting costs and rents = 

𝑤𝑤0) for all urban and outside workers (𝐿𝐿�) plus land rents 𝐻𝐻1 and 𝐻𝐻2 from (19).  

 𝑌𝑌 = 𝑤𝑤0𝐿𝐿� + 𝐻𝐻1 + 𝐻𝐻2         (A4.2) 

The domestic economy’s budget constraint is that Y is spent on R (used as numeraire) plus domestic and 

foreign urban goods. 

 𝑌𝑌 = 𝑅𝑅 + ∑ 𝑝𝑝(𝑠𝑠)𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)𝑠𝑠 + ∑ �̅�𝑝𝑄𝑄𝑓𝑓𝑑𝑑(𝑠𝑠)𝑠𝑠        (A4.3) 

(A4.3) can be substituted into (A4.1) to replace R. 

   𝑈𝑈 = 𝛽𝛽 ln�∏ �𝜃𝜃𝑑𝑑 �
𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)
𝜃𝜃𝑑𝑑

�
𝜀𝜀−1
𝜀𝜀 + 𝜃𝜃𝑓𝑓 �

𝑄𝑄𝑓𝑓𝑑𝑑(𝑠𝑠)
𝜃𝜃𝑓𝑓

�
𝜀𝜀−1
𝜀𝜀
�

𝜀𝜀
𝜀𝜀−1

𝑠𝑠 � + 𝑌𝑌 − ∑ 𝑝𝑝(𝑠𝑠)𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)𝑠𝑠 − ∑ �̅�𝑝𝑄𝑄𝑓𝑓𝑑𝑑(𝑠𝑠)𝑠𝑠   (A4.4) 

Maximization of (A4.4) with respect to the Q’s (and equivalently for foreign) yields the demand functions 

in the body of the paper, which do not depend directly on Y as is the usual result in quasi-linear 

preferences. Domestic demand for domestic good s for example is: 

 𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠) = 𝛼𝛼𝑑𝑑𝜃𝜃𝑓𝑓𝑝𝑝(𝑠𝑠)−𝜖𝜖 {𝜃𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖 + 𝜃𝜃𝑓𝑓�̅�𝑝1−𝜖𝜖}⁄       (A4.5) 

where 𝛼𝛼𝑑𝑑 is a scaling parameter that is increasing in 𝛽𝛽 (𝛽𝛽𝑑𝑑 which could differ from the foreign 𝛽𝛽𝑓𝑓). 

Suppose θd = θf = 0.5 and all p(s) = 𝑝𝑝�  = 1. Then α = 2 in the demand functions implies β = 21/ε and Qij = 1. 

Parameters αd and αf in the demand functions in section 2 are increasing in the β of the domestic or 

foreign economy, and increases in the α’s or β’s can represent increases in or differences in market size.18 

Equations (36) and (37) are derived in a similar fashion. 

 

  

 
18Our algebra indicates that the relationship between the 𝛽𝛽 in (A4.1) and the 𝛼𝛼 in the demand functions above are 
related by 𝛼𝛼 = (𝛽𝛽 2⁄ )

𝜀𝜀
1+2𝜀𝜀. Because of the concavity of the log formulation of utility, 𝛽𝛽 must more than double to 

double market demand (𝛼𝛼) at constant prices.   
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Appendix 5: Asymmetric cases 

Asymmetric cases are not just a theoretical curiosity, nor is the possibility of multiple equilibria.  Several 

papers referenced above could be interpreted to suggest (translated into our framework) that some 

functions such as occupations in business services may be more subject to agglomeration economies that 

other functions. While agglomeration due to spillovers (as opposed to site-specific resources) is generally 

not explicitly investigated, evidence in Davis and Dingel (2018) and Eckert et. al. (2020) is important in 

this regard.  Duranton and Puga (2005) assume that headquarter services across industries are subject to 

agglomeration economies while plants have agglomeration economies at the sector level.  Theirs is quite a 

different model from ours as explained earlier, but it is consistent with an analogous view that spillovers 

may be more important in some functions than others.   

Figures A5.1 and A5.2 consider asymmetry between the sectors/regions in the Ricardian case. 

Figure A5.21 assumes that region 1 has a comparative advantage in function A but an absolute advantage 

in both A and B.  Region 2 has a comparative advantage in function B, but no absolute advantage. For 

intermediate or high levels of fragmentation costs, the result in Figure A5.1 is that region 1 will have a 

larger range of integrated industries. The intuition follows from a simple argument by contradiction. 

Consider high fragmentation costs such that all sectors are integrated. Suppose that the solution was 

symmetric across regions. Then if sector s = 0.5 is just breaking even in region 2, there would be positive 

profits for sector s in region 1.  

 
Figure A5.1: Asymmetric Ricardian Case 

Region 1: comparative and absolute advantage in function A 
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 Two further results follow in the asymmetric Ricardian case.  The right-hand panel of Figure 

A5.1 shows the employment levels in the two regions.  Intuitively, the region with the absolute advantage 

(region 1) will be larger for all levels of fragmentation costs, but this difference shrinks as these costs fall.  

Figure A5.2 shows the function and sector concentration indices for the same asymmetric Ricardian case.  

The more productive region 1 will have lower concentration for both sectors and functions.  The intuitive 

follows from the previous paragraph: region 1 will have more integrated industries.  But the difference 

disappears as fragmentation costs go to zero.  In our empirical results, we show that larger regions do 

have lower levels of both forms of concentration.   

 
Figure A5.2: Asymmetric Ricardian Case 

Region 1: comparative and absolute advantage in function A. 

 

Finally, consider an asymmetric spillovers case, motivated by this idea that perhaps business 

service occupations are more characterized by spillovers than other functions.  Figure A5.3 shows a case 

where only function A has spillovers, but in both regions. In equilibrium however, the spillovers case is 

similar: region 1 will have a comparative and an endogenous absolute advantage in function A, while 

region 2 has a comparative but not absolute advantage in function B.  

These results show up as differences in region size/employment (which in turn translate into 

producer wages), shown in the right-hand panel of Figure A5.3. The region size difference is large when 

all industries are integrated and small when all are fragmented (though largest in the middle for the 

spillovers case). Again, the intuition follows from a simple argument by contradiction. If region sizes 

(employment) were the same, then producer wages would be the same, in which case there must be 

positive profit opportunities in region 1 and/or losses incurred in region 2.  
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Figure A5.3: Asymmetric Spillovers Case; spillovers in function A only 

 

An important point about Figure A5.3 is that it illustrates the possibility that regional fortunes 

may diverge over some range of falling fragmentation costs.  The region with the comparative advantage 

in the function characterized by spillovers grows and the other region can actually shrink.   

The convergence in region sizes as fragmentation costs become small seems to be in large part a 

terms-of-trade effect: as fragmentation costs fall, the relative prices of goods with low sector indices 

(located in region 1) fall a lot more in general equilibrium than the prices of the high index goods. An 

alternative way to think about this is that the high productivity of region 1 workers in the A function 

means that less workers are required to produce those tasks at given output prices and hence region 1's 

employment falls some in response to that increased productivity.  
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