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Abstract

The rush to assess species’ responses to anthropogenic climate change (CC) has underestimated the importance of

interannual population variability (PV). Researchers assume sampling rigor alone will lead to an accurate detection

of response regardless of the underlying population fluctuations of the species under consideration. Using population

simulations across a realistic, empirically based gradient in PV, we show that moderate to high PV can lead to oppo-

site and biased conclusions about CC responses. Between pre- and post-CC sampling bouts of modeled populations

as in resurvey studies, there is: (i) A 50% probability of erroneously detecting the opposite trend in population abun-

dance change and nearly zero probability of detecting no change. (ii) Across multiple years of sampling, it is nearly

impossible to accurately detect any directional shift in population sizes with even moderate PV. (iii) There is up to

50% probability of detecting a population extirpation when the species is present, but in very low natural abun-

dances. (iv) Under scenarios of moderate to high PV across a species’ range or at the range edges, there is a bias

toward erroneous detection of range shifts or contractions. Essentially, the frequency and magnitude of population

peaks and troughs greatly impact the accuracy of our CC response measurements. Species with moderate to high PV

(many small vertebrates, invertebrates, and annual plants) may be inaccurate ‘canaries in the coal mine’ for CC with-

out pertinent demographic analyses and additional repeat sampling. Variation in PV may explain some idiosyn-

crasies in CC responses detected so far and urgently needs more careful consideration in design and analysis of CC

responses.
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Introduction

Populations of all organisms, animals to plants and

aquatic to terrestrial, exhibit natural variability in abun-

dance year to year, often fluctuating tremendously

(Fig. 1a, b; Ari~no & Pimm, 1995; Cyr, 1997; Pimm &

Redfearn, 1988). Amidst these natural population peaks

and troughs, researchers seek to determine how often

and in what ways species are responding to anthro-

pogenic climate change (CC). Despite the intricate links

between population dynamics and CC responses,

effects of interannual population variability have been

understudied and underestimated in the CC literature.

Here we demonstrate just how critical population

stochasticity is to the accuracy of detected CC

responses.

Individual and comparative population dynamics,

population cycling, and the underlying trends in envi-

ronmental, demographic, and inherent population

variability are the empirical basis of population biol-

ogy (Elton, 1924; Andrewartha & Birch, 1954; Ricklefs,

1990; Begon et al., 1996). Thus, interannual population

variability has an extensive history of study. Some

species are known to exhibit extreme population vari-

ability with sequential years of moderate fluctuations

followed by extreme outbreaks and crashes, for exam-

ple, shrews (Matlack et al., 2002), field mice (Brady &

Slade, 2004), moths (Varley, 1949), grasshoppers

(Uvarov, 1977), desert annual plants (Huxman et al.,

2008), and phytoplankton (Davis, 1964). Often the

most conspicuous examples of such patterns are insect

pests (e.g., Davidson & Andrewartha, 1948; Varley,

1949; Uvarov, 1977), but long-term, frequent monitor-

ing of various communities (e.g., Matlack et al., 2002;

Brady & Slade, 2004; Wittwer et al., 2015) has shown a

wide range of population variability across vertebrate

species. Generally, population variability decreases

with increasing body size (Ricklefs, 1990; Morris &

Doak, 2003; Begon et al., 1996). Large, long-lived spe-

cies exhibit little population variability year to year,

including ungulates (Davidson, 1938; Nicholls et al.,

1996; Clutton-Brock et al., 1997), perennial plants and

trees (Harper, 1977), and large birds (Perrins et al.,

1991).
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Population variability is also a key component of con-

servation biology and critical to estimations of extinc-

tion risk (e.g., Vucetich et al., 2000; Morris & Doak,

2003). Populations prone to dramatic peaks and crashes

are at greater risk of extinction (e.g., Lande & Orzack,

1988; Vucetich et al., 2000). Similarly, metapopulation

dynamics emphasize how the population dynamics of

individual patches are influenced by varying degrees of

population variability – higher population variability

increases both the probability of patch extirpations at

population lows and of recolonizations at population

highs (e.g., Hanski & Gilpin, 1997 and references

therein). At geographic range limits, range edges

expand and contract as populations experience popula-

tion highs and lows concordantly (e.g., MacArthur,

1972; Brown et al., 1996; Sexton et al., 2009). Given the

empirically and theoretically demonstrated importance

of population variability to many fields of biology and

conservation, population variability must play an

important role in our ability to detect CC responses.

Studies testing how species are responding to CC

examine range and abundance changes, local extirpa-

tions, and phenological and genetic shifts by comparing

historical and contemporary populations (resurvey

studies) or by repeated surveys over many years

(Parmesan & Yohe, 2003; Lenoir et al., 2008; Moritz

et al., 2008; Chen et al., 2011; Rowe et al., 2011). Our

assumption in these repeat surveys is that our ability to

detect the CC signal is primarily a property of sampling

quality – the consistency of methods between surveys,

a strong sampling effort, and little disturbance of the

sites between samples (e.g., Lenoir et al., 2008; Moritz

et al., 2008; McCain & King, 2014; Bates et al., 2015). For

a negative abundance response to CC, population size

or population indices are predicted to decline between

pre- and post-CC surveys or across multiple years of

resampling (e.g., Mieszkowska et al., 2006; Rowe et al.,

2011). But how often do such sampling windows fall

within a natural population peak or trough (e.g.,

Fig. 1a, yellow sampling windows), and how might

that influence the pattern detected? In a stochastically

low-abundance year, we are less likely to detect that

species in surveys (Fig. 1b; e.g., Seber, 1982). How do

we assess whether what appears to be a local extirpa-

tion is a natural population fluctuation or a negative

response to CC? Similarly for latitudinal or elevational

ranges, if edge populations exhibit high population

variability year to year (Fig. 1c; e.g., Sexton et al., 2009

and references therein), there may be natural range

shifts, contractions, and expansions resulting from

changes in population sizes and detectability. How

often are shifts and changes in range size related simply

to natural stochasticity rather than CC? How often are

underlying responses to CC masked by natural stochas-

tic noise? Such questions remain unexplored and

untested, but may significantly influence the accuracy

of our detected CC responses.

The highly idiosyncratic nature of responses docu-

mented to date indicates that such stochastic impacts

may exist within current CC studies. Roughly half of

studied species are responding negatively (e.g., decli-

nes in abundance, local extirpations, range contrac-

tions), another quarter positively (e.g., increasing in

abundance, range expansions), and the final quarter

exhibit no significant responses. For example, in the 73

mammals examined across studies, these percentages

were 52% negative, 7% positive, and 41% no significant

response (McCain & King, 2014). In only three of those

cases were influences of population dynamics consid-

ered (Post & Forchhammer, 2008; Ozgul et al., 2010;

Towns et al., 2010). In five resurvey studies of bird ele-

vational ranges along the Californian Grinnell transects

(Tingley et al., 2012) and the Papua New Guinea tran-

sects (Freeman & Class Freeman, 2014), these percent-

ages were about 45%, 30%, and 26%, respectively.

Among nine resurvey studies of plant, insect, and ver-

Fig. 1 Interannual population variability (PV) influences detection of climate change impacts. PV influences accurate assessments of

(a) abundance change between surveys (yellow boxes); (b) local extirpations when populations are at low (yellow) or undetectable (or-

ange) abundances; and (c) range shifts and contractions if PV results in lower abundances and/or lower detectability at range edges

(orange, yellow populations). Data: (a) depicts simulated populations from Ricker models at PV = 0.01 (gray) and PV = 0.25 (black); (b)

depicts a population of Blarina hylophaga (Elliot’s short-tailed shrew) over 30 years of monthly surveys in eastern Kansas (PV = 0.97;

Brady & Slade, 2004); and (c) is a hypothetical abundance distribution across a species’ elevational range with two potential distribu-

tions of PV across those populations: PV1 is similar across entire range; PV2 is increasing toward the range edges.
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tebrate ranges, these percentages were 65%, 24%, and

11%, respectively (Lenoir et al., 2010). Like most mam-

mal studies, none of these resurveys considered the

underlying population dynamics of the focal species.

We propose that since a large proportion of studies

of organismal responses to CC have not considered the

impacts of population variability, some results may be

misleading, both overestimating and underestimating

responses. Ideally, we would assess the influence of

population variability by testing each CC response with

empirical data from multiple species at different levels

of population variability while manipulating the

amount of CC. Such analyses would require not only

years of demographic data per species to estimate pop-

ulation variability, but also a variety of species to cap-

ture a broad range of population variability in addition

to various trends in CC impacts and responses. Long-

term population studies of this type are vanishingly

rare and nonexistent for all the myriad of CC scenarios

and responses. Thus, robust, quantitative simulations

across empirically-based parameter ranges are the only

viable method to assess the severity of population vari-

ability consequences to a broad swath of our CC stud-

ies. Here we explored such sets of population

simulations (Ricker models: Morris & Doak, 2003;

Ricker, 1954) to investigate the influence of natural pop-

ulation variability on our ability to accurately detect

three of the most commonly measured CC responses:

population declines, local population extirpations, and

range contractions.

Materials and methods

Population model structure

To model population dynamics, we used stochastic, discrete

time Ricker population models (Ricker, 1954; Morris & Doak,

2003; Melbourne & Hastings, 2008):

Ntþ1 ¼ Nt � ert ;
where population size for a given year, Nt+1, was calculated

from the population size the previous year, Nt, multiplied by

the growth rate, ert . To introduce stochastic population vari-

ability, this growth rate was chosen each year from a normal

distribution:

rt �Norm l ¼ �r� 1�Nt

K

� �
; r2 ¼ PV

� �
;

with mean equal to the average log intrinsic growth rate, �r,

modified by density dependence with carrying capacity K,

and variance equal to the population variability (Ricker, 1954;

Morris & Doak, 2003). Thus, population variability is the vari-

ance of the log population growth rate across years due to

environmental stochasticity (Morris & Doak, 2003). We ran

sets of simulations to explore a reasonable span of natural

population values that encapsulate the basic dynamics of a

broad range of species (Table 1; e.g., Herrera, 1998; Liebhold,

1992; Morris & Doak, 2003; Nicholls et al., 1996; Sæther &

Engen, 2002; Wang et al., 2013). Ranges of population variabil-

ity (0–2) are based on known variability from the literature

(e.g., Davidson, 1938; Davidson & Andrewartha, 1948; Varley,

1949; Davis, 1964; Harper, 1977; Uvarov, 1977; Perrins et al.,

1991; Liebhold, 1992; Nicholls et al., 1996; Clutton-Brock et al.,

Table 1 Initial parameter values and the parameter range

explored in the Ricker population models for each type of cli-

mate change response

Parameter Symbol Values/range

Abundance changes

Average log intrinsic

growth rate

�r 0.25, 0.75, 1.25

Population variability

(PV = variance in r)

r2 0.005–2.0

Initial pop. size N0 100

Initial carrying capacity K0 102

Final carry capacity, no CC Kfinal,none 102

Final carry capacity,

negative CC impact

Kfinal,neg 30.6 (�70%),

81.6 (�20%)

Final carry capacity,

positive CC impact

Kfinal,pos 173.4 (+70%),

122.4 (+20%)

Survey length w 1, 3, 5 years

Number of surveys # 2, 5, 7, 10, 20

Local extirpations

Average log intrinsic

growth rate

�r 0.25, 0.75, 1.25

Population variability

(PV = variance in r)

r2 0.005–2.0

Initial pop. size N0 100

Carrying capacity K 50, 100, 500,

1000

Individual detection rate rd 0.02–0.40

Survey length w 1, 3, 5 years

Range contractions

Average log intrinsic

growth rate

�r 0.75

Constant, high PV r2high 1.5

Constant, low PV r2low 0.05

Increasing PV: edge to

center populations

r2inc 0.05–1.5

Decreasing PV: edge to

center populations

r2dec 1.5–0.05

Number of populations n 15

Initial pop. size N0 100

Constant and center

population sizes

Kc 100

Decreased edge populations

(3 low, 3 high)

Ke 25, 50, 75

Among-population correlation Pop. Corr. 0–1

Survey length (cons. or alter.) w 1–5 years

All possible combinations of the listed parameters were simu-

lated.
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1997; Herrera, 1998; Matlack et al., 2002; Sæther & Engen,

2002; Morris & Doak, 2003; Huxman et al., 2008) as well as

empirical population variability calculated among small mam-

mals from a 30-year mark and recapture study in Kansas

(Brady & Slade, 2004; Wang et al., 2013; Slade pers. comm.:

population variability = 0.59–1.88). Higher values than we

investigated are possible (e.g., highly eruptive insect dynamics

or unpredictable aquatic bacterial fluxes), but the asymptotic

or linearly increasing nature of the current results is easily

extrapolated to more extreme stochasticity. From this litera-

ture, we found it is somewhat rare to be on the extremes of lit-

tle or maximum population variability, while most organisms

exhibit intermediate values. Under the range of parameters

explored, the deterministic version of the Ricker model exhi-

bits damped oscillations and stability at the carrying capacity

(Morris & Doak, 2003). Additionally, we chose the Ricker

models because they are general, simple to understand, do not

make additional assumptions about population dynamics as

do more complicated models, and are commonly used in the

population, conservation, and theoretical biology literature

(e.g., Seber, 1982; Morris & Doak, 2003; Melbourne & Hast-

ings, 2008).

Detecting abundance change

To assess the influence of population variability on the ability

to detect underlying abundance responses to climate change

(CC; e.g., Fig. 1a), populations were simulated each for 50

time steps (i.e., 50 years), with steps 0–20 as a pre-CC stage,

and steps 21–50 a post-CC stage. In all cases, the starting car-

rying capacity (K0 = 102) was constant during the pre-CC

stage. Across the post-CC stage, the carrying capacity changed

linearly each year, ending at a moderate decrease (�20%), a

large decrease (�70%), a moderate increase (+20%), a large

increase (+70%), or no change (K0). In these simulations, we

varied population variability (r2), �r, Kfinal, the survey length,

and the number of surveys, and ran 3000 simulations for each

combination of parameter values (Table 1). We chose values

for �r to represent populations with slow, medium, and fast

average annual growth rates (0.25, 0.75, and 1.25, respec-

tively). Population variability is bounded theoretically by 0,

representing a population with no stochasticity in the growth

rate. We modeled up to population variability = 2.0 which

depicts marked and frequent peaks and troughs in population

sizes year to year (Fig. S1).

In resurveys, to assess the abundance shifts between pre-

and post-CC surveys, yearly abundances were extracted with-

out sampling error starting at step 10 in the pre-CC stage and

ending at step 50 for the post-CC stage in each simulation.

We reran all simulations varying both survey lengths as 1, 3,

or 5 years. The longer survey lengths encompassed more pop-

ulation variability, potentially dampening its effects on CC

response detection. The average abundance was calculated

for each survey period, and percentage change in abundance

(and change in estimated K, for 5 year samples) was calcu-

lated between samples. We recorded abundance decreases or

increases using three threshold levels of change (�10%, 15%,

or 20%); if the change was below the threshold, the popula-

tion was considered to show no abundance response to CC.

These thresholds span a range of liberal to conservative abun-

dance change; higher thresholds were not included as the

lower limit of modeled CC was 20% change. Each simulation

result was then compared to the underlying modeled CC

trend of decreasing, increasing, or stable carrying capacity.

Finally, the probability of correctly detecting CC trends was

calculated as the proportion of simulations that revealed the

underlying trend for each scenario at the various survey

lengths.

In time-series surveys, the same simulations were used, but

in this case 5, 7, 10, or 20 evenly spaced, single-year popula-

tions were extracted across pre- and post-CC stages starting at

year 10 and ending at year 50. Linear regressions assessed

whether the population trend was declining, increasing, or

steady at two levels of significance: P ≤ 0.05 to be strict in

trend detection and P ≤ 0.10 to be liberal in trend detection.

The probability of correctly detecting CC trends was calcu-

lated as above from all 3000 simulations for each scenario and

set of parameters.

Detecting local extirpations

To assess the likelihood of local extirpations due to popula-

tion variability, we used Ricker models as described above,

but included individual detection rates (e.g., difficult or easy

to capture, sample, or sight) based on a known range of val-

ues from the literature (e.g., Otis et al., 1978; Seber, 1982;

Lebreton et al., 1992; Alexander et al., 1997; Williams et al.,

2002). In these simulations, we did not impose a CC trend,

but only assessed the influence of population variability on

population detection within a single snapshot of the popula-

tion rather than trends over time. Nonetheless, the results are

indicative of any comparison among surveys across time

with or without CC imposed. Simply, these simulations

depict how often a population is undetectable even without a

negative CC impact, but due to population dynamics alone

(e.g., Fig. 1b). Such population variability-induced nondetec-

tions would be difficult to discern from CC-induced extirpa-

tions.

The probability of detecting the population was calculated

using a model developed for repeated presence–absence sur-

veys (Royle & Nichols, 2003):

Pr½detectionw� ¼ 1�
Yw
t¼1

ð1� rdÞNt

where the probability of detecting at least one individual

within the sampling window is a function of the individual

detection rate, rd; the population size during each year within

the sampling window, Nt; and the number of years in the sam-

pling window, w. We ran 3000 Ricker models of 50 time steps

for each combination of parameters (Table 1). We explored a

broad range of individual detection rates (rd = 0.02–0.4 in

increments of 0.02, corresponding to 2–40% success of detect-

ing a given individual), four populations sizes (K = 50, 100,

500, 1000), three average growth rates (�r = 0.25, 0.75, 1.25), a

range of underlying population variability (0.0–2.0), and three

survey lengths (w = 1, 3, 5 years).
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Detecting range contractions

Range contraction simulations (e.g., Fig. 1c) were constructed

as Ricker models for each of 15 closed populations across a

hypothetical elevational gradient of 1500 m (i.e., a population

every 100 m). The modeled elevational range and spacing

between populations is hypothetical and could just as easily

be depicting populations every 300 m elevationally, 100 km

latitudinally, or any set of equidistant populations across a

gradient of interest. Rather than exploring a broad parameter

space, we chose a smaller range of illustrative parameter sets

due to the unwieldy range of possible parameter combinations

and individual population dynamics. Thus, we investigated

four patterns of population variability across the gradient and

two patterns of K (see insets in Fig. 5). Population variability

scenarios include the following: equally high (1.5) or low

(0.05) population variability in all populations, and increasing

(0.05–1.5) or decreasing (1.5–0.05) population variability from

the range edges to the center population. Although previous

simulations included more extreme values, we chose these

values to be more representative of a range in typical species.

K was modeled either as constant in all populations (K = 100)

or decreasing toward the range edges (each three edge popu-

lations: K = 25, 50, 75). Populations are often smaller and more

variable at range edges (e.g., Brown, 1984; Brown et al., 1996;

Sexton et al., 2009), and thus, these scenarios explore range-

edge dynamics and constancy across the hypothetical gradi-

ent. We used the medium average growth rate (�r) for all popu-

lations. Lastly, to represent the potential for populations along

a gradient to experience the same good or bad years, we

explored a range of correlation in the population variability of

the populations: no correlation (0) where the growth rate

stochasticity of each population is independent of all other

populations, total correlation (1) where that stochasticity is

perfectly correlated among all populations, and an intermedi-

ate correlation (0.5) where dynamics are related but have some

level of divergence among years.

For each combination of parameters, the 15 populations

were surveyed at 3000 time steps (‘survey points’) to measure

whether individual populations fell below a single individual,

indicating an extirpation. Then using range interpolation, we

assumed presence at all sites between the lowest and highest

extant populations, and calculated the size of contraction from

the initial range of 1500 m at each survey point (see Anima-

tion S2). To examine the effect of repeat surveys on the detec-

tion of stochastic range contractions, we reassessed these

models with a sampling scheme of multiple consecutive years

(years 1–2, 1–3, or 1–5) and multiple alternating years (years 1

and 3 or 1, 3, and 5). In all cases, absolute abundances were

used rather than incorporating sampling and detection error.

Although the latter may be more realistic, it would propor-

tionally exacerbate the impact of population variability.

Results

Among the simulated parameters (Table 1) for the

three commonly measured responses to climate change

(CC) – abundance changes, local extirpations, and

range contractions – the amount of interannual popula-

tion variability had the largest impact on accurate

detection of response. Surprisingly, survey length and

number, average population growth rate, carrying

capacity, and individual detection rate were much less

impactful.

Detecting abundance change

Pre- and postclimate change resurveys. The probability of

correctly detecting an abundance change in concor-

dance with the underlying CC – whether positive or

negative – drops precipitously to around 50–60% accu-

racy with only moderate population variability year to

year (Figs 2a–f and S2a–d). Only very stable popula-

tions with population variability <0.1 have a greater

than 80% likelihood of detecting an abundance shift in

concordance with the actual CC response, but only if

the CC response is large (i.e., 70% increase or decrease

in carrying capacity; solid thick lines). Under the low

CC response (20%; dashed thin lines), the probability of

correct detection of an abundance change drops extre-

mely rapidly and asymptotes near 50–50 accuracy at a

relatively low population variability (<0.5). It is nearly

impossible in this two-survey comparison to detect no

abundance change (Fig. 2g–i). When no change in car-

rying capacity is modeled, all detect an erroneous posi-

tive or negative change in abundance with the

exception of populations with almost no variability

(<0.1; Fig. S2e). Thus, due to repetitive, stochastic popu-

lation peaks and troughs, nearly all tests between two

sampling periods detect a significant abundance shift

regardless of the modeled CC impacts, with roughly

half detecting increases and half detecting decreases

(Fig. S2a–e). Only populations with population variabil-

ity approaching zero allow reliable detection of under-

lying population change in the resurvey comparisons.

Survey sampling length had relatively little impact

despite our methodological assumptions that more

sampling will always improve accuracy. Likewise,

intrinsic growth rate (Fig. 2 columns) did not substan-

tially affect results, nor did changing the threshold for

detection of change (10%, 15%, 20%; Fig. S3). For 5-year

sampling windows, estimating K in each sample did

not produce qualitatively different results.

Time series of population surveys. In the population time-

series scenario, correctly detecting a significant under-

lying positive or negative trend is quite improbable

even with modest amounts of population variability

(Fig. 3a–f). The probability of correct detection of the

CC response declines rapidly in all scenarios even with

a small amount of population variability (<0.5) and

then asymptotes quickly thereafter between 0 and 25%
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probability of accuracy. The population trajectory erro-

neously identified in these cases is no change (stasis;

Fig. S2f–i). The probability of correctly identifying stasis

is nearly 100% (Fig. 3g–i). The exceptions to accurate

stasis are the scenarios at lowest growth rate and 10–20
surveys where occasionally significant, but erroneous,

positive, or negative population trends are detected

(Figs 3g and S2j). A larger magnitude of carrying

capacity change (K = 70% vs. 20% change due to CC)

increases the probability of correct pattern detection.

But this impact is most evident at low to mid-popula-

tion variability values (Fig. 3 line weights and dashes).

The number of sampling surveys and variation in aver-

age growth rate had relatively little impact (Fig. 3, line

colors and columns, respectively). These results (Fig. 3)

are for a liberal trend detection (P = 0.10); the results

are almost identical with a more conservative trend

detection (P = 0.05), although the latter has more rapid

decreases and plateaus closer to zero probability. Over-

all in time series, even with occasional peaks and

troughs in the population, most underlying CC

response is undetectable even if the underlying carry-

ing capacity has declined drastically.

Detecting local extirpations

Across the parameter space, apparent extirpations

increase with more population variability (Fig. 4; Ani-

mation S1). Overall, 10–60% of local population simula-

tions result in a false extirpation at moderate to high

population variability. Such false extirpations, indistin-

guishable from extirpations caused by CC, are most

common when individuals are hardest to detect

(Fig. 4a, b), when populations are small (upper panels),

and when the sampling window is short (black lines).

Surveying the populations among multiple years (blue

Fig. 2 In assessments of abundance change between two samples (e.g., pre- and postclimate change resurveys), higher interannual

population variability leads to incorrect and often opposite trends than the underlying climate change trajectory. At a moderate to high

population variability, the probability of correctly detecting a decrease (a–c) or increase (d–f) is only 50% and correctly detecting no

change is nearly impossible (g–i). These results are stable across three average growth rates (columns), length of survey per sample (line

colors), and percentage change in carrying capacity due to climate change (thick, continuous lines vs. thinner, dashed lines). These

results use a 10% change detection threshold, 15% is nearly identical except with slightly lower probabilities, and Fig. S3 depicts results

at the 20% threshold with only minor differences from the 10% and 15% threshold results.
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and green lines) decreases the likelihood of falsely

attributed CC extirpations, particularly for harder to

detect species. For results of all parameter space

explored in local extirpation simulations, see Anima-

tion S1.

Detecting range contractions

Range contractions are detected at significant levels

(20–33%) for those scenarios of constant high popula-

tion variability at all sites (Fig. 5a, c) and increasing

population variability toward the range edges

(Fig. 5b, d). See Animation S2 for examples of these

simulations. Stochastic range contractions are not

detected for scenarios of uniformly low population

variability or low population variability at range

edges. Highly correlated dynamics (i.e., all populations

experience bad and good years similarly; 1.0 in gray in

Fig. 5) lead to larger range contractions, including total

range collapse, whereas less correlated dynamics (each

population experiencing at least some independent

stochasticity; 0 in black and 0.5 in white in Fig. 5) lead

to smaller contractions, mostly 100–300 m. Small per-

centages of all simulations result in larger range con-

tractions (400–1400 m: ~0.5–2% each; Fig. 5 small bars

near unit line). All of these population variability-

induced range contractions, regardless of size, would

be difficult to distinguish from a CC response.

The size and frequency of population variability-

induced, detected range contractions are reduced by

various years of repeat sampling (Fig. 6). As in

Fig. 5, smaller population sizes at range edges lead

to a greater proportion of range contractions (solid

black circles) compared to constant high populations

across the gradient (white circles). Two, three, and

five years of repeat sampling lead to increasingly

fewer population variability-induced range contrac-

tions. For the same number of sampling bouts, alter-

nating years of sampling (1 and 3; 1, 3, and 5) led to

a more rapid drop in population variability-induced,

range contractions than consecutive repeat sampling

(1 and 2; 1–3).

Fig. 3 In assessments of abundance change among a time series of surveys (e.g., population monitoring), higher interannual popula-

tion variability leads to incorrect and often opposite trends than the underlying climate change trajectory. At moderate to high popula-

tion variability, the correct assessment of a decrease (a–c) or increase (d–f) falls to nearly zero, and almost all populations appear in

stasis (g–i). These results are stable across three average growth rates (columns), the number of surveys (line colors), and percentage

change in carrying capacity due to climate change (thick, continuous lines vs. thinner, dashed lines).
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Discussion

Our simulations display how easily interannual popu-

lation variability alone can lead to the same patterns we

are trying to detect in assessing climate change (CC)

impacts (Figs 2–6). Accurate detection of CC responses

necessitates the consideration of underlying population

variability effects. The influence of population variabil-

Fig. 4 Higher interannual population variability increases the probability of naturally occurring population lows, resulting in more

local extirpations. Such extirpations in a climate change study would be falsely assumed to be indicators of climate change. Such false

extirpations are most common when individual detection probabilities are lowest (a, b), carrying capacities are lower (a, c, d), and sur-

veys are a single year (black lines). For results of all simulated parameters, see Animation S1.

Fig. 5 Range contractions due to interannual population dynamics without underlying climate change. Using simulations along a

species’ elevational range of 15 equally spaced populations, range contractions occur frequently for populations modeled with (a)

declining carrying capacity toward the range edges and equally high interannual population variability; (b) declining carrying

capacity and increasing interannual population variability toward the range edges; (c) equally high carrying capacity and equally

high population variability; and (d) equally high carrying capacity and population variability increasing toward the range edges.

Higher correlation (white and gray bars) among the 15 sets of population dynamics leads to larger range contractions. To illus-

trate an example set of simulated populations across the elevational gradient, and the influence of local extirpations and range

interpolation, see Animation S2.
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ity extends beyond species with extreme abundance

fluctuations, as most scenarios reached critical differ-

ences at population variability values as low as 0.25–
0.50. Abundance responses were the most obscured by

population variability, with either nearly half incorrect

(resurveys) or uniformly underestimating any CC effect

(time series). Local extirpations for single populations

and at range edges occurred regularly due to popula-

tion variability. Such fluctuations in population detec-

tion occurred more often with greater population

variability, but would be more exaggerated for species

that are difficult to detect, occur in low abundances,

and/or were surveyed for a short snapshot of time.

Our simulations were constructed with perfect knowl-

edge of the abundance and in all cases except local

extirpation, every individual was perfectly detectable.

Including the sampling realism of field studies (sam-

pling error, lower detection probabilities, population

indices) would further obfuscate the potential

responses to CC (Seber, 1982; Begon et al., 1996 and ref-

erences therein). Adding to this complexity is the

potential that a species’ population variability itself

may be modified by anthropogenic climate change as

environmental stochasticity is altered. Overall, our

results highlight the dramatic effect of natural popula-

tion variability on the ability to accurately detect

responses to CC. More study design and analysis pre-

cautions are urgently needed to distinguish CC impacts

from effects of natural population fluctuations.

Pre- and postclimate change resurveys. Given that the

accuracy of two-survey comparisons is nearly equal to

a coin toss, we suggest they are unwise estimates of

organismal responses to CC. In most field studies, there

will be greater error than these simulations due to short

sampling periods, use of population indices, and differ-

ent sampling methods between surveys (e.g., museum

specimens vs. live trapping; sighting records vs. call

point counts; citizen scientists vs. field biologist

records). The only cases where resurvey abundance

comparisons could be potentially robust are for popula-

tions that are very stable across time, particularly long-

lived, large vertebrates, trees, and shrubs.

Possibly due to these inherent drawbacks of resurvey

abundance, there are fewer of these assessments in the

literature. But given the historical databases of surveys,

specimen records, bird counts, and citizen scientist

logs, these types of abundance data are relatively avail-

able. Such resurveys for CC response are therefore

tempting. But we urge caution. For example, in a resur-

vey of Great Basin small mammals (Rowe et al., 2011),

which have moderate to high population variability,

our simulation results would predict probabilities of

40–60% decline and increase, and 5–10% no change.

Their detected percentages were nearly identical: 41%

increased, 50% decreased, and 9% did not change.

Additionally, analyses of other aspects of a species’

biology between pre- and post-CC surveys – phenology

changes or genetic diversity changes (e.g., Bradley

et al., 1999; Mieszkowska et al., 2006; Taylor et al., 2014)

– can be highly influenced by the underlying differ-

ences in abundance shown here. For example, in years

of high abundance, more individuals are detected,

increasing both the detected and the real interindivid-

ual variance in phenology, making earlier occurrences

more likely, and more likely to be detected. So careful

consideration of how underlying population variability

could influence results in those cases is also warranted.

Time series of population surveys. Only populations with

very low population variability (<0.25) provide accurate
assessments of abundance change over time and usu-

ally only if the CC impact is strong. Otherwise, it is dif-

ficult to detect any significant changes even if they are

occurring and putting species at high risk. Some of the

species thought to be declining in response to CC, for

example, polar bears (Towns et al., 2010) and caribou

(Post & Forchhammer, 2008), are large, long-lived and

exhibit low population variability, and are thus likely

to be quite accurate, whereas studies of multiple spe-

cies of various body sizes and levels of population vari-

ability (e.g., Inouye et al., 2000; Koontz et al., 2001;

Myers et al., 2009) may have a higher risk of erroneous

results particularly if no change has been detected. In

Fig. 6 Population variability-induced range contractions, diffi-

cult to distinguish from climate change-induced range contrac-

tions, decreases with an increase in the number of repeat years

of sampling. These simulations use the same four scenarios of

population variability and population sizes as in Fig. 5. The

combined proportion of simulations with range contractions

from Fig. 5 are depicted as single-year samples (first bar), and

as more years are sampled, the proportion of contractions

decreases although more rapidly for alternating years for the

same sampling effort (third and fifth bar).
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cases of long-term population monitoring, estimates of

population variability, juvenile and adult survival, or

growth rates in a more sophisticated demographic

framework (e.g., structured population models) are

possible and much more statistically powerful in

detecting change than regressions. Therefore, such

long-term, robustly collected data have the capability of

much more robust results if handled carefully and

quantitatively, even with moderate population variabil-

ity (e.g., Post & Forchhammer, 2008; Ozgul et al., 2010).

But in cases of heterogeneously collected abundance

data (e.g., not standardized monitoring programs),

claims of minimal CC response should be treated with

caution for all but the low population variability popu-

lations unless quantitative assessments or simulations

of error potential are evaluated.

Local extirpations. Based on the empirical support for

source–sink and metapopulation dynamics, we know

populations come and go stochastically at single locali-

ties (e.g., Ricklefs, 1990; Hanski & Gilpin, 1997; Hanski

& Simberloff, 1997; Begon et al., 1996 and references

therein). Our population variability simulations also

exhibit how tightly linked local extirpations are to pop-

ulation fluctuations, and how easily such extirpations

are exacerbated by low detection probabilities, low

population sizes, and short-term surveys. Such abun-

dance fluctuations lead to local extirpations or popula-

tions too low for detection, which are difficult to

distinguish from a CC-induced extirpation. Many CC-

extirpation studies could include this potential influ-

ence (Parmesan, 1996; Beever et al., 2003; Epps et al.,

2004; Floyd, 2004; Hickling et al., 2005; Larrucea &

Brussard, 2008; Erb et al., 2011; Hubbard et al., 2014).

Most did not conduct multiple resurveys of extirpated

populations, but those that did documented extirpa-

tions that had been recolonized or populations that

rebounded naturally (Beever et al., 2011; Erb et al.,

2011). Thus, in CC-extirpation studies, the key is multi-

ple repeat sampling (Fig. 4) to document a longer-term,

local extirpation which has a stronger signature of CC

impact. Additionally, caution should be used when

evaluating species that are difficult to detect, when his-

torical and contemporary surveys use different indices

of detection, or different detection methodologies.

Extirpations in populations within the well-established

and persistently occupied central portions of ranges,

rather than range-edge populations may also be a better

indicator of CC responses.

Range contractions. Elevational and latitudinal range

contractions and shifts are the most common CC

responses measured in the literature (Lenoir et al., 2010;

Chen et al., 2011; McCain & King, 2014 and references

therein). In a recent review (Chen et al., 2011), the med-

ian upward shifts were ~40 m in elevation and 45 km

in latitude, respectively, across arthropod, plant, and

vertebrate datasets (# of studies = 31 (elevation), 22 (lat-

itude)) regardless of the expected shift given the

amount of warming. In fact, among the datasets, four

exhibited small average range expansions, and only

one averaged over 100 m elevational shift upward

(108.6 m for butterflies in Spain). Many detected negli-

gible changes in terms of the scale of field studies along

latitudinal or elevational transects which tend to be

conducted at 100 m/100 km bands or greater (25%

were <25 m or 25 km of change). Although these con-

stitute a significant amount of change taken together

and a coherent fingerprint of CC, this average change is

quite small. One reason the averages are smaller is

because some species’ ranges are contracting or shifting

whereas others are expanding or not changing. There is

a high probability given the results of population vari-

ability simulations presented here that some of that

variability and some amount of range fluctuation over

time are due to natural population dynamics at or near

range edges (Figs 5 and 6).

Higher population variability at range edges is the

norm according to a recent review (Sexton et al., 2009)

and is the likely scenario for many range shift studies.

In some cases, populations at or approaching range

edges are smaller (Brown et al., 1996; Sexton et al., 2009

and references therein). These two conditions lead to

the greatest proportion of range contraction exhibited

in our simulations (Figs 5 and 6). Although we did not

simulate range shifts, expansions, or changing

weighted elevational midpoints (Lenoir et al., 2008),

similar results would be expected due to the high prob-

ability of intermittent population lows and highs, and

temporary local extirpations associated with population

variability across a range and at range edges.

In studies where the historical surveyors collected all

individuals in each population or kept detailed notes of

population sizes at the identical sites of resurvey (e.g.,

Moritz et al., 2008; Tingley et al., 2009), the influence of

population variability can be reduced by employing

occupancy modeling techniques. But even in those

cases, each survey necessarily captures a small time

slice of variable populations; the probability that some

populations were at stochastic abundance peaks or

troughs is substantial and unavoidable. In cases where

the historical surveys occurred during population lows,

particularly at range edges, some proportion of range

expansions with modern resurveys would also be

expected due to population variability alone. Since

improving modern resurvey data is the only option,

including multiple consecutive (2, 3 and 5 years) and

alternating years of sampling (years 1 and 3, or 1, 3,
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and 5) decreases the proportion of resurveys with range

contractions. Nonconsecutive years of sampling had a

larger impact for the same number of years sampled

(false contractions <10%) due to the greater variability

captured among more widely spaced years. Thus, like

local extirpations, geographic range change studies

should adopt repeat sampling designs, ideally noncon-

secutive years for efficiency, to ensure robust detection

of a CC trend rather than a demographic trend. So far,

repeat sampling of range shift data is exceedingly rare

(e.g., Beever et al., 2011).

How can we modify our field studies to reduce population

variability effects?. To confidently assess responses to

CC, the population variability of the populations of

interest must be known at least as a rough estimate.

True estimates of population variability differ for spe-

cies across their range and among populations, so like

other population parameters are difficult to assess accu-

rately (e.g., Morris & Doak, 2003; Gonzalez-Suarez

et al., 2006; Begon et al., 1996; and references therein).

They are generally underestimated with short time

spans of demographic data (e.g., Gerber et al., 1999;

Morris & Doak, 2003 and references therein). Thus, a

valuable rule of thumb would be to estimate a potential

range of population variability within which your pop-

ulation, species, or clade falls (e.g., very low (<0.25),
low (0.25–0.50), moderate (0.50–1.0), or high (>1.0)). As

can be seen in most of the simulations, population vari-

abilities below 0.50 have decreasing probabilities of

error as they approach zero, whereas above 0.5 the

error probabilities start to plateau. Unless a population

has very low population variability, conclusions likely

need a strong consideration of a potential population

variability effect. Additionally, for assessments across

species’ elevational and latitudinal ranges, it is likely

that population variability is higher near range edges

and possible that carrying capacities are lower. Once

the estimate of population variability error is estab-

lished, consider carefully how intermittent peaks and

troughs in your population may influence the mea-

sured response and how it may be compounded by

your sampling design (greater influences with the two-

window resurveys) and your sampling error (indices,

individual detectability, differences in methodology

historically vs. contemporarily). Do you have addi-

tional lines of evidence that these changes are CC vs.

demographic?

Recent state-space models to detect population

trends and extinction probabilities, including

approaches that use multi-population data, could be

adapted to improve the detection of CC effects (Den-

nis & Ponciano, 2014; See & Holmes, 2015). Addition-

ally, simulations constructed specifically for your

system, similar to those here, could be used to esti-

mate probabilities of error for each species, clade,

and/or response. One lesson from these new state-

space methods is that repeated sampling is necessary

to draw strong conclusions about population dynam-

ics (Dennis & Ponciano, 2014; See & Holmes, 2015).

Similarly, sampling several years, ideally nonconsecu-

tively, reduces false CC signal for local extirpation

and range change studies by capturing more interan-

nual fluctuation (Figs 4 and 6; Animation S1). We

urge more repeat sampling, particularly for pres-

ence–absence studies of local extirpation and range

changes, to increase the confidence that detected

responses are the result of CC impacts rather than

an effect of short-term stochastic fluctuation. Lastly,

for published results, a re-evaluation in light of pop-

ulation variability influences may be warranted.

Clearly, CC is impacting species as multiple reviews

show convincingly (e.g., Parmesan & Yohe, 2003;

Walther et al., 2005; Thomas et al., 2006; McCain &

King, 2014, and references therein), but the strength

of individual signals detected so far for abundance,

extirpation, and range changes may be overly sim-

plistic and possibility misinterpreted as either overly

dire or severe underestimates. Thus, the impacts of

interannual population variability urgently need more

careful consideration in design and analysis of CC

responses.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. In assessments of abundance change between two samples, higher inter-annual population variability modeled as vari-
ance in population growth rate leads to larger variance in abundance.
Figure S2. Examples of observed trends in abundance change (decrease, increase, or no change) detected in simulations of abun-
dance change both for resurveys (Fig. 2: 3 year surveys) and for time series (Fig. 3: 10 surveys).
Figure S3. Results for abundance change between pre- and postclimate change surveys at a 20% threshold for detecting change.
Animation S1. A visualization of results from the full range of variability in the simulations of local population extirpations (4 car-
rying capacities, 3 average growth rates, population variability between 0.0 and 2.0, and individual detection probabilities between
0.02 and 4.0).
Animation S2. An example visualization of 30 surveys of population simulations across the elevational gradient to illustrate the
influence of local extirpations and range interpolation on population variability-induced range contractions.
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