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Abstract
The impacts of disturbance on biodiversity and distributions have been studied in many systems. Yet, comparatively less is 
known about how lichens–obligate symbiotic organisms–respond to disturbance. Successful establishment and development 
of lichens require a minimum of two compatible yet usually unrelated species to be present in an environment, suggesting 
disturbance might be particularly detrimental. To address this gap, we focused on lichens, which are obligate symbiotic organ-
isms that function as hubs of trophic interactions. Our investigation was conducted in the southern Appalachian Mountains, 
USA. We conducted complete biodiversity inventories of lichens (all growth forms, reproductive modes, substrates) across 
47, 1-ha plots to test classic models of responses to disturbance (e.g., linear, unimodal). Disturbance was quantified in each 
plot using a standardized suite of habitat quality variables. We additionally quantified woody plant diversity, forest density, 
rock density, as well as environmental factors (elevation, temperature, precipitation, net primary productivity, slope, aspect) 
and analyzed their impacts on lichen biodiversity. Our analyses recovered a strong, positive, linear relationship between 
lichen biodiversity and habitat quality: lower levels of disturbance correlate to higher species diversity. With few exceptions, 
additional variables failed to significantly explain variation in diversity among plots for the 509 total lichen species, but we 
caution that total variation in some of these variables was limited in our study area. Strong, detrimental impacts of disturbance 
on lichen biodiversity raises concerns about conservation and land management practices that fail to incorporate complete 
estimates of biodiversity, especially from ecologically important organisms such as lichens.
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Introduction

It is widely recognized that disturbance plays a major role 
in determining species diversity, distributions, and func-
tions (Hutchinson 1953; Connell 1978; Johst and Huth 

2005). Approaches to understanding the impacts of distur-
bance have included examining effects of variables across 
trophic levels (Wootton 1998), spatial scales (Witman et al. 
2008; Limberger and Wickham 2012), and temporal scales 
(Svensson et al. 2007; Zemanová et al. 2017). Others have 
explored how disturbance affects functional diversity and 
ecosystem services (Biswas and Mallik 2010; Thom and 
Seidl 2016), whether choice of diversity measure matters 
(Mackey and Currie 2001; Johst and Huth 2005; Svensson 
et al. 2007), and how species traits such as dispersal respond 
to disturbance (Johansson et al. 2013). This has yielded a 
nuanced understanding of how, and in what contexts, dis-
turbance explains spatial variation in diversity and function 
across organisms and ecosystems.

Despite the above advances, few large-scale studies 
have examined how disturbance–natural or anthropo-
genic–impacts the lichen symbiosis. Specifically, the estab-
lishment and development of a lichen requires that a mini-
mum of two compatible, yet often unrelated symbionts, be 
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present in any given environment. This suggests that, in con-
trast to some organisms, lichens and other obligate symbi-
onts may be especially sensitive to disturbance because their 
life strategies are initially constrained by biotic interactions. 
Further, such organisms may respond differently to distur-
bance in comparison to non-obligate organisms. For exam-
ple, classical disturbance models predict responses based 
on tradeoffs between disturbance tolerance and competitive 
ability (Hutchinson 1953; Connell 1978; Huston 1994, 1979; 
Wilson 1994; Violle et al. 2010). However, obligate symbi-
otic diversity and distribution, such as that of lichens and 
many other organisms, may be governed more strongly by 
intrinsic biotic factors such as whether or not all symbionts 
are present in the environment at the earliest stages of devel-
opment (Honegger 2012; Tripp et al. 2016).

If the above is true, theoretical underpinnings of clas-
sical models, which serve as umbrellas under which the 
interplay among disturbance, diversity, and abundance is 
interpreted (Shea et al. 2004; Sheil and Burslem 2013) may 
not fully explain patterns in lichens and other obligate sym-
biotic organisms in nature. Understanding whether and how 
lichens respond to disturbance has widespread implications 
considering the proliferation of studies documenting the 
prevalence of microbiomes and symbiomes, or co-evolving 
sets of unrelated symbionts (Röthig et al. 2016; Tripp et al. 
2017; Brodie et al. 2017).

Lichens are obligate symbiotic organisms composed 
of a minimum of one fungus and one alga or cyanobacte-
rium (Brodo et al. 2001). A given lichen also often harbors 
numerous other symbionts including bacteria, additional 
algal genotypes, and additional fungi (Arnold et al. 2009; 
Bates et al. 2012; U’Ren et al. 2012; Fleischhacker et al. 
2015; Muggia et al. 2016; Chagnon et al. 2016; Fernandez-
Mendoza et al. 2017). Thus, lichens function as hubs of 
trophic interactions, represent a remarkable symbiotic life 
form and, serve as a source for evolutionary innovation not 
achieved elsewhere in the fungal tree of life (Honneger 1991; 
Lutzoni et al. 2001). From a functional perspective, lichens 
exist via diverse growth forms, display complex morpholo-
gies and reproductive modes, and contribute a broad array 
of ecological services including biogeochemical cycling, 
biomass production, pollutant sequestration, decomposi-
tion, soil formation, and habitat or nutrition sources for an 
untold diversity of organisms (Szczepaniak and Biziuk 2003; 
Cornelissen et al. 2007; Asplund and Wardle 2017). From a 
biological diversity perspective, lichens are often among the 
most diverse eukaryotic organisms in a given area, follow-
ing insects, vascular plants, and non-lichenized fungi (e.g., 
DLIA 2017).

For nearly two centuries, disturbance has been recog-
nized as having a major role in shaping patterns of lichen 
diversity and abundance. However, knowledge of lichen dis-
turbance ecology has developed in three focal areas. First, 

the majority of studies have focused on subsets of lichen 
diversity, such as macrolichens, foliicolous lichens, or spe-
cific species of lichens (Mistry 1998; Dynesius and Zinko 
2006; Benítez et al. 2012; Barry et al. 2015; Arsenault and 
Goward 2016; Tarasova et al. 2017). In contrast, few studies 
have incorporated data derived from total lichen diversity, 
with most studies completely excluding microlichens that 
can comprise more than half the total diversity in an area 
(e.g., Tripp 2015; Lendemer et al. 2016). Second, research to 
date has emphasized responses to catastrophic disturbances 
(Mistry 1998; McMullin et al. 2008; O’Bryan et al. 2009; 
Ellis and Coppins 2010; Lundström et al. 2013; Bartels and 
Chen 2015), land management practices (Zemanová et al. 
2017; Ray et al. 2015), and pollution (McCune et al. 1997; 
Ellis and Coppins 2010; Shrestha and St. Clair 2011). In 
contrast, much less is known about the impacts of milder to 
moderate forms of disturbance such as patchiness, extent and 
quality of native habitat, and forest maturity (but see Johans-
son et al. 2012; Pastore et al. 2014). Third, prior studies have 
not dissected individual components of disturbance in natu-
ral systems via analyses of a suite habitat quality variables 
in addition to standard ecological metrics and environmental 
variables. This is particularly important given that exten-
sive work has shown that habitat diversity and complexity, 
together with climate, are important factors that drive the 
distributions of biodiversity (MacArthur 1972; Currie 1991; 
McCain 2009; Kessler et al. 2011).

Understanding of the interplay between lichen diversity 
and disturbance has developed in the absence of taxonomi-
cally comprehensive studies spanning the dimensions of 
disturbance and environment across full gradients typically 
found in natural systems. Here, we use a new regional-scale 
dataset to test whether and how anthropogenic disturbance 
explains variation in lichen species diversity in a temper-
ate biodiversity hotspot. The dataset spans 47 1-ha plots 
in the southern Appalachian Mountains of eastern North 
America and includes more 4000 occurrences representing 
509 phenotypically delimited lichen species (see “Materials 
and methods”), in addition to data for woody plant diversity, 
forest density, rock density, climate and geographical factors, 
ten components of habitat quality.

Materials and methods

Study plots

To assess impacts of disturbance and additional biotic and 
abiotic factors on lichen diversity, we inventoried total lichen 
biodiversity across 47 one-hectare (ha) sites in the southern 
Appalachian foothills of northern Alabama (Fig. 1). Site 
selection spanned several axes of disturbance plus a range of 
additional variables (tree and rock substrate density, woody 
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tree diversity, elevation, aspect, slope). These plots were rep-
licated across the above axes as best as possible, following 
Fierer et al. (2011), McCain (2004, 2009), and McCain and 
Grytnes (2010). During the site selection process, attempts 
were made to hold uniform several explanatory variables to 
minimize potentially confounding effects of extreme within-
site variation. For example, in a given plot, we sampled only 
one aspect (e.g., east-facing), attempted to minimize vari-
ation in slope (e.g., 10˚ throughout the 1 ha), and did not 
traverse major shifts in habitat type (e.g., dry ridgetop forest 
vs. wet riparian forest).

Biodiversity inventory

In each 1 ha plot, a taxonomically comprehensive lichen 
inventory (all growth forms, all substrates, all reproductive 
modes) was implemented via expert-based surveys in which 
each species encountered by a collector was vouchered. 
These methods have been shown more effective at captur-
ing total diversity than plot- or transect-based methods as 
well as inventories by non-experts (Coddington et al. 1991; 
Sørensen et al. 2012). All 47 plots were sampled until total 
species diversity was vouchered, as determined by the pri-
mary collectors (collection times varied between 10 min in 

highly degraded sites to 110 min in less disturbed sites). 
Using species counts per plot, we calculated an accumula-
tion curve via the specaccum function in the vegan package 
(http://vegan .r-forge .r-proje ct.org) in R. For each voucher 
specimen, precise geographic locality, habitat, substrate, and 
other ecological information were recorded. Two individu-
als (Lendemer, Tripp) completed all taxonomic inventories. 
Collection of ecological data (see below) was spearheaded 
by McCain assisted by Tripp, Lendemer, Anderson Stewart, 
and Hoffman.

Voucher specimens were returned to a temporary, trave-
ling laboratory for preliminary identifications. Unique 
identifiers were assigned to each collection and its subc-
ollections (e.g., DNA vouchers, photographs). Specimens 
were curated (e.g., soil stabilized), thin-sectioned to study 
anatomical features (e.g., ascospore shape, size), and phe-
notyped for taxonomically important secondary metabo-
lites using a traveling Thin Layer Chromatography lab 
[TLC methods following Lendemer (2011)]. All specimens 
were identified using regional keys (Lendemer et al. 2013, 
2016; Tripp and Lendemer 2019a, in press) that follow cur-
rent concepts of phenotypically characterized lichen spe-
cies (Esslinger 2016, for the most part), many of which have 
been included in molecular phylogenetic studies and found 

Fig. 1  Map of the Appalachian Mountain chain of eastern North 
America (cool to warm color scale depicts increasing 100  m eleva-
tional bands from 0 to 100 m of light blue to 2000–2100 m of dark 

red). Inset shows the southern portions of the southern Appalachian 
Mountains and 47 1-ha study sites located in northern Alabama. 
Color version of this figure is available online

http://vegan.r-forge.r-project.org
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to be monophyletic. Identifications were further refined at 
home institutions of J. Lendemer (New York Botanical Gar-
den, NY Herbarium) and E. Tripp (University of Colorado, 
COLO Herbarium). Vouchers were collected in duplicate, 
are permanently deposited at NY and COLO, and result-
ing data are available at: NYBG’s Starr Virtual Herbarium 
(http://sweet gum.nybg.org/scien ce/vh/), COLO’s internal 
database (https ://botan ydb.color ado.edu/index .php), SEI-
Net (http://swbio diver sity.org/seine t/), and iDigBio (https 
://www.idigb io.org/).

Phenotypic (morphological) species delimitation

Recognition of species on the basis of phenotypes vs. geno-
types varies widely in mycology and is oftentimes group-
specific (Balasundaram et al. 2015; Yahr et al. 2016). Spe-
cies delimitation methods, moreover, vary as a function 
of density of cryptic diversity (Miadlikowska et al. 2018). 
In lichen-forming fungi, examples of species that cannot 
be delimited and recognized using phenotypic (including 
chemical) characters appear to be rare (for example, the 800 
square miles comprising Great Smoky Mountains National 
Park–the most lichenologically diverse national park in the 
United States–contains nearly 1000 species, all of which can 
be identified using standard phenotypic-based methods of 
delimitation; Tripp and Lendemer 2019a, in press). In fact, 
in lichens, the vast majority of molecular studies have led to 
taxonomic redelimitation of species using previously over-
looked or inconspicuous phenotypic characters (Yahr et al. 
2016; Lücking et al. 2017); this applies even to instances 
where species were originally purported to be cryptic (e.g., 
Ossowska et al. 2018). Thus, we assert that the phenotypi-
cally delimited species are a reasonable approximation of 
the actual taxonomic diversity of lichens in a given biogeo-
graphic region (Leavitt et al. 2016; Yahr et al. 2016; Magain 
et al. 2018; Tripp and Lendemer 2019a, in press), as is the 
case for many other well-studied group of organisms that can 
be readily examined with a microscope.

Disturbance assessments

Northern Alabama hosts a spatially mosaicked, broad spec-
trum of habitat qualities ranging from exceptionally dis-
turbed to moderately intact to near-virgin forests that have 
seen little impact in recorded history. Examples of excep-
tionally disturbed habitats include cultivated cornfields, 
immature forest regrowth following clearcutting, and paved 
parking lots. Examples of moderately intact habitats include 
the majority of extant, primarily native ecosystems in this 
portion of the state (e.g., lands managed by the U.S. Forest 
Service, and Alabama state lands under jurisdiction of For-
ever Wild, including Wildlife Management Areas). Exam-
ples of near-virgin forests include old-growth box canyons 

in the Sipsey Wilderness (Bankhead National Forest) and 
small subsets of Little River Canyon National Preserve and 
Skyline Wildlife Management Area.

We quantified disturbance on a scale of − 2 (lowest habi-
tat quality [HQ], or most disturbed) to 95.2 (highest HQ, 
or least disturbed) using the native vegetation assessment 
methods of Parkes et al. (2003; note this scale allows for a 
minimum value that is negative). The HQ of each plot was 
based on the sum of 10 metrics (value range for each in 
parentheses; see Fig. 2) and incorporated both site-specific 
as well as landscape context metrics including: percentage 
of mature trees (0–10), percentage of native tree canopy 
cover (0–5), percentage of native understory and degree 
of anthropogenic modification (0–25), percentage of weed 
cover (0–15), percentage of recruiting native trees (0–10), 
percentage of native, expected litter quantity (0–5), percent-
age of native, expected coarse woody debris (0–5), habitat 
fragment size (0–10), degree of fragmentation of surround-
ing hectares (− 2 to 5.2), and distance to nearest core area 

Fig. 2  Illustration of the components of our habitat quality metric 
based on the scores from the 47 plots using quartile box-plots for 
groupings of habitat quality (value intervals of 15). These scores 
are inversely related to disturbance: lower values are more highly 
disturbed. The overall habitat quality metric is a sum of 10 habitat 
assessments, including: a percent native understory, litter, and tree 
recruitment; b percent mature, large trees and native tree canopy 
cover; c distance to nearest core area and percent weediness (most to 
least); and d habitat patch size and degree of fragmentation of sur-
rounding hectares (neighborhood). Course woody increased with 
habitat quality (not shown); see text for details. Color version of this 
figure is available online

http://sweetgum.nybg.org/science/vh/
https://botanydb.colorado.edu/index.php
http://swbiodiversity.org/seinet/
https://www.idigbio.org/
https://www.idigbio.org/
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(0–5) based on Parkes et al. (2003). All disturbance scores 
were quantified in the field at the time of plot sampling.

Forest diversity, density, and rockiness assessments

Because total tree diversity and density of woody vegetation 
present can impact diversity of other organisms, especially 
sessile taxa such as lichens that utilize trees as primary sub-
strates, we also quantified these factors in each plot. First, a 
total checklist of all woody, vascular plant diversity (trees 
and shrubs) was compiled for each plot using existing knowl-
edge and supplemented by standard identification tools, as 
needed (Weakley 2015). These data were analyzed (see 
below) with and without inclusion of the shrub component. 
Second, we established a 10-square meter  (m2) representa-
tive subplot within which we quantified the total number 
of trees > 10 cm diameter at breast height (DBH) as well as 
the diameter and species identification of each tree. Finally, 
because rocks represent an important substrate that can host 
highly unique communities of lichens (Flock 1978; Brodo 
et al. 2001; Henson et al. 2013; Tripp 2015), we assessed 
the density of exposed rock at each site on a qualitative scale 
ranging from 1 to 10.

Environmental variables

Numerous climatic and geographic variables are associated 
with taxonomic diversity, often with high correlation (e.g., 
Hawkins et al. 2003; Currie et al. 2004; Dynesius and Zinko 
2006; Ellis and Coppins 2010; McCain and Grytnes 2010). 
For the southern Appalachians, important potential variables 
related to overall lichen diversity include temperature, pre-
cipitation, net primary productivity (NPP), elevation, slope, 
and aspect. Using geographic coordinates of each plot, we 
extracted elevation from a digital elevation model (Shut-
tle Radar Topography Mission (SRTM), NASA, resolution: 
90 m) in ArcGIS, whereas we estimated the slope and aspect 
while sampling the plot. We used mean annual temperature 
and precipitation from the PRISM 30-year normals (resolu-
tion: 800 m2, 1981–2010), and mean NPP using MODIS 
estimates (MOD17A3, resolution: ~ 1 km2, 2000–2013), 
extracted for each plot using ArcGIS.

Statistical analyses

To assess the fit of disturbance models to our data, we com-
pared linear, quadratic, and cubic relationships using AICc 
weights to extract relationships between lichen diversity 
and disturbance. To determine which variables were most 
associated with lichen diversity across these 47 sites, we 
ran forward, stepwise, multivariate linear regressions for all 
quantitative variables: elevation (m), disturbance, NPP (gC/
m2/yr), precipitation (mm), rock cover, slope, temperature 

(°C), tree diameter (sum DBH), tree quantity (count), and 
tree richness. For stepwise variable inclusion, we used the 
minimum BIC cutoff value (models were consistent for 
BIC, AICc, and p value cutoff values except that the latter 
two included more variables, but additional variables were 
consistently non-significant individually when included). 
Model fit was assessed with r2 values and variable strength 
with p values. Several of our abiotic and biotic variables are 
correlated (e.g., temperature and elevation, disturbance and 
number of trees; see Appendix 2 for a correlation matrix and 
additional analyses), thus stepwise multivariate regression 
was chosen to simultaneously assess variable fit and col-
linearity. But, we also compared best stepwise multivariate 
regression models with and without disturbance to assess 
relative importance of the collinear variables, and we con-
ducted a multivariate partial least squares test to detect the 
key variables that should be included in the model despite 
collinearity (see Appendix 2 for further details).

For plot orientation, assessed qualitatively (flat vs. fac-
ing east, west, south, north), we used ANOVAs to test 
for differences in lichen diversity as well as disturbance. 
Additionally, we ran the same multiple regression methods 
employing additional variables for functionally contrasting 
groups of lichens [sexually (via fungal-only ascospores, 
which must later encounter at minimum a new photobiont 
partner to complete the reproductive process) vs. asexually 
(via lichenized propagules that co-disperse both the fungal 
and algal partners, and likely other symbionts) reproduc-
ing lichens, microlichens vs. macrolichens, and four domi-
nant growth forms consisting each of a minimum of 20 taxa 
(crustose, foliose, fruticose, squamulose)] to detect potential 
biological differences among these groups. Mode of repro-
duction was determined as the primary mode representa-
tive for each species (e.g., some lichens reproduce asexu-
ally via lichenized propagules for most phases of their life 
history but are known to pass through brief, sexual phases; 
these species were scored as asexual; in contrast, sexually 
reproducing species are not known to manufacture asexual, 
lichenized propagules, Tripp and Lendemer 2018). Statisti-
cal analyses were conducted using JMP Pro 13.0 (2016 SAS 
Institute Inc.).

Results

Across the 47 sites, we documented a total of 509 lichen 
species. Overall the biota was dominated by microlichens 
[316 taxa (62%) vs. 193 macrolichens (38%)] while there 
were slightly more sexually reproducing species than asexu-
ally reproducing species [206 asexual (40%) vs. 294 sexual 
(58%); 9 species unknown]. Crustose lichens were also the 
most diverse, with 302 species, compared to 129 foliose, 25 
fruticose, and 42 squamulose lichens (10 lichenicolous taxa 
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plus 1 unknown not included in analyses; Electronic Sup-
plemental Material Appendix 1). The accumulation curve 
showed that over half of all sampled species were docu-
mented after inventory of the first 12 plots but that even after 
the total number of plots were sampled, accumulation had 
yet to fully taper off (Fig. 3). The sites spanned a broad 
distribution of habitat qualities, ranging from 0.00 to 95.2, 
and specific species responded differently to disturbances 
(Table 1; Electronic Supplemental Material Appendix 1). 
Most of the 10 habitat quality metrics increased with habitat 
quality, but with varying degrees of overlap and strength of 
importance (Fig. 2). For all lichens, we recovered a strong, 
unequivocally linearly increasing relationship between 
the number of lichen species and decreasing disturbance 
(Fig. 4: All, r2 = 0.645, AICc weights: linear = 0.708, quad-
ratic = 0.222, cubic = 0.070). 

The best stepwise, multivariate regression model for the 
distribution of lichen diversity across all sites included only 
disturbance (r2 = 0.645, p < 0.0001; Appendix 2). Several of 
the explanatory variables were correlated, although most 
were not strong (r < 0.30; see correlation matrix in Appen-
dix 2). Thus, the total model, including all 10 biotic and abi-
otic variables only slightly improved the model (r2 = 0.696) 
and the complete model without disturbance was a poorer 
fit (r2 = 0.539, p < 0.001). To further assess collinearity, par-
tial regression statistics detected that disturbance residuals 
were minor, whereas the residuals of the collinear variables 
were large and still had considerable variation unexplained. 
Disturbance and rock cover are negatively correlated 
(r = − 0.4220), and disturbance and several of the tree vari-
ables were correlated (Appendix 2), which are likely causal 
as humans do not have many uses for areas of large rocky 
outcrops and disturbance negatively influences trees as well 
as lichens.

The best models for microlichen, macrolichen, and 
asexual lichen diversity, when analyzed separately (Fig. 4, 
r2 = 0.635, p < 0.0001; r2 = 0.580, p < 0.0001, r2 = 0.533, 

p < 0.0001, respectively), were strongly related only to 
disturbance. However, sexual lichen diversity was best 
predicted by decreasing disturbance (Fig. 4, p < 0.0001) 
as well as a trade-off between precipitation (p = 0.0181) 
and rock cover (Fig. 5, p = 0.037, overall model r2 = 0.707, 
p < 0.0001). With lower rock coverage, sexual lichen diver-
sity was found to increase with increasing precipitation 
whereas with greater rock coverage, diversity decreased with 
increasing precipitation. Nonetheless, this precipitation–rock 
cover interaction explained only a small amount of variation 
(0.075) beyond disturbance alone (r2 = 0.632).

Among the four dominant lichen growth forms, distur-
bance was again the best predictor of diversity. It was the only 
variable in the best models for crustose and foliose lichens 
individually (r2 = 0.637, p < 0.0001, r2 = 0.529, p < 0.0001, 
respectively) whereas the best models for less diverse growth 
forms (i.e., fruticose and squamulose lichens) also included a 
second variable beyond disturbance as the strongest variable. 
However, these models were weaker (r2 = 0.391, p < 0.0001, 
r2 = 0.359, p < 0.0001, respectively). Fruticose lichens 

Fig. 3  Rarefaction curve showing accumulation of lichen species 
across 47 one-hectare plots sampled for total lichen biodiversity in 
the present study

Fig. 4  Relationship between lichen diversity and habitat quality 
across a all lichens, and four different partitionings of lichen groups: 
b macrolichens, c microlichens, d sexually reproducing lichens, e 
asexually reproducing lichens. Degree of disturbance (inverse of 
Index of habitat quality) is consistently supported as the sole multi-
variate regression model component for all lichen groups
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increased with decreasing disturbance (p = 0.005) and rock 
cover (p = 0.019) whereas squamulose lichens increased with 
decreasing disturbance (p < 0.0001) and decreased with overall 
quantity of tree bark (summed DBH, p = 0.003).

Finally, we found that flat sites had fewer lichen species 
than sites with slopes facing any direction (Fig. 6a, ANOVA 
r2 = 0.403, p = 0.002). However, when disturbance among 
sites was compared across aspects, the most disturbed sites 
were flat sites (Fig. 6b, ANOVA r2 = 0.620, p = 0.002).

Discussion

Our data strongly support a linear relationship between 
lichen diversity and habitat quality and disturbance. This 
result was recovered both from analysis of our full dataset 

as well as subsets of the data parsed by important lichen 
traits such as growth form, reproductive mode, and sub-
strate (all r2 values > 0.5). Beyond disturbance, our study 
recovered minor support for additional factors in explaining 
lichen biodiversity including effects of precipitation (sexual 
species), rock cover (sexual species, fruticose species), and 
tree density (squamulose species). Additionally, several of 
our explanatory variables were correlated (Appendix 2). In 
particular, the relationships between disturbance and several 
forest characteristics (e.g., number of trees, canopy cover-
age) are likely causal and, therefore, also implicated in the 
potential mechanisms of lichen decline with human distur-
bance. Similarly, but in reverse, human disturbance declines 
in areas of high rock coverage, thus humans have less impact 
on such regions.

The disturbance–diversity relationship in lichens

There is extensive evidence documenting that lichen diver-
sity declines with increasing disturbance (Lücking 1995; 
Ellis and Coppins 2010; Benítez et al. 2012; Nylén and 
Luoto 2015; Ardelean et al. 2015; Tarasova et al. 2017; Zem-
anová et al. 2017). However, while this connection is well-
established, prior studies have almost exclusively focused 
on subsets of total lichen diversity (e.g., macrolichens or 
epiphytes) and treated disturbance either qualitatively by 
assigning broadly defined classes (Lücking 1995; Rivas 
Plata et al. 2008; Benítez et al. 2012) or utilized time since 
disturbance as a proxy for degree of disturbance (Hestmark 
et al. 2007; O’Bryan et al. 2009; Ellis and Coppins 2010; 
Bartels and Chen 2014, 2015; Nelson et al. 2015; Arsenault 

Fig. 5  Sexual lichen diver-
sity increases linearly with 
decreasing disturbance as in 
previous analyses, although 
two additional variables, 
precipitation (x-axis), and rock 
cover (columns) modulate this 
relationship

Fig. 6  Number of lichen species (a) and index of habitat quality (b) 
across 5 different site types: flat, north-, south-, east-, and west-facing 
slopes
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and Goward 2016; Tarasova et al. 2017; Zemanová et al. 
2017).

The present study provides a new lens with which to view 
lichen disturbance ecology, as it appears to be the first to 
directly examine total lichen species richness along a distur-
bance gradient wherein disturbance was quantified using a 
standardized suite of habitat quality metrics (Fig. 2). Further, 
the present study emphasized patterns across a large regional 
scale in the context of a temperate biodiversity hotspot for 
both lichens and vascular plants. Our results support the 
broad conclusion of earlier studies that lichens are negatively 
impacted by disturbance and decreased habitat quality. We 
also found that beyond the primary effect of disturbance, 
there are secondary effects of variation in microhabitat fea-
tures including annual precipitation and rock cover. None-
theless, this study highlights that the relationships between 
lichen diversity, disturbance, and habitat quality are excep-
tionally strong across the full complement of lichen diversity 
in this study region. That is, regardless of size, reproductive 
mode, growth form and ecology, the diversity of lichens is 
strongly driven by disturbance and habitat quality.

What factors may have contributed to the linear rela-
tionship between disturbance and lichen diversity? Huston 
(2014) hypothesized that exceptionally high or exception-
ally low levels of productivity could drive such patterns 
(e.g., through low colonization/developmental rates or high 
mortality/competitive exclusion). However, net primary 
productivity (NPP) did not explain the variation in diver-
sity observed in this study, although we caution that Ala-
bama is not particularly variable in NPP (average = 7152, 
range = 6102–10,419 g C  m−2 yr−1). We question whether 
lichens may be less subject to classic tradeoffs (Connell 
1978; Wilson 1994; Violle et al. 2010) and more strongly 
driven by availability of resources (Death 2002).

Lichens are by definition autotrophic organisms, and thus 
are not primarily limited by carbon availability in their envi-
ronments (Honegger 1998; Cornelissen et al. 2007). Rather 
than abiotic limitations, the single most important resource 
required for lichens to colonize a new landscape is likely 
the availability of suitable symbiotic partners. Due to the 
diverse reproductive modes of lichens, these partners can 
be transmitted vertically, horizontally, or via a combina-
tion of means depending on species-specific factors (Dal 
Grande et al. 2012; Muggia et al. 2014; Tripp and Lendemer 
2018; see also Chagnon et al. 2016). While many lichens 
produce asexual propagules that co-disperse the complement 
of symbionts required to form a lichen, a larger proportion 
reproduce sexually and must establish new contact with at 
minimum a suitable photobiont to yield further development 
(Tripp and Lendemer 2018). For example, in the present 
study, 40% of lichen species co-disperse their symbionts 
asexually while 58% disperse sexual ascospores. This mir-
rors broader continental scale patterns in North America 

[> 70% of all North American lichens reproduce sexually 
(E. Tripp and J. Lendemer, ms in prep.)].

Following symbiont availability, lichen colonization is 
expected to be limited by substrate availability and variety 
(i.e., presence and type of woody substrates or rocks) given 
that substrate preferences of many lichens relate to a narrow 
range of chemical and physical characters (Barkman 1958; 
Wolf 1994; Wolseley and Aguirre-Hudson 1997; Cáceres 
et al. 2007; Nelson et al. 2015; Tripp 2015; Jüriado et al. 
2017; McDonald et al. 2017; Resl et al. 2018). Subsequent 
to initial colonization and establishment, the most impor-
tant factors governing later stages of lichen development are 
likely to involve physiological constraints and tolerance of 
the abiotic environment and microclimates including tem-
perature, precipitation, airborne (or waterborne) nutrients, 
and air quality (McCune et al. 1997; Dynesius and Zinko 
2006; Ellis and Coppins 2010; Nelson et al. 2015), in addi-
tion to ongoing biotic interactions experienced by a given 
individual throughout its lifetime (e.g., competition, disease 
dynamics).

Taken together, it seems likely that two broad classes of 
factors, biotic and abiotic, impact lichen biodiversity at dif-
ferent life stages: colonization (dependent on symbiont avail-
ability and density; see Tretiach et al. 2013) and subsequent 
development (dependent on abiotic factors in addition to 
ongoing biotic interactions). If true, this complexity presents 
challenges to the hypothesis that any single resource may 
set an upper limit on lichen diversity. In the present study, 
symbiont availability was not examined, but this ‘biotic limi-
tation’ hypothesis presents an exciting avenue for further 
study (K. Keepers et al., ms in prep.).

Limited additional factors predict lichen diversity

Our key finding that habitat quality and disturbance drive 
patterns of lichen diversity was tempered by limited dem-
onstration of the potential relevance of additional variables 
modulating natural lichen diversity. For instance, we found 
precipitation and rock cover impacted sexual lichens, and 
rock or tree cover helped explain species richness of taxa 
with fruticose and squamulose growth forms.

That sexual species diversity increased with precipita-
tion at low rock cover but declined with precipitation for 
higher rock cover suggests an interesting tradeoff that may 
involve several different contributing factors including habi-
tat diversity (with or without rocks) and competitive exclu-
sion imposed by bryophytes (typically more abundant at 
higher, wetter elevations, e.g., Dynesius and Zinko 2006). 
This, however, does not lend insight into why such a tradeoff 
should impact sexual but not asexually reproducing lichens. 
This tradeoff, if accurate, may involve limitations of sexual 
spore dispersal or colonization in rocky, wetter habitats 
compared to the mitotic diaspores of asexually reproducing 
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species that are dispersed together with the full complement 
of symbionts (Tripp and Lendemer 2018).

Although not yet empirically demonstrated, there likely 
exist correlations between (1) mode of reproduction and 
growth form for the two most species-rich groups of lichens, 
foliose and crustose lichens, as well as (2) competitive inter-
actions between these two growth forms as a function of pre-
cipitation and substrate. Results from ongoing research (E. 
Tripp and J. Lendemer, ms in prep.) have already revealed 
that foliose species are overrepresented in regions of North 
America with extensive hardwood forest cover (such as the 
Appalachian Mountains) whereas crustose species are over-
represented in regions with extensive rock cover (such as the 
Rocky Mountains). At the same time, crustose species tend 
to reproduce sexually whereas foliose species tend to repro-
duce asexually. Thus, high and typically wet elevations in 
eastern North America may be dominated by foliose species 
because of physiological constraints such as higher water 
demands (larger, thicker thalli) to the exclusion of crustose 
species. Correspondingly, lower and drier environments in 
this region may be more conducive to the establishment 
and development of crustose species that have lower water 
demands, especially considering that crustose lichens tend 
to be overrepresented on rocks. Better understanding of 
functional traits (cf. Nelson et al. 2015) across a large com-
plement of North American lichens would likely shed new 
light on distributions of species and their traits at regional 
and local scales.

For fruticose species, the best model for predicting rich-
ness included disturbance as well as high rock cover whereas 
for squamulose species, the best model incorporated distur-
bance together with a low number of large trees. This may 
reflect open habitat associations, but note that both models 
were weaker on average than were all models for other lichen 
groups that included only disturbance. Additionally, these 
two growth forms together comprise only a small fraction 
(13%) of our overall dataset of 509 species, which was domi-
nated by crustose (59%) and foliose (25%) species.

We also failed to find evidence that tree diversity, total 
number of trees per plot, average tree DBH per plot, plot 
elevation, slope, temperature, or net primary productivity 
impacted lichen biodiversity. But as noted above, the tree 
variables are also positively and linearly related to habitat 
quality, thus decline with disturbance as do lichens (Fig. 2; 
Appendix 2). They alone are not better explanatory variables 
than disturbance, but are casually linked to disturbance, and 
thus lichen diversity patterns. In contrast, our analyses did 
recover a significant effect of plot orientation: flat plots were 
less diverse than those on slopes facing any cardinal orienta-
tion. Flat plots were, however, also the most disturbed, sug-
gesting a correlation: flat areas are more readily disturbed by 
humans and a need to incorporate more data from disturbed 
plots on slopes. That so many of the above factors did not 

explain patterns of species richness at first seems puzzling 
given the preponderance of studies that have highlighted 
their importance, especially that of temperature, elevation, 
and productivity (Currie 1991; McCain and Grytnes 2010; 
García-López et al. 2012). However, variability in most 
of these abiotic environmental factors was limited in the 
present dataset due to the spatial proximity of the plots in 
northern Alabama. An expanded study that spans larger gra-
dients in temperature, precipitation and NPP is needed to 
more fully understand their relative importance to patterns 
of lichen diversity (e.g., Ellis and Coppins 2010), such study 
is currently underway by the authors (C. McCain et al., in 
progress).

Ecological thresholds

Data from the present study provide an opportunity to 
understand specific attributes of lichens such as tolerance 
to disturbance, commonality, and rarity. A total of seven 
lichen species were found both multiple times in our study 
and consistently occupied only the most disturbed habitats 
(i.e., HQ < 50%, Table 1; Electronic Supplemental Material 
Appendix 1). Of these, all reproduce asexually except one 
and all are crustose except one, which is microfoliose. This 
suggests that both traits, asexual reproduction and a crustose 
growth form, are conducive to disturbance tolerance. Other 
disturbance-tolerant species were found only in the most 
disturbed plots but found only once in our study, and finally 
an assemblage of additional species was found in highly 
disturbed plots in addition to relatively undisturbed plots 
(Table 1; Electronic Supplemental Material Appendix 1).

Seventeen species comprised the most common taxa (i.e., 
present in 25 or more plots), and these are a mix of foli-
ose, crustose, sexual and asexual lichens. They are, how-
ever, considered among the most common lichens in eastern 
North America (Table 1; Electronic Supplemental Material 
Appendix 1). These taxa are characterized by broad eco-
logical thresholds and are found frequently as a cohort in a 
wide variety of habitats (Brodo 1961; Dibben 1980; Brodo 
et al. 2001; Hinds and Hinds 2007; Lendemer et al. 2013; 
Muscavitch et al. 2017). In contrast, nearly a third of lichens 
in our dataset (144 of 509 species, or 28%) were found and 
collected in the field only once. This percentage is on par 
with numbers derived from other lichen biodiversity hot-
spots, such as The Greater Sonoran Desert, Great Smoky 
Mountains National Park, and the Dare Regional Biodiver-
sity Hotspot (Nash 2002; Lendemer et al. 2013; Lendemer 
and Allen 2014; Lendemer et al. 2016; Tripp and Lendemer 
2019a, b in press). The species that were located only once 
included several that are either at the edges of their biogeo-
graphical ranges, are rare to begin with, or both (Table 1; 
Electronic Supplemental Material Appendix 1; Brodo et al. 
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2001; Knudsen 2007; Breuss 2016; Lendemer et al. 2014, 
2017; Tripp and Lendemer 2019a, b, in press).

Conclusions

Results from this study demonstrate clearly that a conspicu-
ous class of obligate symbiotic organisms—lichens—are 
highly and negatively impacted by disturbance. The present 
investigation explored patterns not only across a full comple-
ment of lichen diversity, but also in a region already char-
acterized by its exceptional overall biodiversity, especially 
for temperate latitudes. This has important implications for 
conservation and management, particularly in the southeast-
ern United States—a recognized biodiversity hotspot.

That nearly a third of all lichens in northern Alabama can 
be considered to be rare in this study (found in few plots) 
but yet 30 of 47 1 ha plots (64%) contained 50 or more spe-
cies conveys overall high lichen biodiversity (and high alpha 
diversity) present in the southernmost portion of southern 
Appalachian Mountains. These data and the regional spe-
cies accumulation curve indicate that the region as a whole 
warrants extensive future study. Optimally, future research 
should include broader environmental gradients as well as 
incorporate impacts from biotic factors, especially a clearer 
understanding of photobiont diversity and distributions. 
More specifically, it seems likely that biotic and abiotic fac-
tors limit different stages of lichen development and, once 
more fully investigated, this will yield a highly complex and 
temporally dynamic set of ecological processes that govern 
lichen biodiversity.
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