University of Colorado Department of Mathematics

2016/2017 Semester 2 Math	8340 Functional Analysis 2	<u>Assignment 2</u>
---------------------------	----------------------------	---------------------

Due Monday Feb. 27, 2017

- 1. Do Exercises II.4.3, II.4.8, II.4.11, II.4.12 on pp. 45–46 of the Conway textbook.
- 2. Let $\mathcal{H}_1 = \ell^2(\mathbb{Z})$, and let $\mathcal{H}_2 = L^2[0, 1]$. Show that the map $\mathcal{F} : \mathcal{H}_1 \to \mathcal{H}_2$ defined by $\mathcal{F}((a_j)) = \sum a_j e^{2\pi i j t}$ is an isomorphism of Hilbert spaces. Let U denotes the bilateral shift operator on \mathcal{H}_1 defined by

$$U(e_n) = e_{n-1}, \ n \in \mathbb{Z},$$

where $\{e_n\}_{n\in\mathbb{Z}}$ is the standard orthonormal basis for $\ell^2(\mathbb{Z})$, so that $e_n(j) = 1$ if n = jand 0 otherwise. Prove that $\mathcal{F}U\mathcal{F}^{-1} = M_g$, where $M : L^{\infty}[0,1] \to B(L^2[0,1])$ is the multiplication operator representation defined in lectures, and $g(t) = e^{-2\pi i t}$.

- 3. (a) Recall from Assignment 1, Question 5, that there is a one-to-one correspondence between (orthogonal) projections in a Hilbert space \mathcal{H} and closed subspaces of \mathcal{H} given by $P \mapsto \operatorname{Range}(P)$. Let P and Q be projections in $B(\mathcal{H})$. Prove that $\operatorname{Range}(P)$ and $\operatorname{Range}(Q)$ are orthogonal if and only if PQ = QP = 0, and in this case P + Q is a projection, with $\operatorname{Range}(P + Q) = \operatorname{Range}(P) \oplus \operatorname{Range}(Q)$.
 - (b) Let P and Q be as in part (a). Prove that $\text{Range}(P) \subseteq \text{Range}(Q)$ if and only if PQ = QP = P, and in this case Q P is a projection.