University of Colorado

Department of Mathematics
Assignment 2
Due Monday Feb. 27, 2017

1. Do Exercises II.4.3, II.4.8, II.4.11, II.4.12 on pp. 45-46 of the Conway textbook.
2. Let $\mathcal{H}_{1}=\ell^{2}(\mathbb{Z})$, and let $\mathcal{H}_{2}=L^{2}[0,1]$. Show that the map $\mathcal{F}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ defined by $\mathcal{F}\left(\left(a_{j}\right)\right)=\sum a_{j} e^{2 \pi i j t}$ is an isomorphism of Hilbert spaces. Let U denotes the bilateral shift operator on \mathcal{H}_{1} defined by

$$
U\left(e_{n}\right)=e_{n-1}, n \in \mathbb{Z}
$$

where $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ is the standard orthonormal basis for $\ell^{2}(\mathbb{Z})$, so that $e_{n}(j)=1$ if $n=j$ and 0 otherwise. Prove that $\mathcal{F} U \mathcal{F}^{-1}=M_{g}$, where $M: L^{\infty}[0,1] \rightarrow B\left(L^{2}[0,1]\right)$ is the multiplication operator representation defined in lectures, and $g(t)=e^{-2 \pi i t}$.
3. (a) Recall from Assignment 1, Question 5, that there is a one-to-one correspondence between (orthogonal) projections in a Hilbert space \mathcal{H} and closed subspaces of \mathcal{H} given by $P \mapsto$ Range (P). Let P and Q be projections in $B(\mathcal{H})$. Prove that Range (P) and Range (Q) are orthogonal if and only if $P Q=Q P=0$, and in this case $P+Q$ is a projection, with Range $(P+Q)=$ Range $(P) \oplus$ Range (Q).
(b) Let P and Q be as in part (a). Prove that Range $(P) \subseteq$ Range (Q) if and only if $P Q=Q P=P$, and in this case $Q-P$ is a projection.

