University of Colorado Department of Mathematics

2016/20017 Semester 2 Math 8340 Functional Analysis 2 Assignment
--

Due Friday, March 17, 2017

- Do Exercises VII.1.1 p. 191, VII.3.4 (over the field C) p.194, and VII.3.1 and VII.3.7 p. 198–199, in the Conway textbook.
- 2. Recall that $L^1(\mathbb{R})$ and $\ell^1(\mathbb{Z})$ are Banach algebras, where multiplication is defined by convolution. Define an involution on $L^1(\mathbb{R})$ by $f^*(t) = \overline{f(-t)}$ and on $\ell^1(\mathbb{Z})$ by $[(a_n)_{n \in \mathbb{Z}}]^* = (\overline{a_{-n}})_{n \in \mathbb{Z}}$. Prove that $L^1(\mathbb{R})$ and $\ell^1(\mathbb{Z})$ are Banach-* algebras but that they are not C^* -algebras.
- 3. Let \mathcal{D} be the disk algebra discussed in lectures (recall this can be identified with the norm closure of complex polynomials with non-negative powers of z in $C(\mathbb{T})$). For $f \in \mathcal{D}$, define $f^*(z) = \overline{f(\overline{z})}$. Prove that this defines an involution on \mathcal{D} that makes \mathcal{D} into a Banach *-algebra which is not a C^* -algebra.
- 4. Let \mathcal{A} be a unital C^* -algebra, and suppose that a is a normal element of \mathcal{A} .
 - (a) Prove that

$$||a^2|| = ||a||^2.$$

(b) Use mathematical induction to prove that

$$||a^{2^n}|| = ||a||^{2^n}, \forall n \in \mathbb{N}.$$

(c) Using the spectral radius formula, deduce that

$$r(a) = \|a\|.$$

- 5. Let \mathcal{A} be a unital C^* -algebra, and let \mathcal{B} denote a unital C^* -subalgebra of \mathcal{A} , so that \mathcal{B} is a *-subalgebra of \mathcal{A} which contains the unit of \mathcal{A} and is closed in norm.
 - (a) Suppose that b is a self-adjoint element of \mathcal{B} which is invertible in \mathcal{A} . Prove that b is invertible in \mathcal{B} . [Hint: apply the Gelfand-Naimark Theorem to the C^* -algebra of \mathcal{A} generated by the self-adjoint elements $1_{\mathcal{A}}$, b, and b^{-1} , and use the Weierstrass polynomial approximation theorem to show that b^{-1} can be approximated by a polynomial in b.]

- (b) If $w \in \mathcal{B}$ and w is invertible in A, prove that w is invertible in \mathcal{B} . [Hint: apply part (a) to the element w^*w .]
- (c) Let $a \in \mathcal{B}$. Prove that

$$sp_{\mathcal{B}}(a) = sp_{\mathcal{A}}(a).$$