University of Colorado
 Department of Mathematics

1. Do Exercises VII.1.1 p. 191, VII.3.4 (over the field \mathbb{C}) p.194, and VII.3.1 and VII.3.7 p. 198-199, in the Conway textbook.
2. Recall that $L^{1}(\mathbb{R})$ and $\ell^{1}(\mathbb{Z})$ are Banach algebras, where multiplication is defined by convolution. Define an involution on $L^{1}(\mathbb{R})$ by $f^{*}(t)=\overline{f(-t)}$ and on $\ell^{1}(\mathbb{Z})$ by $\left[\left(a_{n}\right)_{n \in \mathbb{Z}}\right]^{*}=\left(\overline{a_{-n}}\right)_{n \in \mathbb{Z}}$. Prove that $L^{1}(\mathbb{R})$ and $\ell^{1}(\mathbb{Z})$ are Banach-* algebras but that they are not C^{*}-algebras.
3. Let \mathcal{D} be the disk algebra discussed in lectures (recall this can be identified with the norm closure of complex polynomials with non-negative powers of z in $C(\mathbb{T})$). For $f \in \mathcal{D}$, define $f^{*}(z)=f(\bar{z})$. Prove that this defines an involution on \mathcal{D} that makes \mathcal{D} into a Banach $*$-algebra which is not a C^{*}-algebra.
4. Let \mathcal{A} be a unital C^{*}-algebra, and suppose that a is a normal element of \mathcal{A}.
(a) Prove that

$$
\left\|a^{2}\right\|=\|a\|^{2}
$$

(b) Use mathematical induction to prove that

$$
\left\|a^{2^{n}}\right\|=\|a\|^{2^{n}}, \forall n \in \mathbb{N} .
$$

(c) Using the spectral radius formula, deduce that

$$
r(a)=\|a\| .
$$

5. Let \mathcal{A} be a unital C^{*}-algebra, and let \mathcal{B} denote a unital C^{*}-subalgebra of A, so that \mathcal{B} is a $*$-subalgebra of \mathcal{A} which contains the unit of \mathcal{A} and is closed in norm.
(a) Suppose that b is a self-adjoint element of \mathcal{B} which is invertible in \mathcal{A}. Prove that b is invertible in \mathcal{B}. [Hint: apply the Gelfand-Naimark Theorem to the C^{*}-algebra of \mathcal{A} generated by the self-adjoint elements $1_{\mathcal{A}}, b$, and b^{-1}, and use the Weierstrass polynomial approximation theorem to show that b^{-1} can be approximated by a polynomial in b.]
(b) If $w \in \mathcal{B}$ and w is invertible in A, prove that w is invertible in \mathcal{B}. [Hint: apply part (a) to the element $w^{*} w$.]
(c) Let $a \in \mathcal{B}$. Prove that

$$
s p_{\mathcal{B}}(a)=s p_{\mathcal{A}}(a) .
$$

