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1. Do Exercises VII.1.1 p. 191, VII.3.4 (over the field C) p.194, and VII.3.1 and VII.3.7
p. 198–199, in the Conway textbook.

2. Recall that L1(R) and `1(Z) are Banach algebras, where multiplication is defined
by convolution. Define an involution on L1(R) by f ∗(t) = f(−t) and on `1(Z) by
[(an)n∈Z]∗ = (a−n)n∈Z. Prove that L1(R) and `1(Z) are Banach-∗ algebras but that
they are not C∗-algebras.

3. Let D be the disk algebra discussed in lectures (recall this can be identified with
the norm closure of complex polynomials with non-negative powers of z in C(T)).
For f ∈ D, define f ∗(z) = f(z). Prove that this defines an involution on D that
makes D into a Banach ∗-algebra which is not a C∗-algebra.

4. Let A be a unital C∗-algebra, and suppose that a is a normal element of A.

(a) Prove that
‖a2‖ = ‖a‖2.

(b) Use mathematical induction to prove that

‖a2n‖ = ‖a‖2n

,∀n ∈ N.

(c) Using the spectral radius formula, deduce that

r(a) = ‖a‖.

5. Let A be a unital C∗-algebra, and let B denote a unital C∗-subalgebra of A, so that
B is a ∗-subalgebra of A which contains the unit of A and is closed in norm.

(a) Suppose that b is a self-adjoint element of B which is invertible in A. Prove
that b is invertible in B. [Hint: apply the Gelfand-Naimark Theorem to the
C∗-algebra of A generated by the self-adjoint elements 1A, b, and b−1, and use
the Weierstrass polynomial approximation theorem to show that b−1 can be
approximated by a polynomial in b.]



(b) If w ∈ B and w is invertible in A, prove that w is invertible in B. [Hint: apply
part (a) to the element w∗w.]

(c) Let a ∈ B. Prove that
spB(a) = spA(a).


