University of Colorado Department of Mathematics

2016/20017 Semester 2	Math 8340 Functional Analysis 2	Assignment 4
	· · · · · ·	

Due Monday, April 24, 2017

- 1. Do Exercise IX.2.19 p. 267 in the Conway textbook, parts (a)–(h) (not including part (i)).
- 2. Let (X, Ω) be a measurable space, let \mathcal{H} be a complex Hilbert space, and let $E : \Omega \to B(\mathcal{H})$ spectral measure on measure on (X, Ω) . Fix $f \in L^{\infty}(E)$, the complexvalued measurable functions on X that are essentially bounded with respect to E. Let $\{z_n\}_{n=1}^{\infty}$ be a countable dense subset of \mathbb{C} , and define $D \subset \mathbb{N} \times \mathbb{Q}^+$ by

$$D = \{(n,r) : E(f^{-1}(B(z_n,r))) = 0\},\$$

where $B(z_n, r)$ represents the open disk in \mathbb{C} centered at z_n of radius r > 0.

(a) Prove that

$$\{\lambda \in \mathbb{C} : E(f^{-1}(B(\lambda, \epsilon))) \neq 0, \forall \epsilon > 0\} = \mathbb{C} \setminus \bigcup_{(n,r)\in D} B(z_n, r).$$

The subset of \mathbb{C} defined in either side of the above equation is called the **essential range** of f with respect to E.

- (b) Let (X, Ω) , f, E and \mathcal{H} be as above. Prove that the operator $\int_X f(x) dE(x)$ is invertible if and only if 0 is not an element of the essential range of f with respect to E.
- 3. Prove using the spectral theorem that if T is a positive compact operator on the complex Hilbert space \mathcal{H} , then \mathcal{H} has a orthonormal basis consisting of eigenvectors for T.
- 4. Let $T \in B(\mathcal{H})$ for a complex Hilbert space \mathcal{H} . Prove that T is compact if and only if |T| is compact.