University of Colorado Department of Mathematics

<u>2017/2018 Semester 2</u>

Math 8370 Harmonic Analysis

Assignment 1

Due Wednesday January 31, 2018

- 1. Do the following problems in the Deitmar textbook: p. 19–21 Exercises no. 1.1, 1.3, 1.4, 1.5, 1.9, 1.13.
- 2. Let $f \in L^1(\mathbb{T})$, and suppose that $\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{2\pi i n x}$ converges almost everywhere to the function g defined on T. Suppose there exists $h \in L^1(\mathbb{T})$ such that

$$|\sum_{n=-N}^{n=N} \hat{f}(n)e^{2\pi i nx}| \leq h(x), \ \forall N \in \mathbb{N}.$$

[Here $\hat{f}(n) = \int_0^1 f(x)e^{-2\pi i nx} dx$.] Prove that $g \in L^1(\mathbb{T})$, and f = g in $L^1(\mathbb{T})$. That is, f is equal to its Fourier expansion in $L^1(\mathbb{T})$.